import numpy as np import torch def compute_error_for_line_given_points(b, w, points): totalError = 0 N = float(len(points)) for i in range(len(points)): x = points[i][0] y = points[i][1] totalError += (y - (w * x + b)) ** 2 return totalError / N def step_gradient(b_current, w_current, points, learningRate): b_gradient = torch.tensor(0.0, device=points.device, dtype=torch.float32) w_gradient = torch.tensor(0.0, device=points.device, dtype=torch.float32) N = float(len(points)) for i in range(len(points)): x = points[i][0] y = points[i][1] b_gradient += -(2 / N) * (y - (w_current * x + b_current)) w_gradient += -(2 / N) * x * (y - (w_current * x + b_current)) new_b = b_current - (learningRate * b_gradient) new_w = w_current - (learningRate * w_gradient) return [new_b, new_w] def gradient_descent_runner(points, starting_b, starting_w, learningRate, num_iterations): b = torch.tensor(starting_b, device=points.device, dtype=torch.float32) w = torch.tensor(starting_w, device=points.device, dtype=torch.float32) for i in range(num_iterations): b, w = step_gradient(b, w, points, learningRate) return [b, w] def run(): # 修改为生成数据的文件路径 points_np = np.genfromtxt("data1.csv", delimiter=',').astype(np.float32) points = torch.tensor(points_np, device='mps') learning_rate = 0.0001 # 使用较小的学习率 initial_b = 0.0 initial_w = 0.0 num_iterations = 1000 print("Starting gradient descent at b={0},w={1},error={2}".format(initial_b, initial_w, compute_error_for_line_given_points(initial_b, initial_w, points))) print("running...") [b, w] = gradient_descent_runner(points, initial_b, initial_w, learning_rate, num_iterations) print("After gradient descent at b={0},w={1},error={2}".format(b.item(), w.item(), compute_error_for_line_given_points(b, w, points))) if __name__ == '__main__': run()