230603
This commit is contained in:
		
							
								
								
									
										18
									
								
								linear regression/1.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										18
									
								
								linear regression/1.md
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,18 @@
 | 
				
			|||||||
 | 
					# 1.py
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					$$
 | 
				
			||||||
 | 
					y = wx + b
 | 
				
			||||||
 | 
					$$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## 梯度下降算法
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					$$
 | 
				
			||||||
 | 
					b_gradient += -\frac{2}{N} \left(y - (w_current \cdot x + b_current)\right)
 | 
				
			||||||
 | 
					$$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					$$
 | 
				
			||||||
 | 
					w_gradient += -\frac{2}{N} \cdot x \cdot \left(y - (w_current \cdot x + b_current)\right)
 | 
				
			||||||
 | 
					$$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@@ -19,8 +19,8 @@ def step_gradient(b_current, w_current, points, learningRate):
 | 
				
			|||||||
    for i in range(len(points)):
 | 
					    for i in range(len(points)):
 | 
				
			||||||
        x = points[i][0]
 | 
					        x = points[i][0]
 | 
				
			||||||
        y = points[i][1]
 | 
					        y = points[i][1]
 | 
				
			||||||
        b_gradient += -(2 / N) * (y - (w_current * x + b_current) + b_current)
 | 
					        b_gradient += -(2 / N) * (y - (w_current * x + b_current))
 | 
				
			||||||
        w_gradient += -(2 / N) * x * (y - (w_current * x + b_current + b_current))
 | 
					        w_gradient += -(2 / N) * x * (y - (w_current * x + b_current))
 | 
				
			||||||
    new_b = b_current - (learningRate * b_gradient)
 | 
					    new_b = b_current - (learningRate * b_gradient)
 | 
				
			||||||
    new_w = w_current - (learningRate * w_gradient)
 | 
					    new_w = w_current - (learningRate * w_gradient)
 | 
				
			||||||
    return [new_b, new_w]
 | 
					    return [new_b, new_w]
 | 
				
			||||||
 
 | 
				
			|||||||
							
								
								
									
										67
									
								
								linear regression/1_cuda.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										67
									
								
								linear regression/1_cuda.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,67 @@
 | 
				
			|||||||
 | 
					import matplotlib.pyplot as plt
 | 
				
			||||||
 | 
					import numpy as np
 | 
				
			||||||
 | 
					import torch
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# 线性回归训练代码
 | 
				
			||||||
 | 
					def compute_error_for_line_given_points(b, w, points):
 | 
				
			||||||
 | 
					    totalError = 0
 | 
				
			||||||
 | 
					    N = float(len(points))
 | 
				
			||||||
 | 
					    for i in range(len(points)):
 | 
				
			||||||
 | 
					        x = points[i][0]
 | 
				
			||||||
 | 
					        y = points[i][1]
 | 
				
			||||||
 | 
					        totalError += (y - (w * x + b)) ** 2
 | 
				
			||||||
 | 
					    return totalError / N
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def step_gradient(b_current, w_current, points, learningRate):
 | 
				
			||||||
 | 
					    b_gradient = torch.tensor(0.0, device=points.device)
 | 
				
			||||||
 | 
					    w_gradient = torch.tensor(0.0, device=points.device)
 | 
				
			||||||
 | 
					    N = float(len(points))
 | 
				
			||||||
 | 
					    for i in range(len(points)):
 | 
				
			||||||
 | 
					        x = points[i][0]
 | 
				
			||||||
 | 
					        y = points[i][1]
 | 
				
			||||||
 | 
					        b_gradient += -(2 / N) * (y - (w_current * x + b_current))
 | 
				
			||||||
 | 
					        w_gradient += -(2 / N) * x * (y - (w_current * x + b_current))
 | 
				
			||||||
 | 
					    new_b = b_current - (learningRate * b_gradient)
 | 
				
			||||||
 | 
					    new_w = w_current - (learningRate * w_gradient)
 | 
				
			||||||
 | 
					    return [new_b, new_w]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def gradient_descent_runner(points, starting_b, starting_w, learningRate, num_iterations):
 | 
				
