68 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			68 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import matplotlib.pyplot as plt
 | 
						|
import numpy as np
 | 
						|
import torch
 | 
						|
 | 
						|
# 线性回归训练代码
 | 
						|
def compute_error_for_line_given_points(b, w, points):
 | 
						|
    totalError = 0
 | 
						|
    N = float(len(points))
 | 
						|
    for i in range(len(points)):
 | 
						|
        x = points[i][0]
 | 
						|
        y = points[i][1]
 | 
						|
        totalError += (y - (w * x + b)) ** 2
 | 
						|
    return totalError / N
 | 
						|
 | 
						|
def step_gradient(b_current, w_current, points, learningRate):
 | 
						|
    b_gradient = torch.tensor(0.0, device=points.device)
 | 
						|
    w_gradient = torch.tensor(0.0, device=points.device)
 | 
						|
    N = float(len(points))
 | 
						|
    for i in range(len(points)):
 | 
						|
        x = points[i][0]
 | 
						|
        y = points[i][1]
 | 
						|
        b_gradient += -(2 / N) * (y - (w_current * x + b_current))
 | 
						|
        w_gradient += -(2 / N) * x * (y - (w_current * x + b_current))
 | 
						|
    new_b = b_current - (learningRate * b_gradient)
 | 
						|
    new_w = w_current - (learningRate * w_gradient)
 | 
						|
    return [new_b, new_w]
 | 
						|
 | 
						|
def gradient_descent_runner(points, starting_b, starting_w, learningRate, num_iterations):
 | 
						|
    b = torch.tensor(starting_b, device=points.device)
 | 
						|
    w = torch.tensor(starting_w, device=points.device)
 | 
						|
    for i in range(num_iterations):
 | 
						|
        b, w = step_gradient(b, w, points, learningRate)
 | 
						|
    return [b, w]
 | 
						|
 | 
						|
def run():
 | 
						|
    points_np = np.genfromtxt("data1.csv", delimiter=',').astype(np.float32)
 | 
						|
    points = torch.tensor(points_np, device='cuda')
 | 
						|
    learning_rate = 0.0001
 | 
						|
    initial_b = 0.0
 | 
						|
    initial_w = 0.0
 | 
						|
    num_iterations = 100000
 | 
						|
    [b, w] = gradient_descent_runner(points, initial_b, initial_w, learning_rate, num_iterations)
 | 
						|
    print("After gradient descent at b={0}, w={1}, error={2}".format(b.item(), w.item(),
 | 
						|
                                                                   compute_error_for_line_given_points(b, w, points)))
 | 
						|
    return b.item(), w.item()
 | 
						|
 | 
						|
# 运行线性回归
 | 
						|
final_b, final_w = run()
 | 
						|
 | 
						|
# 绘制图像
 | 
						|
points_np = np.genfromtxt("data1.csv", delimiter=',').astype(np.float32)
 | 
						|
x = points_np[:, 0]
 | 
						|
y = points_np[:, 1]
 | 
						|
 | 
						|
x_range = np.linspace(min(x), max(x), 100)
 | 
						|
y_pred = final_w * x_range + final_b
 | 
						|
 | 
						|
plt.figure(figsize=(8, 6))
 | 
						|
plt.scatter(x, y, color='blue', label='Original data')
 | 
						|
plt.plot(x_range, y_pred, color='red', label='Fitted line')
 | 
						|
plt.xlabel('X')
 | 
						|
plt.ylabel('Y')
 | 
						|
plt.title('Fitting a line to random data')
 | 
						|
plt.legend()
 | 
						|
plt.grid(True)
 | 
						|
plt.savefig('print1.png')
 | 
						|
plt.show()
 |