57 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			57 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import numpy as np
 | 
						|
import torch
 | 
						|
 | 
						|
 | 
						|
def compute_error_for_line_given_points(b, w, points):
 | 
						|
    totalError = 0
 | 
						|
    N = float(len(points))
 | 
						|
    for i in range(len(points)):
 | 
						|
        x = points[i][0]
 | 
						|
        y = points[i][1]
 | 
						|
        totalError += (y - (w * x + b)) ** 2
 | 
						|
    return totalError / N
 | 
						|
 | 
						|
 | 
						|
def step_gradient(b_current, w_current, points, learningRate):
 | 
						|
    b_gradient = torch.tensor(0.0, device=points.device, dtype=torch.float32)
 | 
						|
    w_gradient = torch.tensor(0.0, device=points.device, dtype=torch.float32)
 | 
						|
    N = float(len(points))
 | 
						|
    for i in range(len(points)):
 | 
						|
        x = points[i][0]
 | 
						|
        y = points[i][1]
 | 
						|
        b_gradient += -(2 / N) * (y - (w_current * x + b_current))
 | 
						|
        w_gradient += -(2 / N) * x * (y - (w_current * x + b_current))
 | 
						|
    new_b = b_current - (learningRate * b_gradient)
 | 
						|
    new_w = w_current - (learningRate * w_gradient)
 | 
						|
    return [new_b, new_w]
 | 
						|
 | 
						|
 | 
						|
def gradient_descent_runner(points, starting_b, starting_w, learningRate, num_iterations):
 | 
						|
    b = torch.tensor(starting_b, device=points.device, dtype=torch.float32)
 | 
						|
    w = torch.tensor(starting_w, device=points.device, dtype=torch.float32)
 | 
						|
    for i in range(num_iterations):
 | 
						|
        b, w = step_gradient(b, w, points, learningRate)
 | 
						|
    return [b, w]
 | 
						|
 | 
						|
 | 
						|
def run():
 | 
						|
    # 修改为生成数据的文件路径
 | 
						|
    points_np = np.genfromtxt("data1.csv", delimiter=',').astype(np.float32)
 | 
						|
    points = torch.tensor(points_np, device='mps')
 | 
						|
    learning_rate = 0.0001  # 使用较小的学习率
 | 
						|
    initial_b = 0.0
 | 
						|
    initial_w = 0.0
 | 
						|
    num_iterations = 1000
 | 
						|
    print("Starting gradient descent at b={0},w={1},error={2}".format(initial_b, initial_w,
 | 
						|
                                                                      compute_error_for_line_given_points(initial_b,
 | 
						|
                                                                                                          initial_w,
 | 
						|
                                                                                                          points)))
 | 
						|
    print("running...")
 | 
						|
    [b, w] = gradient_descent_runner(points, initial_b, initial_w, learning_rate, num_iterations)
 | 
						|
    print("After gradient descent at b={0},w={1},error={2}".format(b.item(), w.item(),
 | 
						|
                                                                   compute_error_for_line_given_points(b, w, points)))
 | 
						|
 | 
						|
 | 
						|
if __name__ == '__main__':
 | 
						|
    run()
 |