			||||||
 | 
					    b = torch.tensor(starting_b, device=points.device)
 | 
				
			||||||
 | 
					    w = torch.tensor(starting_w, device=points.device)
 | 
				
			||||||
 | 
					    for i in range(num_iterations):
 | 
				
			||||||
 | 
					        b, w = step_gradient(b, w, points, learningRate)
 | 
				
			||||||
 | 
					    return [b, w]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def run():
 | 
				
			||||||
 | 
					    points_np = np.genfromtxt("data1.csv", delimiter=',').astype(np.float32)
 | 
				
			||||||
 | 
					    points = torch.tensor(points_np, device='cuda')
 | 
				
			||||||
 | 
					    learning_rate = 0.0001
 | 
				
			||||||
 | 
					    initial_b = 0.0
 | 
				
			||||||
 | 
					    initial_w = 0.0
 | 
				
			||||||
 | 
					    num_iterations = 100000
 | 
				
			||||||
 | 
					    [b, w] = gradient_descent_runner(points, initial_b, initial_w, learning_rate, num_iterations)
 | 
				
			||||||
 | 
					    print("After gradient descent at b={0}, w={1}, error={2}".format(b.item(), w.item(),
 | 
				
			||||||
 | 
					                                                                   compute_error_for_line_given_points(b, w, points)))
 | 
				
			||||||
 | 
					    return b.item(), w.item()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# 运行线性回归
 | 
				
			||||||
 | 
					final_b, final_w = run()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# 绘制图像
 | 
				
			||||||
 | 
					points_np = np.genfromtxt("data1.csv", delimiter=',').astype(np.float32)
 | 
				
			||||||
 | 
					x = points_np[:, 0]
 | 
				
			||||||
 | 
					y = points_np[:, 1]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					x_range = np.linspace(min(x), max(x), 100)
 | 
				
			||||||
 | 
					y_pred = final_w * x_range + final_b
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					plt.figure(figsize=(8, 6))
 | 
				
			||||||
 | 
					plt.scatter(x, y, color='blue', label='Original data')
 | 
				
			||||||
 | 
					plt.plot(x_range, y_pred, color='red', label='Fitted line')
 | 
				
			||||||
 | 
					plt.xlabel('X')
 | 
				
			||||||
 | 
					plt.ylabel('Y')
 | 
				
			||||||
 | 
					plt.title('Fitting a line to random data')
 | 
				
			||||||
 | 
					plt.legend()
 | 
				
			||||||
 | 
					plt.grid(True)
 | 
				
			||||||
 | 
					plt.savefig('print1.png')
 | 
				
			||||||
 | 
					plt.show()
 | 
				
			||||||
							
								
								
									
										72
									
								
								linear regression/1x.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										72
									
								
								linear regression/1x.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,72 @@
 | 
				
			|||||||
 | 
					import matplotlib.pyplot as plt
 | 
				
			||||||
 | 
					import numpy as np
 | 
				
			||||||
 | 
					import torch
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# 线性回归训练代码
 | 
				
			||||||
 | 
					def compute_error_for_line_given_points(b, w, points):
 | 
				
			||||||
 | 
					    totalError = 0
 | 
				
			||||||
 | 
					    N = float(len(points))
 | 
				
			||||||
 | 
					    for i in range(len(points)):
 | 
				
			||||||
 | 
					        x = points[i][0]
 | 
				
			||||||
 | 
					        y = points[i][1]
 | 
				
			||||||
 | 
					        totalError += (y - (w * x + b)) ** 2
 | 
				
			||||||
 | 
					    return totalError / N
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def step_gradient(b_current, w_current, points, learningRate):
 | 
				
			||||||
 | 
					    b_gradient = torch.tensor(0.0, device=points.device, dtype=torch.float32)
 | 
				
			||||||
 | 
					    w_gradient = torch.tensor(0.0, device=points.device, dtype=torch.float32)
 | 
				
			||||||
 | 
					    N = float(len(points))
 | 
				
			||||||
 | 
					    for i in range(len(points)):
 | 
				
			||||||
 | 
					        x = points[i][0]
 | 
				
			||||||
 | 
					        y = points[i][1]
 | 
				
			||||||
 | 
					        b_gradient += -(2 / N) * (y - (w_current * x + b_current))
 | 
				
