396 lines
		
	
	
		
			176 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			396 lines
		
	
	
		
			176 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
{
 | 
						||
 "cells": [
 | 
						||
  {
 | 
						||
   "cell_type": "code",
 | 
						||
   "execution_count": 3,
 | 
						||
   "metadata": {},
 | 
						||
   "outputs": [],
 | 
						||
   "source": [
 | 
						||
    "# 导库\n",
 | 
						||
    "from sklearn.datasets import make_classification\n",
 | 
						||
    "import tensorflow as tf\n",
 | 
						||
    "import numpy as np\n",
 | 
						||
    "import matplotlib.pyplot as plt\n",
 | 
						||
    "from matplotlib.lines import Line2D\n",
 | 
						||
    "from matplotlib.colors import ListedColormap\n",
 | 
						||
    "from tensorflow.keras.layers import Dense\n",
 | 
						||
    "\n",
 | 
						||
    "# 使用GPU 6\n",
 | 
						||
    "gpus = tf.config.experimental.list_physical_devices('GPU')\n",
 | 
						||
    "if gpus:\n",
 | 
						||
    "    try:\n",
 | 
						||
    "        tf.config.experimental.set_visible_devices(gpus[6], 'GPU')\n",
 | 
						||
    "        for gpu in gpus:\n",
 | 
						||
    "            tf.config.experimental.set_virtual_device_configuration(\n",
 | 
						||
    "                gpu,\n",
 | 
						||
    "                [tf.config.experimental.VirtualDeviceConfiguration(memory_limit=4096)]  # 限制每个GPU使用4GB显存\n",
 | 
						||
    "            )\n",
 | 
						||
    "    except RuntimeError as e:\n",
 | 
						||
    "        print(e)"
 | 
						||
   ]
 | 
						||
  },
 | 
						||
  {
 | 
						||
   "cell_type": "code",
 | 
						||
   "execution_count": 4,
 | 
						||
   "metadata": {},
 | 
						||
   "outputs": [
 | 
						||
    {
 | 
						||
     "data": {
 | 
						||
      "image/png": "iVBORw0KGgoAAAANSUhEUgAACMkAAAcUCAYAAABYAsY/AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAA9hAAAPYQB1ayvdAABAABJREFUeJzs3Xd4VVX2//FPKimQEFqAgCGhVymh9yqgiDhIsdAVAXtlLF9xdBwUFRsqFghYGEFAkKb0DtKl94CEDgkkpJLc3x/54Rjvucltyb25eb+eJ8+Ma5+99ko5NyFnZW8vk8lkEgAAAAAAAAAAAAAAAODBvF1dAAAAAAAAAAAAAAAAAFDQaJIBAAAAAAAAAAAAAACAx6NJBgAAAAAAAAAAAAAAAB6PJhkAAAAAAAAAAAAAAAB4PJpkAAAAAAAAAAAAAAAA4PFokgEAAAAAAAAAAAAAAIDHo0kGAAAAAAAAAAAAAAAAHo8mGQAAAAAAAAAAAAAAAHg8mmQAAAAAAAAAAAAAAADg8WiSAQAAAAAAAAAAAAAAgMejSQYAAAAAAAAAAAAAAAAejyYZAAAAAAAAAAAAAAAAeDyaZAAAAAAAAAAAAAAAAODxaJIBAAAAAAAAAAAAAACAx6NJBgAAAAAAAAAAAAAAAB6PJhkAAAAAAAAAAAAAAAB4PJpkAAAAAAAAAAAAAAAA4PFokgEAAAAAAAAAAAAAAIDHo0kGAAAAAAAAAAAAAAAAHo8mGQAAAAAAAAAAAAAAAHg8mmQAAAAAAAAAAAAAAADg8WiSAQAAAAAAAAAAAAAAgMejSQYAAAAAAAAAAAAAAAAejyYZAAAAAAAAAAAAAAAAeDyaZAAAAAAAAAAAAAAAAODxaJIBAAAAAAAAAAAAAACAx6NJBgAAAAAAAAAAAAAAAB6PJhkAAAAAAAAAAAAAAAB4PJpkAAAAAAAAAAAAAAAA4PFokgEAAAAAAAAAAAAAAIDHo0kGAAAAAAAAAAAAAAAAHo8mGQAAAAAAAAAAAAAAAHg8mmQAAAAAAAAAAAAAAADg8WiSAQAAAAAAAAAAAAAAgMejSQYAAAAAAAAAAAAAAAAejyYZAAAAAAAAAAAAAAAAeDyaZAAAAAAAAAAAAAAAAODxaJIBAAAAAAAAAAAAAACAx6NJBgAAAAAAAAAAAAAAAB7P19UFAAAAAAAAANY4efKkFi1apG3btmnPnj26cuWKrl27puTkZLNrQ0NDlZiYaHXutLQ0LVy4UFu2bNG2bdsUHx+va9eu6dq1a8rKyjK7fv78+brnnnsceG8AAAAAAEBho0kGAAAAAGCX9PR0JSYmKiUlRWlpafL391dQUJDKlSsnPz8/V5cHFAncR9bZu3evXn75ZS1evFjZ2dlOzZ2amqo33nhDU6dO1dWrV52aGwAAAAAAuBeaZAAAAAAA+bpw4YJWr16tTZs2aceOHTp58qTOnz8vk8lkdq2Xl5fKly+v2rVrq2HDhmrbtq06duyoiIgIF1QOuA/uI/tMmzZN48aNU1pamtNzHz16VP369dP+/fudnhvuJT4+XgkJCQ7l8PPzU0hIiEJDQxUUFOSkygAAAAAAhcnLZPSbGAAAAABAsZeWlqZvv/1W3377rdavX+/w7g0xMTG67777NHToUIWHhzupSsC9cR855ueff1bfvn0NG4nyk99xS4mJiWrevLmOHTtmV20ct1S0DBs2TDNmzHBaPj8/P9WqVUuNGzdWkyZN1KdPH9WqVctp+QEAAAAABYMmGQAAAABALunp6frggw/0/vvv6+LFi07P7+fnpwEDBuiVV15RnTp1nJ4fRUNiYqI++OADs3jp0qX11FNPFXo9zsZ95LjExERFRUXl2eiSl/yaZBxtmqBJpmhxdpOMkZYtW2rUqFEaPny4fHx8CnQtAAAAAIB9aJIBAAAAAPxp1apVevTRR3X06NECX8vb21vDhw/XxIkTVa5cuQJfD+4lLi5OUVFRZvHIyEjFxcUVfkFOxH3kHG+//bbGjx9vOBYdHa2HHnpIMTExqlChguHRNz4+Pqpbt67h/DNnzig6OlqZmZlmYwEBARo8eLC6dOmi6OholSxZUt7e3mbXRUZGqlSpUja+V3CVwmiSuaVJkyb67LPP1LJly0JZDwAAAABgPV9XFwAAAAAAcL3s7Gy9+eabev311x0+DsaWNb/++mv9+uuvOn36dKGsCRQk7iPnmjZtmmH8nnvu0axZsxQQEGB37m+++cawQaZMmTJav3696tWrZ3duYNeuXWrbtq0++ugjjR071tXlAAAAAAD+giYZAAAAACjmbt68qQceeECzZ8/O99qwsDDdcccdatu2rerXr6+oqCiVKVNGwcHByszMVHJysuLj43X06FFt375da9as0bZt2/JsGLh+/boz3x3AJbiPnOvSpUs6cuSIWdzf319ffPGFQw0ykrRhwwbD+GuvvUaDDJwiKytL48aNU4kSJTRy5EhXlwMAAAAA+P9okgEAAACAYuzmzZu677779NNPP+V5XcuWLfXCCy/orrvukr+/v+E1Pj4+CggIULly5XT77berf//+kqT4+Hh9//33mjJlik6dOuXsdwFwOe4j59u2bZthvH379ipfvnyB5b/33nsdzo2ix9rT6G/cuKGkpCSdOnVKe/fu1bJly7R48WKlpaVZnPPYY4+pdevWNF8BAAAAgJswP1AZAAAAAFBsPPnkk3k+2K9YsaLmzJmjLVu26N5777X4YD8vERERev7553Xs2DFNmzZNlSpVcqBiwP1wHznf+fPnDeN169Z1OHdWVpYuX75sFi9ZsqSqVKnicH54ruDgYFWsWFEtW7bUqFGj9OOPP+r06dMaOnSoxTlpaWl67rnnCrFKAAAAAEBeaJIBAAAAgGJq2rRp+vTTTy2Ot2nTRrt37/5zJwtH+fr6avjw4Tp06JAee+wxp+QEXI37qGAkJCQYxkuXLu1w7sTERMOdQ5yRG8VP+fLlFRsbqzfffNPiNUuXLtWxY8cKsSoAAAAAgCU0yQAAAABAMXT69Gk99dRTFse7dOmilStXKjw83Olrh4SE6OOPP9bChQtVpkwZp+cHCgv3UcFJTk42jPv4+Lh1bhRfL7/8sjp37mxxfOHChYVYDQAAAADAEppkAAAAAKAYGjt2rJKSkgzH6tWrpwULFiggIKBAa+jTp482b96s6OjoAl0HKCjcRwXHaKeXopAbxdsrr7xicWzLli2FWAkAAAAAwBJfVxcAAAAAAChcGzZs0OLFiw3HAgICNGfOHJUsWbJQaqlVq5ZWrlxZKGsBzsR95Bw3btzQyZMnzeIXL140vP7ixYvat29fvnmrVKmi0qVL68iRI8rIyMg1dvbsWcM5mZmZVuUODg5WVFRUvteh+Gnfvr1KlixpuFvRiRMnXFARAAAAAODvaJIBAAAAgGLmtddeszj2/PPPq169eoVYjRQWFuaUPDdv3tTq1au1Zs0a7dixQ8ePH9elS5d048YN+fj4qGTJkqpSpYpq1qypNm3aqEePHqpfv75T1s7PsWPHtHHjRh04cEAHDhzQ8ePHlZiYqOvXrystLU0BAQEKCQlRRESE6tSpo5iYGPXo0UN169YtlPri4uK0YsUK7dq1S7t379b58+d1/fp1Xbt2TV5eXgoKClJgYKDKli2ratWqKTIyUvXq1VPr1q3VsGFD+frm/+uFixcv5mp8cLRR4a+ioqIUHBxs0xxHcR855z7atm1bnkfU/N1nn32mzz77LN/rpk+frmHDhqlHjx46deqUVbnPnj2rhg0b5ntdx44dtWbNGqtyGjl+/LiWL1+uTZs26fDhwzp9+rSSkpKUmpqqwMBAlSlTRtHR0WrSpIk6d+6sHj16FPiORH+3b98+rVy5Ups3b9bRo0f1xx9/KDk5WRkZGQoKClK5cuVUvXp1xcTEqEuXLurSpQvHVUny8/NT1apVdfDgQbOxa9euFcia6enpWr16tdatW6edO3fq5MmTunjxom7cuCEvL68/79latWqpbdu26t27t2rVqlUgtfzVmTNntH79eu3fv18HDx7UkSNHlJCQoOvXryslJUX+/v4qVaqUIiIiVKNGDcXExKhbt25q0qSJvLy8Cry+vCQnJ2vJkiVatmyZfv/9d8XFxSkpKUklSpRQ+fLlFR4erhYtWqh3797q2LGjSpQoUWC1JCYm6pdfftHOnTu1a9cunTp16s/vz5mZmQoMDFRQUJBCQ0N12223KTIyUjVr1lTLli3VvHnzQv/eCAAAABQFXib2mAUAAACAYuPw4cOqU6eO4VjZsmV16tSpIvdA5fLly3r//ff11Vdf6dKlSzbNvf322/Xcc89p8ODBTn3Am56erqVLl2r+/PlavXq1/vjjD7vyNGjQQE888YSGDx9uVSOKrX744Qd9/vnnWrt2rd1H0AQFBalHjx4aOHCg+vTpY/HrZ8KECXr99dcdKdei1atXq1OnTgWS2wj3UW6O3Edr1qyxqUnGWreaZKpVq2Z1k4y17GmSycrK0qxZs/TRRx9p27ZtNs0NDQ3ViBEj9MILL6hixYo2zbVFWlqavv76a3366ac6cOCATXMrVKigcePG6cknn1RoaGgBVeiYYcOGacaMGYZjzvz1aNu2bbVp0yazeL169bR//36nrXPixAlNmjRJ//3vf5WYmGjT3FatWmn8+PHq27ev0+rJysrSqlWrNHfuXK1atUpHjx61K09UVJTGjh2rsWPHKigoyCm1WXodOHnypKpVq/bnfycnJ2vixIn65JNPrG5qCg8P15tvvqkRI0bI29vbKfVK0tatWzV58mQtWLBAaWlpduXw8fFRy5YtNXDgQN13332qVKmS0+oDAAAAijLn/eQOAAAAAHB7X3/9tcWxMWPGFKkH+yaTSZ999pmio6P1n//8x+YH+5K0Z88ePfTQQ2ratKm2b9/ucE1paWkaMWKEwsPD1a9fP82cOdPuBhkpZzeHRx55RA0aNNCWLVscru+WI0eOqHPnzho0aJDWrFnj0APilJQU/fTTTxo8eLBeeeUVp9XozriPcnP2feRp1qxZo/r16+uhhx6yuUFGytmBZPLkyapVq5Y+//zzAqhQ+vHHH1W9enU99thjNjfISDk7Rb322muqXbu25s6dWwAVFh2WGlZKly7tlPzJycl66qmn/vx6sLVBRpK2bNmie+65R927d3dKE9kzzzyjypUrq0ePHpo6dardDTJSTuPK888/r1q1amnRokUO12atDRs2qEGDBvr3v/9t064/Fy5c0MMPP6w2bdroypUrDtdx7do1Pfroo2rdurV++OEHuxtkpJzGpU2bNunJJ59U7969Ha4NAAAA8BQ0yQAAAABAMZLXw8sRI0YUYiWOSUlJ0YABAzR27FglJSU5nO/3339XmzZt9NVXXzmUJzk5WdOnT3f6sRqHDx9W+/btFRsb63Cu7du3q1WrVg4dF2NJcdmslvvImLPuI0+RnZ2tl156SZ07d9bhw4cdzpeUlKQxY8bowQcfVEZGhhMqzGnsGzZsmO677z6LR6DZ4sKFC+rfv79efPHFYvN68Fc3b97U6dOnDceqV6/ucP59+/apSZMm+vDDD5WVleVwvhUrVigmJkbr1q1zKM8XX3yR6zg9Z4iPj9fdd9+tN99806l5jcyaNUtdu3Z1qGFo69at6tSpky5cuGB3jitXrqhTp06aOnWq0++f4ng/AgAAAJbQJAMAAAAAxcThw4d14sQJw7GYmBhFRUUVckX2SU1N1Z133qkff/zRqXkzMzP18MMPa/LkyU7N6yw3b97UiBEjNGvWLLtzHD16VN27d1dCQoITKyteuI/y5u73UWG5efOmBg0apP/85z9Oz/3dd99pwIABunnzpkN5kpOT1aNHD4tHEDninXfe0WOPPeb0vO5uw4YNSk5ONhxr3ry5w7nbtGmjY8eOOZTn7y5fvqxevXpp7dq1Ts3rDCaTSa+++qomTpxYYGssWLBADz30kFMaz/bt26f777/frrkZGRnq3r27du/e7XAdAAAAAPLm/APNAQAAAABuafXq1RbHunfvXoiVOGbIkCH57oISExOj++67TzVr1lRERITS0tIUHx+v7du3a9asWTp37pzFuc8884wqVaqkQYMGOa1mPz8/NWjQQDExMWratKnCw8MVFham0NBQpaamKiEhQUePHtXmzZv166+/Wjw+w2QyaeTIkWrcuLHq1q1rcx3jxo3L82iOmjVr6o477lCDBg0UFRWlkJAQBQYG6saNG7p27ZquXLmi/fv3a8+ePdq+fbtdR/MUddxHzr2POnXqZLjDwYQJE/T666+bxV977TVNmDAhz5x/FRcXZxgzamaKjIw0vN4eQ4cO1Zw5cyyOe3l5qUWLFurUqZOaNWumcuXKqXTp0kpMTNS5c+e0bt06LVq0SPHx8YbzFyxYoGeffVYffvihXfVlZmbqrrvu0vr16y1e4+vrq7Zt26pTp05q1KiRypYtq5CQEF25ckXx8fFauXKllixZYvGImU8//VQ1atTQ008/bVeNRdFbb71lGPf29lbfvn3tzrtz50716tXLYgOOJJUvX15dunRRx44dddttt6ls2bLy8fHRhQsXdOjQIS1ZskTr1q0z3IEmJSVF/fr10/bt2xUdHW13nX/l7e2tOnXqqHnz5mrWrJkqV66ssLAwhYWFKT09XQkJCYqLi9PmzZu1fPlynT9/3mKul19+WS1atFCXLl2cUtstBw8e1P3332/2Malatap69+6t9u3bKzw8XGXLllViYqJOnz6tZcuWaeHChUpJSTHMuWrVKsXGxmrYsGE21TJp0iTt2rXL4nj58uV1xx13qFmzZqpRo4bCwsIUHBysjIwMXbt2TYmJiTp8+LB+//137dy5U8ePH7dpfQAAAKBYMQEAAAAAioVRo0aZJBm+LV261NXlWeWjjz6y+D5IMt1+++2mHTt25JkjKyvL9NVXX5lKlSplMU/JkiVNR48etbm+S5cu/ZnDz8/P1Lt3b9PMmTNN165dszrHjRs3TJ9++qmpTJkyFuvr0KGDzbUtX748z4/bqlWrbMqXlZVl2rhxo2n8+PGmKlWqmCSZnnzySavnnzx50rCWyMhI296xQsZ9lKMg7yOTyWR67bXXDHO+9tprduX7q4L+2nv77bfz/Pg+8MADpv379+ebJzMz0/TRRx/l+VqwcOFCu2ocM2aMxZy+vr6mxx57zBQXF5dvnhs3bpgmTJhgCgwMtJhr586ddtXobEOHDrX4PjtDXp/3vn372p330qVLpqpVq1rMfdttt5mmTp1qSktLyzfXgQMHTL169bKYq0WLFqasrCybawwODjZJMnl7e5s6duxo+uyzz0yXLl2yen5GRobpu+++M912220Wa6tevbopIyPD5tpMJpMpMjLSMGflypVz/XfVqlVNM2bMMGVnZ+eZ7/Tp06bevXtbrDU8PNyUmZlpdX3Xrl0zBQUFGeYqW7asafr06TblM5lMpsOHD5smTZpkatas2Z+v6wAAAABy0CQDAAAAAMVETEyMxQc68fHxri4vX3/88YepZMmSFt+H4cOH2/QA7eTJk6bo6GiL+bp162ZzjZcuXTKVKFHC9Nhjj5nOnDlj8/y/io+PN7Vu3dpifStWrLAp3+jRow3ztG/f3nTjxg2Has3MzDR9//33pq+++srqOUW1SYb7KLeCuI9MpqLbJLNnzx6Tn5+fYf7Q0FDT/Pnzbc555MgRU1RUlGHOqlWrmlJTU23Kt2TJEoufr4iICNOGDRtsrnHLli2mcuXKGeZs3ry5zfkKQkE1yVy+fNk0cuRIi7mDgoJMJ06csDv/gAEDLObu27evKSEhweacr7zyisWcn3zyic35QkNDTQ8++KDp0KFDNs/9q8TERNPdd99tsTZbvsf8laUmmb++tW3b1nT16lWrc2ZmZpruvfdei/l++uknq3PNmjXLMEf58uUd+tq5Zf369aaXX37Z4TwAAACAp/AWAAAAAKBYOHbsmGE8JCRElStXLuRqbPf6669bPGqib9+++vLLL+Xn52d1vmrVqumXX35RhQoVDMdXrFihZcuW2VRjSEiITpw4oY8//lgRERE2zf27ypUra/HixapXr57h+JQpU2zKZ/S+eHt7KzY2VkFBQXbVeIuvr68GDx6skSNHOpSnKOA+yq0g7qOibOzYscrMzDSLBwUFacWKFbrnnntszlmzZk2tXbtWZcuWNRv7448/9MUXX1idKyMjQ+PGjTMcCw8P14YNG9S2bVuba2zZsqV+/fVXlShRwmxs27ZtWrhwoc053VFqaqouXryobdu26euvv9aAAQNUtWpVff3114bX+/n56YcffjA83ssay5cv1+zZsw3HBg4cqPnz56t06dI2533jjTf0/PPPG4699dZbSk9Ptynfrl279M0336h27do21/JXoaGhmjNnjjp16mQ4buv3PWu1bNlSy5cvV1hYmNVzfH199fXXX1t87YuNjbU6l6XXyEmTJtn9tfNX7dq105tvvulwHgAAAMBT0CQDAAAAAMVASkqKEhMTDceqVKlSuMXY4ezZs5o5c6bhWKVKlfTNN9/Ix8fH5rw1atSw+HBTkiZOnGhTPn9/f6c2SoSFhWnatGmGY4sXL1ZSUpJVebKzs3XmzBmzeIsWLRQdHe1QjcUJ95ExZ99HRdWyZcu0ceNGw7EZM2YoJibG7tx5NWJ8+OGHMplMVuWZNm2aTp48aRb38fHRggULVK1aNbtrbNKkid5++23DsQ8++MDuvIXBy8vLqregoCCFh4erRYsWGjVqlObMmaPU1FTDnJGRkfrll19011132V3Xq6++ahhv1qyZZsyYIS8vL7tzv/XWW2revLlZ/OzZs/rhhx9syuWMRo5b/P39NWPGDMOGq127dunw4cNOW0uSSpUqpe+++06BgYE2zy1durTGjx9vOLZ69Wqr78tTp06Zxby9vXXffffZXBMAAACA/NEkAwAAAADFwLlz5yyOVaxYsRArsc+3336rjIwMw7G3335bpUqVsjv3XXfdpZ49exqOrV27VsePH7c7tzO0bNlSd955p1k8IyNDa9eutSrH5cuXlZWVZRZ35IF4ccR9ZJm730eFwVIjSI8ePdS/f3+H8/ft21ctW7Y0i584cUIbNmywKseHH35oGB85cqRhbluNHTvWsGFszZo1ho0AnsbLy0u33367PvroI+3bt0+dO3e2O9eWLVu0detWw7GPPvrIsInEFr6+vvrXv/5lODZjxgyHcjvqtttu06hRowzHli9f7tS1nn32WVWvXt3u+YMGDZK3t/mv2K9du2bYkGbkwoULZrEKFSo4vMsbAAAAAGM0yQAAAABAMWDpeBVJdh3VUNgsHTcRHR2tBx980OH8lh4UStJ///tfh/M7qm/fvobxLVu2WDXf0m4D1u5EgxzcR3lz9/uoIJ05c8biw3tnHnPy1FNPGcYXL16c79zNmzfr0KFDZnEfHx9NmDDBwcpy+Pn5GR7nZDKZtHTpUqes4a4CAgL09NNPa+bMmXr88cdVsmRJh/JNnz7dMN67d2+1adPGody39OzZ0/CIpHXr1rn8+4Oj3/es4e/vr0cffdShHJUqVVKjRo0Mx3bt2mVVDqPv0cnJyVbvRAMAAADANjTJAAAAAEAxYOk4CEkO/zV6Qbty5Yp27txpOPbAAw84dNzELc2bNzd8UChJK1ascDi/o9q2bWsY37dvn1Xzy5QpY/hxcocHoUUJ91He3P0+KkiLFi1Sdna2WbxGjRqGR9rYq1u3boafq9WrV+c7d8GCBYbxTp06qVKlSg7Xdkv37t0N49bUWJSlpaXp/fff1+233642bdpoyZIlducymUxauHCh4djgwYPtzmvE6PN18+ZNq3cnKiiOft+zRufOnRUeHu5wnoYNGxrG4+LirJpftmxZs1hycrLWrVvnSFkAAAAALKBJBgAAAACKAUtHrEg5f/nvzjZu3Gjxr6kHDhzotHUGDRpkGN+yZYvhUUWFydJDPGsfwPn4+KhOnTpm8aSkJI0bN87w4T7McR/lz53vo4L066+/Gsbvuecep65Trlw5w0ak33//Pd+Pr6Ua+/Xr55TabmncuLGCg4PN4tbuquEJNm/erDvvvFMDBw7UtWvXbJ6/d+9enT9/3izu4+Oju+++2xkl/qldu3aGcVd/voKCggx347H2+541LDXi2KpGjRqG8evXr1s1v0GDBobxxx9/XAkJCXbXBQAAAMAYTTIAAAAAUAzktctFXg/+3cHevXsN4yVLllS9evWctk6rVq0M42lpaTp69KjT1rFHmTJlDONGD1Et6datm2H8m2++UefOnbV161a7aitOuI/y5873UUHavn27Yfz22293+loRERFmsbS0NJ06dcrinPT0dIs7cDi7Rh8fH1WsWNEsfvz4cd28edOpaznL3r17rXrbs2ePNmzYoMWLF+vjjz/WsGHDVKVKFYt5Z8+erebNm9v0Wi1Z/nqqVq2aQkJCbMqVH6OvJ0mGR3MVNqPvfdeuXVNaWppT8jdp0sQpeSx9TqxtkrH0/Xnv3r1q2rSpZs+e7dFNhgAAAEBh83V1AQAAAACAghcYGGhxLD09vRArsd2RI0cM47fffrtTjoi5pXHjxhbHDh8+bLgTiy127typnTt3/vmw9fz580pKSvrzzZ7dXGw5KunRRx/VJ598YribyLp169SqVSs1btxY9913n/r06aMGDRo49ePrCbiP8lfQ95E7SkxM1B9//GE4VhDvr9HRLJIUHx+v6Ohow7FDhw4pMzPTcKygajx+/HiuWHZ2ts6dO6eqVas6fT1HWdrJwxpZWVlaunSpXnjhBR08eNBs/OjRo+revbs2bNig0NBQq3Jaamor7K8nRx04cEDbtm378/tefHy8kpKSdP36dSUlJdnd+JGUlKSAgACH6ytXrpzDOSSpVKlShnFrm2T69OmjqlWrGr6OxMXFaeDAgYqIiNCAAQPUt29ftW7dWv7+/g7VDAAAABRnNMkAAAAAQDFg6QGOJF29erUQK7Hd2bNnDeN169Z16joVK1ZUmTJlDD8elmrIz7FjxzR9+nTNmjVLJ0+edLREM7b8NX29evU0atQoffnllxav2b17t3bv3q2XX35Z5cqVU/v27dWuXTu1adNGMTEx8vUt3r9G4D7KX0HcR+7u9OnTFseaN29eaHVcuXLF4lheu8yUL1++IMoxdOXKFbdsknGEj4+P7rrrLnXr1k2jRo3Sd999Z3bNvn379Nxzz+X5+vtXlj5fixcvLrTmxby+nvJy7tw5TZ8+Xd9//73279/v5KpyOGsnmbCwMKfk8fHxMYxb2wTk5+eniRMn6oEHHrB4TXx8vCZPnqzJkycrMDBQrVu3/vP7c9u2bQ2PpgIAAABgrHj/dgsAAAAAionKlStbHLP1GIjCdunSJcN46dKlnb5W6dKlDR/uW6rBkuTkZL3xxhuaPHmyxd0bnMHW3Wc+/vhj7d+/X5s2bcr32suXL2v+/PmaP3++pJwGkfbt26tbt26677778jxixFNxH1nHWfdRUeEuzT+pqakWx4pCjUVdQECApk+frvj4eK1Zs8Zs/KuvvtLw4cPVpk2bfHO5w+fL1s9VZmamJk+erDfeeEPJyckFVFUOZx09lNcReoXt/vvv144dO/T+++/ne21qaqpWrVqlVatWSZJ8fX3VokULdenSRffee6/TjpECAAAAPJW3qwsAAAAAABS8EiVKWDxW4I8//jA8gsddWHpQFxIS4vS1LOW05WHhvn371KBBA73zzjsF2iBjjxIlSmjlypUaOnSozXOTkpK0ZMkSPfPMM4qMjFTXrl01d+5ct/7acTbuI+s44z4qSmw59qwgZWRkWBwrCjV6Aj8/P3300UcWd3uZPHmyVXnc4fNly+fqzJkzat68uV588cUCb5DxZO+9954+/PBDm49SunnzpjZt2qQ333xTTZs2Vf369fX+++977GsuAAAA4CiaZAAAAACgmKhVq5ZhPCUlRXFxcYVbjA0sNZoEBQU5fa3g4GDDuLUPCw8dOqROnTrlebSJqwUEBCg2NlZr1qxR69at7cqRnZ2tVatWqX///mratKk2bNjg5CrdF/dR/hy9j4qa9PR0V5cgSXk2aRWFGj1Fw4YN1a1bN8Oxn376SZcvX843hzt8vqz9XF24cEEdO3bUnj17Crii4uGJJ57QwYMHNXjwYIvHOOXnwIEDevbZZxUdHa2vv/7ayRUCAAAARR/HLQEAAABAMdGkSROLx+zs3r1bUVFRhVyRdfz8/AzjKSkpTl/rxo0bhnFr/qo7PT1d/fv315UrV/K8Ljo6Wi1atFCdOnV02223qUKFCgoJCVFwcLB8fHwsPhRr2LBh/u+ADTp27KhNmzZpz549io2N1c8//6zjx4/bnGf37t3q1KmT3nrrLb3wwgtOrdEdcR/lz5H7qCjy9nb/v0ErCjV6ki5dumj58uVm8Zs3b2rjxo3q27dvnvOLyufLZDLpoYce0okTJ/K8LiIiQi1atFD9+vUVGRmp8PBwhYSEqGTJkvL19bX4fe+OO+5wi6OnClt0dLS+//57vfvuu5o5c6bmzp2rnTt32nzE4vnz5zVq1Cj9+uuvio2NVWBgYAFVDAAAABQtNMkAAAAAQDHRrFkzi2Nr1qxRv379CrEa61l6qHP9+nWnr2UppzUPlj755BPt37/fcKxEiRJ64oknNGrUKIs7keTF1gdjtrj99ts1efJkTZ48WadOndKqVau0bt06rV+/3uqmmaysLL344osKCAjQE088UWC1ugPuo/w5ch8VRXntxvPzzz+rWrVqhVJHlSpVLI7lVeOOHTsKrYHJXZvInC2v14ktW7bk2yRj6fPVq1cvvfPOOw7VZi1rvibmzZtn2Awk5TT6jBw5UmPHjlXjxo3tqsHenVQ8ReXKlTV+/HiNHz9eCQkJWrNmjdauXav169drz549ysrKsirP7NmzlZWVpTlz5lg8CgwAAAAoTmiSAQAAAIBionv37hbHfvnll0KsxDbly5c3jCcmJjp9LUs5LdVwS3Z2tj744APDsUqVKmnhwoWKiYmxu66EhAS759oiMjJSw4cP1/DhwyVJZ8+e1dq1a7V8+XItWrRIly5dynP+M888o65du6p+/fqFUa5LcB/lz977qKgqW7asxbFy5cqpQYMGhViNsbxqrFy5sipWrFiI1Xi+vD7e8fHxds/Pzs52i6+nW9577z3DeKlSpTRnzhzdcccdDuUvrO99RUFYWJj69ev3ZyPm9evXtXHjRq1atUoLFy7UkSNH8pw/d+5cTZ06VY8++mhhlAsAAAC4taKxdycAAAAAwGFVqlSx+HDt8OHD2rNnTyFXZJ3KlSsbxg8ePOjUdS5evKirV6/aVMMtmzZt0pkzZ8ziXl5e+v777x1qkJFksa6CVrlyZQ0ePFjTpk3T+fPn9csvv+iuu+6yeH1WVpYmTJhQeAW6APdR3hy5j4qq2267zeKYq+7dvysKNXqSkJAQi2PWfLwtfb7c6XP1xx9/aPPmzYZjn3zyicMNMpmZmUpOTnYohycLCQlRr169NGnSJB0+fFi///67xo4dqxIlSlic8+abbyo9Pb0QqwQAAADcE00yAAAAAFCMDBw40OLY1KlTC7ES61k6nuj333+XyWRy2jq7du2yOFa7du08565fv94w3rlzZ3Xq1MmRsiRJJ06ccDiHo7y9vdWjRw/9/PPPWrJkiUqWLGl43c8//6yUlJRCrq5wcR9Z5sh9VFRVrVrV4v1w9OjRQq7GWN26dS2OuUuNnuTatWsWx6xpUrD0+Tp+/LhT71dHbNiwwTBevXp1DRkyxOH87vB9ryhp2LChpkyZor1791p8rY2Pj7f4eQMAAACKE5pkAAAAAKAYGT58uHx8fAzHYmNjdfHixUKuKH+NGjUyjCclJTl1F4ytW7caxgMCAlSzZs085x4+fNgwfvfddztcl2S5CcdVevXqpS+//NJwLD09XRs3bizkigoX95FljtxHRZW3t7eaNWtmOLZ27dpCrsZYhQoVFBkZaTjmLjV6ksuXL1scs9RQ9VctWrQwjF+9elV79+61uy5nsvR9r0+fPk7J727f94qKmjVraunSpQoICDAcX7VqVSFXBAAAALgfmmQAAAAAoBiJiIhQv379DMdSU1P10ksvFXJF+WvTpo28vLwMx2bPnu20df773/8axlu1amWxIeIWS00Rlh5K28odH2oNGjRIVapUMRw7depUvvMtfUwzMjIcqqswcB9Z5sh9VJR17drVML5u3TplZmYWcjXGLNW4YsWKQq7E8/32228Wxyy9bv5Vq1atFBwcbDjmLp+v4vh9r6iIiorSP/7xD8Mxa74/AwAAAJ6OJhkAAAAAKGYmTJggb2/jfw5Onz690B9MHTlyJM/xsmXLqmnTpoZj3333nVNq2Llzp8XdNLp3757vfEuNHYGBgQ7VJeUcX7N582aH8xQES7tn5LWLwi2W/so9NTXVoZoKC/eROUfvo6LMUtPUlStX9O233xZyNcYs1bh3716tXr26kKvxbHk1stSvXz/f+QEBAerZs6fh2JQpU5SVlWV3bc5SkN/3Lly4oHnz5jmcpziLiYkxjFvz/RkAAADwdDTJAAAAAEAxU79+fQ0bNsxwLDs7W/fff7/OnDlTKLWsWLHCqofnAwcONIwfO3bM4s4VtpgwYYLNa/9VmTJlDONnz561t6Q/vfPOOw7nKCj+/v6GcUs7IPxVWFiY4c4miYmJSklJcbi2gsZ9ZM7R+6goa9CggcUjciZOnKibN28WckXmevbsqYiICMOxN954o5Cr8Vzbt2/XunXrLI537NjRqjwjR440jJ84ccJpjW2OKMjvex988IHS09MdzlOcOfL9GQAAAPB0NMkAAAAAQDH07rvvqlKlSoZjFy5cULdu3XThwoUCW99kMuntt99Wr169dO3atXyvf/DBBy0+8HnhhRccaqr45Zdf9PPPPxuOdezYUdWrV883R/ny5Q3jK1eutLsuSZo/f75TmhcKiqXdSypXrpzvXF9fX4WHhxuOWdqNxN1wH/2PM+6jou6ZZ54xjB85ckRPPfVU4RZjwNfXV48//rjh2OrVq/Xuu+8WckWeJz09XU888YTF8fr166tu3bpW5erZs6fq1atnOPbUU0/p2LFjdtXoLAX1fe+3337ja9EJHPn+DAAAAHg6mmQAAAAAoBgKCwvTtGnTLB4Xc/jwYbVo0UK7d+92+tpHjhxRt27dNH78eKt3V6hUqZKGDBliOPbHH39o+PDhys7OtrmWuLg4DR8+3OL4P//5T6vyNGnSxDD+448/6uTJkzbXJUkHDhzQqFGj7Jr7d1u2bHH4weXf7dixQ3v27DEca9CggVU5LD0sttRs4W64j3I46z4q6gYMGGDxiJMpU6boo48+cvqaWVlZ+vHHH62+/oknnlCVKlUMx8aPH6/58+c7q7Q/paena8GCBU7P625SUlL04IMP5nk83pNPPml1Pi8vL02cONFwLCEhQXfffbfOnz9vc535OXXqlLZu3ZrvdZa+723cuFEbN260a+2zZ8/q/vvvd4udlwrL5cuXNX36dIvHV9njxo0b+uGHHwzHrP3+DAAAAHgymmQAAAAAoJjq2bOn3n77bYvjp0+fVsuWLTVhwgSlpqY6vN758+f1/PPPq2HDhlq1apXN8ydMmKCSJUsajs2ePVvjxo2z6cHaH3/8oR49eujcuXOG4927d9cdd9xhVS5L16Wnp2vgwIFKSkqyui5J2rx5s9q3b6+rV6/aNM+SQ4cOqVu3boqJidHs2bMdfgB58eJFPfTQQ4ZjjRo1Uu3ata3K06ZNG8P45MmT9fvvv9tdX2HiPnLefVTUeXl56YsvvrC4W8+TTz6pUaNGKS0tzeG1UlNT9dlnn6lWrVoaNGiQ1fMCAwP12WefGY5lZWXpH//4h1599VW7mqX+LjExURMnTlS1atX07LPPOpzPXWVlZWnBggVq0qRJng1LDRo0sHhEmyV9+vRR//79DccOHjyopk2b5nm0ky12796tBx54QDVq1NDy5cvzvb59+/YKCgoyHBsyZIjNxy4dPnxYbdq00fHjx22aV9QlJydrxIgRio6O1nvvvWfVrmB5uXnzpkaOHGnYQOXr66t7773XofwAAACAJ6BJBgAAAACKseeeey7Ph5cZGRl6/fXXVa1aNb3xxhs274qSlZWllStXatiwYYqKitK7775r919LR0RE6N///rfF8c8//1ytW7fOt7kiOztbsbGxatiwoY4ePWp4TXBwsKZMmWJ1bVWrVlWHDh0Mx7Zt26bWrVtr+/bt+ea5cuWKHn/8cXXo0CFXg0zVqlWtriUvO3bs0MCBAxUeHq6HH35Yy5cvt6khwmQyafbs2YqJibF4JNLDDz9sdb67777bMH79+nW1aNFCgwcP1pdffqk1a9Zo586d2rdvn+HbjRs3rF6zIHAfOec+8gRNmjTJs2nq66+/Vu3atfXhhx/a/HV748YNzZkzRwMHDlSFChU0duxYnThxwuYa77rrLos7mphMJr355ptq0KCBYmNjlZmZaVPuhIQExcbGqk+fPqpYsaL++c9/FshuJ85m6bXl72979+7Vpk2btGzZMk2ZMkXDhw9XZGSk7rnnHovH20hSUFCQZs6cKT8/P5trmzp1qqKiogzHzp07p86dO2vAgAFWfY/5u3379un1119Xw4YN1aRJE33//fdWf08oUaKExQaeEydOqFWrVvr111/zzXPjxg299tpratq0qU6dOvVnPCQkRKGhoda9Ix4gPj5ezz33nMLDw9W3b1999913un79uk05fvvtN3Xq1MniLjJ9+/a1eEwWAAAAUJx4mUwmk6uLAAAAAAC41quvvqo333zTqmsbNGigtm3bqkGDBoqKilKZMmUUFBSkmzdvKjk5WfHx8Tp69Ki2b9+u9evX5/tX0aGhoUpMTLS61v79+2vu3Ll5XtOyZUv1799fNWvWVOXKlZWenq74+Hht375ds2bNUnx8fJ7zZ82aZdPuDJK0fv16i40yt3To0EG9e/dWkyZNVKZMGWVnZ+vChQs6efKkli1bplWrVik9PT3XHC8vL61YsUJdu3Y1zGnNP+tjY2MtHocTGBioxo0bKyYmRo0aNVK5cuVUpkwZhYaGKj09XdevX9exY8e0a9cuLV68OM+PXcuWLbVx40b5+PjkW9MtzZs3t+vh7l+tXr1anTp1ciiHM3Af5WbPfXTLhAkT9Prrr5vFX3vtNU2YMMGunLfExcUZNh1ERkYqLi7Oody3PPHEE/r444/zvCY4OFitW7dWhw4dVKdOHZUpU0ZlypRRZmamEhMTlZiYqLNnz2r37t3atWuXDhw4YNjA4OPjY/PuUFlZWerfv79++umnPK8rXbq02rVrpw4dOig6OlplypRRWFiY0tLS/qzxjz/+0K5du7Rr1y4dOXLEcBea6tWr69ixYzbV6GzDhg3TjBkzCn3dEiVKaM6cOerTp4/dOY4cOaK2bdvq8uXLeV5Xs2ZNdejQQa1bt1Z4ePifryvXr19XYmKiEhISdPDgwT8/X5cuXTLM88Ybb+iVV17Jt64TJ06oTp06eTZTNWnSRPfcc4+aNWum8uXLy9vbWxcvXtQff/yhX3/9VcuXLzfcbW3atGl6/fXXczXO3HLy5ElVq1Yt3/puqVatmlPyWGLpe+zQoUMVGxub51xLr0dSzr1dt25dxcTEqGnTpqpUqdKf92B2draSk5N16tQp7du3T7/88kuezY2hoaHav3+/IiIibHrfAAAAAE/k6+oCAAAAAACu98Ybb6hBgwYaNWqUkpOT87z21l/UO0uzZs1suv6bb77R5cuXtXbtWovXbN26VVu3brWrnnfffdeuB/vt27fXww8/rC+//NLiNevWrbP5aIyJEyeqS5cuNtdjrdTUVG3evFmbN292KE+lSpU0c+ZMmxpkJOnDDz9Uhw4dlJWV5dD67oD76H/svY88xYcffqgSJUro3XfftXjNjRs3tGLFCq1YsaIQK8vh4+Oj2bNna8iQIfrvf/9r8brExEQtWrRIixYtKsTqPMdtt92mb775Jt8GyvzUqlVL69atU48ePXTmzBmL1x09elRHjx7V119/7dB61oqOjtaECRP08ssvW7zmVkOOLcaMGaPhw4cbNsoVJ1lZWX9+r8iv2SYvfn5+mjZtGg0yAAAAwP/HcUsAAAAAAEnSwIEDtWvXLt1xxx2Fsl6VKlU0ffp0mx8QBwYGasmSJRaPebCXn5+fvvjiizyPzcnPlClTLO74Yo9XX31VL7zwgtPyFZSoqCht2LBBtWrVsnlumzZtNG3aNLuOIXFH3EeO30eewMvLS5MmTVJsbKxKlizp6nIM+fn56fvvv9fEiRM95v5zF97e3ho3bpz279/vcIPMLXXr1tW2bdvUrVs3p+RzlpdeeklDhw51Wr5hw4bpk08+cVq+4i4wMFA//fST7r33XleXAgAAALgNmmQAAAAAAH+qUaOGli1bpgULFqhly5YFskatWrX0ySef6NixYxo2bJi8vLxszhEUFKTZs2drypQpKlWqlMM1NWzYUJs2bdLDDz/sUB4/Pz8tXrxYo0ePdihP6dKl9e233+pf//qXQ3luqVKliipUqOCUXH/l4+OjcePGaefOnYqOjrY7z5AhQ/Tbb78VWmNJQeM+cuw+8iRDhw7V77//XiAPqH18fNSzZ099//33dufw8vLSiy++qO3bt6tz585OrC5HiRIl1L9/f3366adOz+2OqlSpoldeeUXHjh3TJ5984vQGqYoVK+rXX3/VV199pfDwcKfmlqSIiAiNHz9eQ4YMsWnetGnT9Nprr8nb2/5fNQcEBOjdd9/V9OnTHcpT1AQHB6t27doFkrt79+7atWuXevfuXSD5AQAAgKLKy2TN4eUAAAAAgGJp06ZN+vbbbzVv3jxduHDB7jwVKlRQ3759NWjQIHXu3NmuB/qWXLp0Se+//76++uorXb582aa5t99+u5555hk98MADNh8TlJ/FixfrjTfesOm4mpIlS2rYsGF65ZVXzB6AWvqYWfvP+uzsbP3222/6+eeftXLlSu3cuVOZmZlW1/ZXYWFhGjBggMaOHatGjRrZlcOSU6dOacmSJdq6dasOHTqkM2fOKCEhQWlpacrOzjacs3r1anXq1MmpdTgT95HtZs+erdmzZ5vFBwwYoAEDBjiU+9KlSxozZoxZvEKFCgXazLFnzx59/PHH+vHHH3Xt2jW7cgQHB6tDhw7q0aOHBgwYoMqVKzu1xvXr12vKlCn6+eeflZKSYleO0qVLq3PnzurZs6f69++vMmXKOLVGew0bNkwzZsxwOE9QUJBCQkIUGhqqMmXKqEGDBoqJiVFMTIwaN25caA0eqamp+uabb/TFF19ox44dduepXbu2unXrprvvvlvdunVzqP6NGzfq9ddf1/Lly62e4+/vr0GDBun//u//VL169Vxj1apV06lTp8zmnDx5UtWqVbN6DWflsSQ2NlbDhw83iw8dOtTqY5KOHj2qn3/+Wb/88os2b96spKQku2rx9/dX7969NWrUKN1555125QAAAAA8HU0yAAAAAIB8ZWdna+/evdq8ebN27typEydO6NSpU7p69apSUlKUnp4uf39/BQUFqUKFCqpSpYpq166tRo0aqW3btqpfv75TH+gbuXnzplauXKk1a9Zo586dOnbsmC5duqSUlBT5+PioZMmSqlKlimrVqqXWrVurR48eatCgQYHWJElbt27Vr7/+qnXr1unkyZO6evWqrl+/roCAAIWGhqp69epq0KCBunbtqh49eljc0SMtLc0wHhAQYFddaWlp2rZtm7Zv364jR47o+PHjiouL07Vr15ScnKz09HQFBwcrNDRUpUuXVu3atdW4cWM1a9ZMXbp0kb+/v13rFmfcR5CkzMxMrV27Vps2bdKuXbt08uRJxcfHKzk5WRkZGQoKClKpUqUUEhKiiIgI1a1bV3Xq1NHtt9+uli1bFsq9l5KSolWrVmnz5s3