			||||||
 | 
					        w_gradient += -(2 / N) * x * (y - (w_current * x + b_current))
 | 
				
			||||||
 | 
					    new_b = b_current - (learningRate * b_gradient)
 | 
				
			||||||
 | 
					    new_w = w_current - (learningRate * w_gradient)
 | 
				
			||||||
 | 
					    return [new_b, new_w]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def gradient_descent_runner(points, starting_b, starting_w, learningRate, num_iterations):
 | 
				
			||||||
 | 
					    b = torch.tensor(starting_b, device=points.device, dtype=torch.float32)
 | 
				
			||||||
 | 
					    w = torch.tensor(starting_w, device=points.device, dtype=torch.float32)
 | 
				
			||||||
 | 
					    for i in range(num_iterations):
 | 
				
			||||||
 | 
					        b, w = step_gradient(b, w, points, learningRate)
 | 
				
			||||||
 | 
					    return [b, w]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def run():
 | 
				
			||||||
 | 
					    points_np = np.genfromtxt("data1.csv", delimiter=',').astype(np.float32)
 | 
				
			||||||
 | 
					    points = torch.tensor(points_np, device='mps')
 | 
				
			||||||
 | 
					    learning_rate = 0.0001
 | 
				
			||||||
 | 
					    initial_b = 0.0
 | 
				
			||||||
 | 
					    initial_w = 0.0
 | 
				
			||||||
 | 
					    num_iterations = 100000
 | 
				
			||||||
 | 
					    [b, w] = gradient_descent_runner(points, initial_b, initial_w, learning_rate, num_iterations)
 | 
				
			||||||
 | 
					    print("After gradient descent at b={0},w={1},error={2}".format(b.item(), w.item(),
 | 
				
			||||||
 | 
					                                                                   compute_error_for_line_given_points(b, w, points)))
 | 
				
			||||||
 | 
					    return b.item(), w.item()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# 运行线性回归
 | 
				
			||||||
 | 
					final_b, final_w = run()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# 绘制图像
 | 
				
			||||||
 | 
					points_np = np.genfromtxt("data1.csv", delimiter=',').astype(np.float32)
 | 
				
			||||||
 | 
					x = points_np[:, 0]
 | 
				
			||||||
 | 
					y = points_np[:, 1]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					x_range = np.linspace(min(x), max(x), 100)
 | 
				
			||||||
 | 
					y_pred = final_w * x_range + final_b
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					plt.figure(figsize=(8, 6))
 | 
				
			||||||
 | 
					plt.scatter(x, y, color='blue', label='Original data')
 | 
				
			||||||
 | 
					plt.plot(x_range, y_pred, color='red', label='Fitted line')
 | 
				
			||||||
 | 
					plt.xlabel('X')
 | 
				
			||||||
 | 
					plt.ylabel('Y')
 | 
				
			||||||
 | 
					plt.title('Fitting a line to random data')
 | 
				
			||||||
 | 
					plt.legend()
 | 
				
			||||||
 | 
					plt.grid(True)
 | 
				
			||||||
 | 
					plt.savefig('print1.png')
 | 
				
			||||||
 | 
					plt.show()
 | 
				
			||||||
@@ -1,100 +1,100 @@
 | 
				
			|||||||
0.0,2.4360562173289115
 | 
					0.0,3.267264598063918
 | 
				
			||||||
0.10101010101010101,2.4288710820592065
 | 
					0.10101010101010101,3.3715980311448757
 | 
				
			||||||
0.20202020202020202,3.677943201375977
 | 
					0.20202020202020202,3.624529195538264
 | 
				
			||||||
0.30303030303030304,3.5029234515863217
 | 
					0.30303030303030304,2.2426026435865785
 | 
				
			||||||
0.40404040404040403,4.007715980839878
 | 
					0.40404040404040403,2.881354128303834
 | 
				
			||||||
0.5050505050505051,3.95999321461469
 | 
					0.5050505050505051,4.108915299601898
 | 
				
			||||||
0.6060606060606061,3.220853916066527
 | 
					0.6060606060606061,3.2833072841616344
 | 
				
			||||||
0.7070707070707071,3.2211460206798623
 | 
					0.7070707070707071,3.401314666490608
 | 
				