as2eP4uLidO7cOd24cUM3b95UcHDwnzXedtttf9bYpEkTNWvWzOlNh8jbqVOntGLFCm3btk0HDx7U6dOndeXKFaWmpsrb21ulSpVSqVKlFBYWppo1a6pu3bqqW7eu2rRpo6pVqzq9nn379mnp0qVau3atjh49qitXrigxMVElSpRQqVKlFBUVpXr16v3ZTFWuXDnDPOnp6YaNoCVKlCjw10JXuvW94laz6PHjx3XixAldvXpVSUlJSklJUUBAwJ/NWpGRkWrSpImaNGmibt26uU1jGgAAAOCuaJIBAAAAAAAAAAAAAACAxys+B7wCAAAAAAAAAAAAAACg2KJJBgAAAAAAAAAAAAAAAB6PJhkAAAAAAAAAAAAAAAB4PJpkAAAAAAAAAAAAAAAA4PFokgEAAAAAAAAAAAAAAIDHo0kGAAAAAAAAAAAAAAAAHo8mGQAAAAAAAAAAAAAAAHg8mmQAAAAAAAAAAAAAAADg8WiSAQAAAAAAAAAAAAAAgMejSQYAAAAAAAAAAAAAAAAejyYZAAAAAAAAAAAAAAAAeDyaZAAAAAAAAAAAAAAAAODxaJIBAAAAAAAAAAAAAACAx6NJBgAAAAAAAAAAAAAAAB6PJhkAAAAAAAAAAAAAAAB4PJpkAAAAAAAAAAAAAAAA4PFokgEAAAAAAAAAAAAAAIDHo0kGAAAAAAAAAAAAAAAAHo8mGQAAAAAAAAAAAAAAAHg8mmQAAAAAAAAAAAAAAADg8WiSAQAAAAAAAAAAAAAAgMejSQYAAAAAAAAAAAAAAAAejyYZAAAAAAAAAAAAAAAAeDyaZAAAAAAAAAAAAAAAAODxaJIBAAAAAAAAAAAAAACAx6NJBgAAAAAAAAAAAAAAAB6PJhkAAAAAAAAAAAAAAAB4PF9XFwAUV2fPntWiRYtyxaKjoxUcHOyiigAAAAAAAAAAAAAAsN2NGzd04sSJXLG77rpLlStXdlFFxmiSAVxk0aJFGj16tKvLAAAAAAAAAAAAAADA6aZOnapHHnnE1WXkwnFLAAAAAAAAAAAAAAAA8Hg0yQAAAAAAAAAAAAAAAMDj0SQDAAAAAAAAAAAAAAAAj+fr6gKA4io6OtosNnXqVDVs2NAF1QAAAAAAAAAAAAAAYJ+9e/dq9OjRuWJGz8RdjSYZwEWCg4PNYg0bNlTr1q1dUA0AAAAAAAAAAAAAAM5j9Ezc1ThuCQAAAAAAAAAAAAAAAB6PJhkAAAAAAAAAAAAAAAB4PJpkAAAAAAAAAAAAAAAA4PFokgEAAAAAAAAAAAAAAIDHo0kGAAAAAAAAAAAAAAAAHo8mGQAAAAAAAAAAAAAAAHg8mmQAAAAAAAAAAAAAAADg8WiSAQAAAAAAAAAAAAAAgMejSQYAAAAAAAAAAAAAAAAejyYZAAAAAAAAAAAAAAAAeDyaZAAAAAAAAAAAAAAAAODxaJIBAAAAAAAAAAAAAACAx6NJBgAAAAAAAAAAAAAAAB6PJhkAAAAAAAAAAAAAAAB4PJpkAAAAAAAAAAAAAAAA4PFokgEAAAAAAAAAAAAAAIDHo0kGAAAAAAAAAAAAAAAAHo8mGQAAAAAAAAAAAAAAAHg8mmQAAAAAAAAAAAAAAADg8WiSAQAAAAAAAAAAAAAAgMejSQYAAAAAAAAAAAAAAAAez9fVBQBwH5mZmbp+/brS09OVlZWl7OxsmUwmV5cFAC7n5eUlb29v+fj4qESJEgoJCZGfn5+rywIAAAAAAAAAAIANaJIBirmMjAwlJSXp+vXrSktLc3U5AFAkXLx4UQEBAQoJCaFhBgAAAAAAAAAAoIigSQYopkwmky5cuKCEhARXlwIARVJaWprS0tJ08eJFhYWFKTw8XF5eXq4uCwAAAAAAAAAAABZ4u7oAAIWPBhkAcK6EhARduHCBI+oAAAAAAAAAAADcGE0yQDFDgwwAFAwaZQAAAAAAAAAAANwbxy0BxYy1DTK+vr7y8fGRtze9dACQnZ2trKws3bx5M8/rbr2+VqxYsTDKAgAAAAAAAAAAgA1okgGKkYyMjDwbZIKCghQSEqJSpUrJ15eXBwD4u5s3byopKUnXr19XSkqK4TUJCQkqW7as/Pz8Crk6AAAAAAAAAAAA5IWn4EAxkpSUZBj38vJSRESESpUqVcgVAUDR4uvrq7CwMIWFhSkpKUnx8fGGxytdv35dZcuWdUGFAAAAAAAAAAAAsIRzVIBi5Pr164ZxGmQAwHalSpVSRESE4ZilpkQAAAAAAAAAAAC4Dk0yQDGRmZmptLQ0s3hQUBANMgBgp1KlSikoKMgsnpqaqszMTBdUBAAAAAAAAAAAAEtokgGKCUu7yISEhBRyJQDgWSy9jlp63QUAAAAAAAAAAIBr0CQDFBPp6emGcXaRAQDHWHodtfS6CwAAAAAAAAAAANegSQYoJrKyssxivr6+8vX1dUE1AOA5LL2WZmdnu6AaAAAAAAAAAAAAWEKTDFBMGD2s9fHxcUElAOB5jF5PjZoTAQAAAAAAAAAA4Do0yQDFhMlkMot5e/MSAADOYPR6avS6CwAAAAAAAAAAANfhCTkAAAAAAAAAAAAAAAA8Hk0yAAAAAAAAAAAAAAAA8Hg0yQAAAAAAAAAAAAAAAMDj0SQDAAAAAAAAAAAAAAAAj0eTDAAAAAAAAAAAAAAAADweTTIAAAAAAAAAAAAAAADweDTJAAAAAAAAAAAAAAAAwOPRJAMAAAAAAAAAAAAAAACP5+vqAgAAAIoVk0k6e1basUPavl3av1+6fl3KyJBKlJDKlJEaNZKaNct5K1fO1RUDrpWRIe3dm3PP7NwpnT4tpaZKXl5SYKBUrdr/7pd69SQ/P1dXDAAAiqvkZGn37pyfW3btks6fl9LSJB8fKThYqlXrfz+31KghefP3iwCKqLQ0ac+e//07LT4+J+blJQUFSdHRUkxMzutdnTo5r4MAAABugiYZAACAwpCYKM2YIU2dKh08mPe1P/zwv//fsqU0Zow0YEBOQwBQHJhM0rZt0qefSnPmSCkp1s0LCZEGD5bGjs1pNgMAACho2dnSL7/k/NyybJl086Z18ypWlEaMkB55RIqMLNgaAcAZTCZp/fqc17uffpLS062bV6aM9NBDOb/bqF27QEsEAACwBn+uAAAAUJAuXsz5RVDlytJTT+XfIPN3W7dKw4ZJVapIr7wi3bhREFUC7uPnn6XmzXMaxGbMsL5BRsrZlWnqVOn226V27aTVqwuuTgAAULxlZ+f83FGzptS7t7RokfUNMlLOLjNvvZWz20Lfvjk7TAKAOzKZcv6Yp2FDqWPHnP9vbYOMJF29Kn34Yc6OMt265fyeAwAAwIVokgEAFAvVqlWTl5dXrre4uDir5sbGxprNHTZsWIHWCw8xe7ZUv770+ec5x8M44upV6d//znn4v369c+oD3MmVK9IDD0h3352zZbejNm6UunTJaVJLSnI8HwAAwC3Hj0udO0uPPiqdOOFYruxsaeFCqWlT6T//sa3RBgAK2rlz0j33SIMGOaeZb+VKqU0b6fnnHf89CQAAgJ04bgkACkhCQoIOHDigEydO6MqVK7px44Z8fHwUHBys8PBwVa9eXfXr11dAQICrSwXgbFlZ0po10vDhzs99/HjOX2499ZT0zjuSLz/OwQMsX56z/faFC87P/fnn0tKl0qxZUuvWzs8PAACKl6++kp580rbd7qyRkSG99JI0b15Os31UlHPzA4Ct5s2TRo2SEhKcmzc7W3r33ZxdRGfP5qhcAABQ6HiqAgBOtGfPHn3//fdasmSJ9u/fL5PJlOf1/v7+at68ufr166fBgwercuXKhVQpgAJz86Z09Kh08mTBrWEySZMn56wxa5ZEsx2KslmzpCFDCvavpk+dkrp2lebOlXr1Krh1AACA5zKZpNdfz3krSNu3S23bSr/+KjVoULBrAYAln30mjRuX89pXUA4fltq3lxYvzjkuFwAAoJBw3BIAOMHatWvVpUsXNW7cWO+884727duXb4OMJGVkZGjjxo167rnnVK1aNY0cOVKnTp0qhIpRmJYtW2b2Bg9lMklHjkg3bhTOej/9lLPlMVuyo6iaM0d68MHC+RpOTc3ZJnzFioJfCwAAeJ433ij4Bplbzp3LOTby8OHCWQ8A/urLL6WxYwu2QeaW69elnj2lrVsLfi0AAID/jyYZAHBAYmKihg4dqk6dOmn16tUO5crMzNS0adNUv359TZ482aomGxQNvXr1MnuDh0pPd/626/lZsCBnu3egqNm8WXrggZyttgtLRkZOo8z+/YW3JgAAKPpmzJBee61w17x0SerRw/nHnABAXpYtk0aPLtw1b9zI2fGTPxwEAACFhCYZALDT/v371bx