			||||||
0.8080808080808081,4.2516957270374505
 | 
					0.8080808080808081,3.4471224977820083
 | 
				
			||||||
0.9090909090909091,4.311826715084292
 | 
					0.9090909090909091,4.597483332850038
 | 
				
			||||||
1.0101010101010102,4.153966583608258
 | 
					1.0101010101010102,4.1948230194917615
 | 
				
			||||||
1.1111111111111112,4.224290328721461
 | 
					1.1111111111111112,4.770110614428998
 | 
				
			||||||
1.2121212121212122,4.551324602105953
 | 
					1.2121212121212122,4.3466984672473545
 | 
				
			||||||
1.3131313131313131,5.157200101408408
 | 
					1.3131313131313131,4.085374736788284
 | 
				
			||||||
1.4141414141414141,5.199011258508288
 | 
					1.4141414141414141,4.860667770156386
 | 
				
			||||||
1.5151515151515151,5.248911218901843
 | 
					1.5151515151515151,5.367460741298345
 | 
				
			||||||
1.6161616161616161,5.789628423512512
 | 
					1.6161616161616161,5.1076464505556585
 | 
				
			||||||
1.7171717171717171,5.126592322934872
 | 
					1.7171717171717171,4.517380143483942
 | 
				
			||||||
1.8181818181818181,4.546631494636344
 | 
					1.8181818181818181,6.028333717306668
 | 
				
			||||||
1.9191919191919191,5.7260434379514065
 | 
					1.9191919191919191,5.268642728341781
 | 
				
			||||||
2.0202020202020203,5.607446671816119
 | 
					2.0202020202020203,5.2032646463511885
 | 
				
			||||||
2.121212121212121,5.401744626671172
 | 
					2.121212121212121,5.776924577040542
 | 
				
			||||||
2.2222222222222223,5.568078510495838
 | 
					2.2222222222222223,5.914239664440679
 | 
				
			||||||
2.323232323232323,6.136817713051054
 | 
					2.323232323232323,6.195294604152318
 | 
				
			||||||
2.4242424242424243,5.399802896696589
 | 
					2.4242424242424243,6.67461745554651
 | 
				
			||||||
2.525252525252525,6.7465591899811415
 | 
					2.525252525252525,6.62895898059055
 | 
				
			||||||
2.6262626262626263,6.510002771256968
 | 
					2.6262626262626263,6.423496434474387
 | 
				
			||||||
2.727272727272727,6.194107987238278
 | 
					2.727272727272727,6.520626001853953
 | 
				
			||||||
2.8282828282828283,6.280445605022811
 | 
					2.8282828282828283,6.252851138402289
 | 
				
			||||||
2.929292929292929,6.413289184504817
 | 
					2.929292929292929,7.045662416151556
 | 
				
			||||||
3.0303030303030303,8.178951965980268
 | 
					3.0303030303030303,7.062687254815803
 | 
				
			||||||
3.131313131313131,7.438933818741419
 | 
					3.131313131313131,6.950015155958233
 | 
				
			||||||
3.2323232323232323,8.161193108124682
 | 
					3.2323232323232323,7.71420449451215
 | 
				
			||||||
3.3333333333333335,6.466487953447159
 | 
					3.3333333333333335,7.536987534120887
 | 
				
			||||||
3.4343434343434343,7.6815673373443385
 | 
					3.4343434343434343,8.408446293914908
 | 
				
			||||||
3.5353535353535355,7.412509123916619
 | 
					3.5353535353535355,8.281116903817127
 | 
				
			||||||
3.6363636363636362,7.712231039046388
 | 
					3.6363636363636362,6.862064335470844
 | 
				
			||||||
3.7373737373737375,7.512155302443977
 | 
					3.7373737373737375,8.455114086555362
 | 
				
			||||||
3.8383838383838382,8.169468174953455
 | 
					3.8383838383838382,8.610569256326439
 | 
				
			||||||
3.9393939393939394,8.201406255891817
 | 
					3.9393939393939394,8.695172603505283
 | 
				
			||||||
4.040404040404041,9.413915839209679
 | 
					4.040404040404041,7.987174933011048
 | 
				
			||||||
4.141414141414141,7.2131607261403
 | 
					4.141414141414141,8.484042583282307
 | 
				
			||||||
4.242424242424242,8.244196707034996
 | 
					4.242424242424242,8.152218590549857
 | 
				
			||||||
4.343434343434343,8.059400613529792
 | 
					4.343434343434343,8.810112829362456
 | 
				
			||||||
4.444444444444445,9.127093042087843
 | 
					4.444444444444445,9.098520210970904
 | 
				
			||||||
4.545454545454545,8.232456814994503
 | 
					4.545454545454545,9.315991463976044
 | 
				
			||||||
4.646464646464646,9.026988954051767
 | 
					4.646464646464646,9.266562387635002
 | 
				
			||||||
4.747474747474747,8.936405824368308
 | 
					4.747474747474747,8.457655714255173
 | 
				
			||||||
4.848484848484849,8.838334259675397
 | 
					4.848484848484849,8.577190426286784
 | 
				
			||||||
4.94949494949495,9.717080564295035
 | 
					4.94949494949495,9.992687218959654
 | 
				
			||||||
5.05050505050505,9.635892324495916
 | 
					5.05050505050505,9.949888900251127
 | 
				
			||||||
5.151515151515151,10.802758752616178
 | 
					5.151515151515151,10.112370557219064
 | 
				
			||||||
5.252525252525253,9.889268431487773
 | 
					5.252525252525253,10.250084050804231
 | 
				
			||||||
5.353535353535354,9.262021983987134
 | 
					5.353535353535354,9.675169646286898
 | 
				
			||||||
5.454545454545454,9.905732041295009
 | 
					5.454545454545454,9.790565255890696
 | 
				
			||||||
5.555555555555555,9.697006564677089
 | 
					5.555555555555555,9.91666488079517
 | 
				
			||||||
5.656565656565657,10.435437946557755
 | 
					5.656565656565657,10.325538746448835
 | 
				
			||||||
5.757575757575758,10.257651825530608
 | 
					5.757575757575758,9.77548528051785
 | 
				
			||||||
5.858585858585858,11.394734709569004
 | 
					5.858585858585858,10.55371401462777
 | 
				
			||||||
5.959595959595959,10.872621683473387
 | 
					5.959595959595959,10.757696722894282
 | 
				
			||||||
6.0606060606060606,10.750944058491058
 | 
					6.0606060606060606,10.893354131765726
 | 
				
			||||||
6.161616161616162,11.375400587831757
 | 
					6.161616161616162,12.049342074375708
 | 
				
			||||||
6.262626262626262,11.834436555701465
 | 
					6.262626262626262,10.936118426966079
 | 
				
			||||||
6.363636363636363,11.536088544119654
 | 
					6.363636363636363,11.031578580287063
 | 
				
			||||||
6.4646464646464645,11.261555999325722
 | 
					6.4646464646464645,11.713471927909302
 | 
				
			||||||
6.565656565656566,12.529961808490153
 | 
					6.565656565656566,12.343664117608101
 | 
				
			||||||
6.666666666666667,12.19345219105891
 | 
					6.666666666666667,12.067856620638729
 | 
				
			||||||
6.767676767676767,11.950653180245155
 | 
					6.767676767676767,11.814430199711552
 | 
				
			||||||
6.8686868686868685,12.176773142948385
 | 
					6.8686868686868685,11.123516182999314
 | 
				
			||||||
6.96969696969697,12.055083206520518
 | 
					6.96969696969697,12.496962644202316
 | 
				
			||||||
7.070707070707071,13.498633194384489
 | 
					7.070707070707071,12.767487737755147
 | 
				
			||||||
7.171717171717171,12.542518727882712
 | 
					7.171717171717171,12.632934104476211
 | 
				
			||||||
7.2727272727272725,13.318372269865769
 | 
					7.2727272727272725,12.728225932468364
 | 
				
			||||||
7.373737373737374,12.542630883166513
 | 
					7.373737373737374,12.97630338885533
 | 
				
			||||||
7.474747474747475,12.93490122675753
 | 
					7.474747474747475,12.896220727223701
 | 
				
			||||||
7.575757575757575,14.4040220344926
 | 
					7.575757575757575,13.047808359849581
 | 
				