5c82cOTPP60qXLq1mzZqpS5cu6tixoxo1aqSgoCCL19+4cUPPPPOM+vfvrxuFtRsFAMdlZkpZWa5Z+9NPc7ZjB4qKlBRp6NCc+6aw3bghDRvGDkwAAMA6p09Ljz/uurVpiAdQWBISpJEjC2cHGaO1R41yzdoAAKDYoUkGAOywa9cudejQQceOHTMcr1mzpiZNmqRDhw4pISFB27dv18qVK7VmzRrt2bNHSUlJ2rZtm1588UWVL1/eMMe8efPUs2dPJScnF+S7AisMGzZMJpMp11tsbKyry4I7ycpyzcP+vxo1KmebYqAoeOUV6ehR162/fbs0aZLr1gcAAEWDyZTzc3ZSkutq+OYb6eefXbc+gOLj6aels2ddt/6KFTlHPQEAABQwmmQAwEYnTpxQ9+7ddfXqVbOxkiVL6rPPPtPBgwf13HPPqXbt2oY5vL29FRMTo4kTJ+r48eN67rnn5O1t/pK8YcMG9evXT1mu2p0CgHWSk13/105//CG9+qprawCssXOn9MEHrq5CmjBBOnHC1VUAAAB39t130vLlrq5CevRRKTXV1VUA8GSrVuUcLedqzz0nXbzo6ioAAICHo0kGAGyQmpqqvn376sqVK2Zj0dHR2rFjhx599FH5+PhYnbNUqVKaNGmSFi9erODgYLPxFStW6IUXXnCobgAFKCXF9bvI3PLll1JioqurAPL2/vuubyqTpIwM6eOPXV0FAABwVyaT++w8d/asNGuWq6sA4MnefdfVFeRISpK++MLVVQAAAA9HkwwA2ODVV1/Vvn37zOK33Xab1q9fr1q1atmdu2fPnlq8eLFKlChhNjZ58mStX7/e7twACtClS66u4H9SU93jL78ASy5elObMcXUV/zN9unTjhqurAAAA7mjzZun3311dxf9MmeIejcYAPM/x49KyZa6u4n+mTpVu3nR1FQAAwIPRJAMAVjpw4IA+MDgewsfHR/PmzVPlypUdXqNjx4567733zOImk0mjR4/m2CXA3WRlSQY7S7nUp5/yy3O4r+nTc3ZwcRfXrkn//a+rqwAAAO7o009dXUFuO3dK27a5ugoAnmjqVPf6PcKZM9KiRa6uAgAAeDBfVxcAAEXFa6+9Ztik8vTTT6tZs2ZOW2fMmDH69ttvtWXLllzxgwcPatasWXrwwQedtpYrXb58WYcOHdKJEyeUmJiopKQkBQQEqEyZMipTpowaNmyo6OhoV5cJ5C0pScrOdnUVuR05Ih06JNWt6+pKAHMLFri6AnMLFkgjR7q6CgAA4E6ys6WFC11dhbkFC6QWLVxdBQBP467/TrvnHldXAQAAPBQ7yQCAFU6dOqV58+aZxatUqaLXX3/dqWt5e3tr6tSp8vLyMht714rzgSdMmCAvL69cbxMmTLC7nri4OLN81apVsznP+fPn9eWXX+qBBx5QRESEypcvr/bt22vo0KF68skn9corr+i5557TiBEjdM8996h69eqKiIjQkCFDtGvXLrvrd4bY2Fizj8GwYcMsXj9s2LBc1xr5ez5Lb7GxsX/OufV18de36tWry+Skv/Z5+umnzfL37NnTKbk9lrse07J9u6srAMzdvCm5+PXcEPcLAAD4uyNHchri3Q0/twBwtmvXcl7z3A2vdwAAoADRJAMAVpg+fbqyDXaLGDVqlIKCgpy+XqNGjdSpUyez+J49e7S9iP0jce3ateratasiIiL0yCOP6Pvvv9fZs2etmnv27Fl98803atq0qe68806r53mqBx54QKVKlcoVO3HihFasWOFw7rS0NM2cOdMsPnr0aIdzezR3bZLZscPVFQDmDhyQ0tJcXYW5c+dy3gAAAG5x15+nd+xwryNRABR9O3e6ugJjBw5IKSmurgIAAHgommQAwArz5883i3l7e2v48OEFtuZIC0c/zJ07t8DWLAjLly/XqlWrDJuMbLFkyRLFxMSYHUNVnJQsWVIPPfSQWfyLL75wOPePP/6oq1ev5opVqlRJffr0cTi3R0tNdXUFxtxxtw5g925XV2AZ9wwAAPgrd/255coV6cwZV1cBwJO46+tddra0d6+rqwAAAB6KJhkAyMfZs2f1+++/m8Xbt2+v2267rcDW/cc//qGAgACz+C+//FJgaxa2ChUqqGHDhmrXrp26du2qmJgYVa5c2eL1586dU69evRQXF1d4RbqZMWPGmMUWLFigixcvOpTXqNFmxIgR8vX1dSivx8vMdHUFxi5fdnUFgLlLl1xdgWXcMwAA4K/c+ecWd64NQNHjzq8p/DsNAAAUEJ58AUA+tm7dahhv3bp1ga4bEBCg22+/3Wz9PXv2KCUlpUCOeSpo9erV0913361u3bqpUaNGKl++vOF1Fy9e1IIFC/Tpp59q99/+oiUxMVGDBg3Shg0b3LaB49VXX9Wjjz76538bfa1s3rzZqlzVq1fP9d8NGjRQu3bttGHDhj9jmZmZmj59ul588UW76j106JDWr1+fK+bt7a2HH37YrnzFhjtvc+6OR9oA6emursAy7hkAAPBX/NwCoLjg9Q4AABRD7vl0EQDcyN+bNG6JiYkp8LVjYmLMmmSys7O1Z8+eAm/ScZYSJUpo6NCheuaZZ9SoUSOr5lSoUEEPP/ywRo4cqffee08vvviiTH9pSNi6davmzZunAQMGFFTZDqlevbpZc8vftWrVyu78Y8aMydUkI0lfffWVXnjhBXl5edmcz2gXmR49eigyMtLuGuFifn6urgAw56aNjZK4ZwAAQG783AKguOD1DgAAFEMctwQA+Th+/LhhvGnTpgW+drNmzQzjx44dK/C1neWVV15RbGys1Q0yf+Xt7a3nn39e77//vtnYhx9+6IzyiqT+/fub7cJz7NgxrVq1yuZc6enpmjlzpll89OjRdtdXbHh5Sd5u+qNUyZKurgAw585fl+5cGwAAKHzu/LOBO9cGoOhx59eU4GBXVwAAADyUmz7ZAQD3ER8fbxgPDw8v8LUrVKhgGD9z5kyBr+0s9uxs8ndPPvmk2c49mzZtUlxcnMO5iyJ/f3+NGDHCLG60I0x+5s6dqytXruSKVa5cWXfddZfd9RUrgYGursBYnTqurgAwV7euqyuwjHsGAAD8lbv+3OLnJ0VHu7oKAJ7EXV/vJPeuDQAAFGk0yQBAPq5evWoW8/PzU1BQUIGvXbp0acP45cuXC3xtd+Ll5aWHHnrILL5582YXVOMeHn30UXn/bReTn376SZcuXbIpj1FjzYgRI+TrztvtupNCeB2wSyEcBwfYrBB2YLNLYCC/fAUAALlZ2NXV5Ro1kkqUcHUVADyJu77eVaokVa7s6ioAAICHokkGAPKRmppqFgsNDS2UtS2tY1STp2vevLlZbMuWLS6oxD1Uq1ZNPXv2zBXLyMhQbGys1TmOHDmitWvX5op5e3tr1KhRziixeHDXJhl3/SUXirfQUKlGDVdXYa5xY4nGQAAA8FeNG7vn0ar8nA/A2apVk8LCXF2FOV7vAABAAXLDf+0BgHvJysoyi5UopL/csrRORkZGoazvToyOnjp+/LgLKnEfY8aMMYt9+eWXMplMVs032kXmjjvuUGRkpMO1FRulSrm6AnPBwewkA/fVqZOrKzDnjjUBAADXCg6WWrRwdRXm+LkFgLN5eUmdO7u6CnO83gEAgAJEkwwA5CMgIMAsdv369UJZ29I6wcHBhbJ+QdmzZ48++OADjRw5Ui1btlRUVJTKlSsnf39/eXl5Gb7VMNh9IDExsfCLdyO9e/c2a2g5evSoVq9ene/c9PR0zZgxwyw+evRop9VXLAQEuF+jzEMP5RwfA7ijhx92dQXmRo50dQUAAMAdudvPLWXKSP36uboKAJ7I3V7v/P1zfrcBAABQQGiSAYB8BBkcp5KcnGy4w4yzWWoCCQkJKfC1nS0zM1MffvihGjRooMaNG+vpp5/WtGnT9NtvvykuLk5XrlxRZmamTTmLe5OMt7e3HnnkEbO40Q4xfzdv3jxdvnw5VywiIkJ33XWX0+orNsqXd3UFuRnsMAS4jebN3Wvb7J49perVXV0FAABwR4MGSaVLu7qK/xk5MqdJHwCcrUcPKTra1VX8z333SQY7SgMAADgLTTIAkI+KFSuaxUwmk65du1bga1tao6g1yWzdulWNGzfWU089pf379zst740bN5yWq6gaOXKk/Pz8csXmz59v1gDzd0aNNCNGjJCPj49T6ysWSpeWvN3kR6r27aVGjVxdBWCZl5f02GOuruJ/3KkWAADgXoKC3GfHOW9v6dFHXV0FAE/l7S2NG+fqKv6Hf6cBAIAC5iZPdADAfVWtWtUwfvTo0QJf+8iRI4bxqKioAl/bWdauXauuXbvqwIEDTs9tMpmcnrOoCQ8P