			||||||
7.6767676767676765,13.314367294113964
 | 
					7.6767676767676765,13.110443597152527
 | 
				
			||||||
7.777777777777778,14.061236496574551
 | 
					7.777777777777778,12.921358752181128
 | 
				
			||||||
7.878787878787879,12.686346979737731
 | 
					7.878787878787879,13.30038615173782
 | 
				
			||||||
7.979797979797979,14.024375221983842
 | 
					7.979797979797979,13.836945395153705
 | 
				
			||||||
8.080808080808081,13.7042096336008
 | 
					8.080808080808081,13.054484897082014
 | 
				
			||||||
8.181818181818182,13.342730021126272
 | 
					8.181818181818182,14.01038452336861
 | 
				
			||||||
8.282828282828282,14.136548357864573
 | 
					8.282828282828282,13.643336312636018
 | 
				
			||||||
8.383838383838384,14.619569834949138
 | 
					8.383838383838384,14.564671365817466
 | 
				
			||||||
8.484848484848484,14.01453898823226
 | 
					8.484848484848484,14.040540515755758
 | 
				
			||||||
8.585858585858587,15.154877807203663
 | 
					8.585858585858587,14.57992522742261
 | 
				
			||||||
8.686868686868687,14.081910297898048
 | 
					8.686868686868687,14.88631275019171
 | 
				
			||||||
8.787878787878787,14.474564310016353
 | 
					8.787878787878787,14.021963220008606
 | 
				
			||||||
8.88888888888889,14.966525346412723
 | 
					8.88888888888889,15.068155050128949
 | 
				
			||||||
8.98989898989899,15.526107019435932
 | 
					8.98989898989899,15.083538874549268
 | 
				
			||||||
9.09090909090909,14.352357736719853
 | 
					9.09090909090909,15.417748308319911
 | 
				
			||||||
9.191919191919192,15.843742065895144
 | 
					9.191919191919192,14.89714205401168
 | 
				
			||||||
9.292929292929292,15.787083172159111
 | 
					9.292929292929292,14.534676091762206
 | 
				
			||||||
9.393939393939394,15.211828607109144
 | 
					9.393939393939394,15.556467883324295
 | 
				
			||||||
9.494949494949495,15.845176532492374
 | 
					9.494949494949495,15.525938847099864
 | 
				
			||||||
9.595959595959595,15.622518083688107
 | 
					9.595959595959595,15.560767751324764
 | 
				
			||||||
9.696969696969697,15.589081237426006
 | 
					9.696969696969697,15.982790914773943
 | 
				
			||||||
9.797979797979798,15.511248085690712
 | 
					9.797979797979798,16.062079721169738
 | 
				
			||||||
9.8989898989899,16.27050774059862
 | 
					9.8989898989899,16.232818049890696
 | 
				
			||||||
10.0,16.1105549896166
 | 
					10.0,17.053472736980353
 | 
				
			||||||
 
 | 
				
			|||||||
		
		
			
  | 
@@ -3,12 +3,13 @@ import matplotlib.pyplot as plt
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
# 原始数据
 | 
					# 原始数据
 | 
				
			||||||
points = np.genfromtxt("data1.csv", delimiter=',')
 | 
					points = np.genfromtxt("data1.csv", delimiter=',')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
x = points[:, 0]
 | 
					x = points[:, 0]
 | 
				
			||||||
y = points[:, 1]
 | 
					y = points[:, 1]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# 拟合直线
 | 
					# 拟合直线
 | 
				
			||||||
x_range = np.linspace(min(x), max(x), 100)
 | 
					x_range = np.linspace(min(x), max(x), 100)
 | 
				
			||||||
y_pred = 1.6455038785934448 * x_range + 1.827562689781189
 | 
					y_pred = 0.3880246877670288 * x_range + 1.7214288711547852
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# 绘图
 | 
					# 绘图
 | 
				
			||||||
plt.figure(figsize=(8, 6))
 | 
					plt.figure(figsize=(8, 6))
 | 
				
			||||||
 
 | 
				
			|||||||
										
											Binary file not shown.
										
									
								
							| 
		 Before Width: | Height: | Size: 36 KiB After Width: | Height: | Size: 34 KiB  | 
		Reference in New Issue
	
	Block a user