17333psrlpGRodjYWItzjh49qjVr1uSKeXt7a9SoUQVQYTHg7S25wxFoPj7S+++7ugogfw8+KMXEuLoKqXt3qXdvV1cBAADc2T//KYWHu7oK6amn3GuXBwCeZ8wYqXZtV1eRs4tXq1aurgIAAHg4X1cXAADurn79+obxbdu2qWXLlgW69rZt2wzjlmpyN/Hx8erTp4/FHV+qVaumtm3bqnbt2qpSpYoqVKigEiVKKDAw0GxHk3Pnzpk1gyDHmDFj9MMPP+SKffnll3ruuecMrzfaRaZnz5667bbbCqS+YsHfX/L1lW7edF0NL7zgHo0HQH58faXYWKlpUykjwzU1lColffVVzs42AAAAlpQtK33+udSvn+tqqFVLevNN160PoHgIDJSmT5fatZOys11TQ4UK0scfu2ZtAABQrNAkAwD5aNq0qWF8+/btBb620Rp+fn6qWbNmga/tDM8//7ySkpLM4vfcc49effVVix9bI8eOHXNmaR6lY8eOqlevXq7deo4cOaI1a9aoU6dOua7NyMjQjBkzzHKMHj26oMv0bF5eOY0yWVmuWb9+fem111yzNmCP+vWlCROkl15yzfrvvy/RGAgAAKxxzz3S/fdL339f+Gt7e0vTpuU8vAaAgta6tfTMM9K777pm/c8+k8qVc83aAACgWOG4JQDIR0xMjEqVKmUWX7FihbIK8IH44cOHdfr0abN4mzZt5OtbeD2OmZmZds27dOmS2e4mkjR+/HjNnz/fpgYZSUpISLCrjuJizJgxZjGjHWPmz5+vS5cu5YpFRETozjvvLLDaig0vL6lEiZxfZBemChWk+fNz1gaKkhdflAYMKPx1x4yRRo4s/HUBAEDR9fnnrtm18aOPpLZtC39dAMXXv/8t3XFH4a/78ssSO0gDAIBCQpMMAOTDz89P3bt3N4vHx8dr2bJlBbbuV199ZRjv27dvnvOMGmhuOnAEzJUrV+yat2jRImX/bXvWevXq6U07t4m+fPmyXfOKiyFDhig4ODhXbN68eWafP6PGmZEjR5odbwU7+fhI1asXXqNMuXLSr79KRWR3KSAXb2/pm2+ku+8uvDWHDpU++YRjlgAAgG1KlZKWLpVuv73w1nz7bWncuMJbDwCknF1y586V/rYzcYF66inpjTcKbz0AAFDs0SQDAFZ48MEHDeOWGlkclZmZqZkzZxqO5dckY7TrTXJyst21xMfH2zVvx44dZrH777/f7maMnTt32jWvuAgJCdH999+fK5aenp7raKVjx45p9erVua7x8fHRqFGjCqXGYiM0NKdpxd+/YNeJjJTWry/cX9QDzubvL/34ozRkSMGv9eSTOccVFPZuTwAAwDOUKyetWSN16FCw6/j45Bw58sILBbsOAFgSHCwtWZJz3FxBmzAh5zhc/pABAAAUIn5DDABW6NOnjypXrmwWX7hwoTZv3uz09SZPnqyLFy+axe+44w5FR0fnOTc0NNQsdv78ebtr2bhxo13zLly4YBarW7eu3XWsX7/e7rnFhdGRS19++WWu/28ymXKN9+zZU1WrVi3w2oqdUqVyfpnUq1fB5B85UtqzR6pTp2DyA4XJz0+KjZW+/VYKC3N+/ooVpQULpA8+oEEGAAA4pnRpaeVK6T//KZim+Pr1pS1bpEcfdX5uALBFYKA0b17OcXMlSzo/f2Rkzuvpa6/RIAMAAAodvyUGACv4+vpq/PjxZvHs7Gw9/PDDyszMdNpaJ0+e1Ouvv244ZlTD3xk18/z+++921WIymbRo0SK75l67ds0sVtLOf1SfPn1aK1assGuuOyhRooRZzJlfM7c0adJELVu2zBU7dOiQ1q5dq8zMTMXGxprNGT16tNPrwP8XHCwtXpyzc0WZMs7JGRmZs837V1/l7FgDeAovL+mBB6QDB5x7Dv2QIdL+/YV7pBMAAPBsvr7S+PHSzp1Sq1bOyenvL738srRjhxQT45ycAOAoLy9p9Ghp3z7pjjuck9PbWxo7Vtq7V+rSxTk5AQAAbESTDABYafTo0apVq5ZZfP/+/Xr55ZedskZmZqaGDRumlJQUs7GOHTuqkxXnATdt2tQsdujQIf3xxx8217Nw4UIdPXrU5nmS8Y42Z8+etSvX+++/r6ysLLvmugOjI7Bu3LhRIGsZ7SbzxRdfaP78+Wa7E1WpUkW9e/cukDrw/3l5ScOHS6dPS198ITVubF+ezp2lOXOko0elnj2dWiLgVipWlObOlX7/XRozxr6/WCxdWnrmGenIEWnGDOc1qQEAAPxV/frSpk3S2rXSwIE5zTO2qlpVevNN6dSpnP81+AMLAHC5yEhp2TJp27ac33EEBNieo3x56Z//lE6ckKZMydmBFwAAwEXs+NcbABRP/v7++uqrr9SxY0ezI2smTZqk8PBwPfvss3bnz8zM1EMPPaR169aZjQUFBemrr76yKk+5cuUUGRmpU6dO/RkzmUz6+uuvNWHCBKvrSUhI0BNPPGH19X9ntKPN0qVLNWzYMJvybNiwQR9//LHddbiDsLAwXb58OVcsLi5Oje1tmMjDwIED9cwzz+jq1at/xubOnatjx46ZXTty5Ej5+Pg4vQYYCA6WHn5YGjUq55dKy5fn/JXojh05DTR/V6uW1KxZzlvv3pIDR5UBRVLDhtKnn0oTJ0o//yxt3Zpzv+zeLf29kbRkSalp05z7pVUr6a67pKAgl5QNAACKGS8vqUOHnLdz53J+btm2Lefnlr17pZs3c19ftmzOTjHNmknt2kndu9vXXAMArhATk7Nb7rvvSgsXSr/9lvN6t2ePlJ6e+9rQ0Jx/p8XESG3a5BxHTSMgAABwE/wrDABs0L59e73xxht65ZVXzMaee+45nThxQu+9954CbPyLivPnz+vBBx/UypUrDcffeecd1ahRw+p8/fv313vvvZcrNmnSJN1///2Gu+H83fXr1/WPf/xDp40e3lupffv2+uijj3LF5s6dq507dxrudmNk//79GjBggLKzs+2uwx3Uq1fPbEeezZs3F0iTTEBAgIYPH57r85+enq7ffvst13U+Pj4aNWqU09dHPry8pBYtct5uSUqSrl+XMjJyfmFUujQP+IFbQkJyjmF64IGc/87Kkq5ckVJTc+6nwMCch03ebJAJAABcrFIl6ZFHct6knJ/vr17N+bnF1zencT4sLOdnGAAoysqUkYYNy3mTchoCb/07zds753caZcvyegcAANwWv00GABu9/PLLFndD+fTTT9WgQQN9++23ysjIyDdXYmKiJk2apHr16llskHniiSc0btw4m2ocOXKkWSwlJUVdu3bV9u3b85y7du1atW3bVqtXr5aUs4uNPbp3767g4OBcsaysLN11113asWNHvvNnz56tjh076ty5c5JUpHc8adasmVnsww8/1LVr1wpkvUcffVRe+fwionfv3qpSpUqBrA8blSolRURIUVFS5co0yAB58fGRKlTI2e77tttytuymQQYAALgjf/+coySjonKOVSpThgfGADyTr68UHi5Vq5bz77Ry5Xi9AwAAbo2dZADADl9//bV8fHz09ddfm40dP35cDz30kJ5++mndcccdatmypapXr66QkBBlZ2fr6tWrOnLkiDZs2KAVK1YoNTXV4jrDhw/XBx98YHN9devW1ZAhQzRz5sxc8TNnzqhly5bq06ePevfurWrVqqlEiRK6dOmSDhw4oMWLF+faccTb21sfffSRXTuOhIaG6vHHH9fEiRNzxc+dO6fWrVvrgQce0KBBg9SkSROFhYUpOTlZZ8+e1apVq/T9999ry5Ytuea99NJLeuONN2yuwx30799f//d//5crdvjwYdWvX18PPfSQmjVrpnLlyhnuQFS9enWVL1/epvVq1Kihbt26afny5RaveeTWXzcCAAAAAAAAAAAAxQRNMgBgB29vb3311Vdq0KCBXnjhBWVmZppdc/nyZX333Xf67rvvbM7v6+urt99+W88884zdNX7wwQdauXKl4uPjc8Wzs7O1YMECLViwIN8cU6ZMUdeuXe2u4aWXXtLChQt14MCBXPHMzEzFxsYqNjbWqjwPP/ywRowYUWSbZOrWravu3bubNa3Ex8ebNRH93fTp0y3uXJSXMWPGWGySqVq1qnr16mVzTgAAAAAAAAAAAKAoY29yAHDAU089pV27dqlDhw5Oy9mwYUOtXbvWoQYZSQoLC9OaNWsUGRlp81x/f39NmzZNjz76qEM1lCpVSj///LNdNdzyyCOP6LPPPnOoDncwbdo0m3eEcUSfPn0UERFhODZy5MgifXwVAAAAAAAAAAAAYA+aZADAQfXr19fatWu1atUq3X333fL397crT3h4uGbMmKHdu3erTZs2TqmtRo0a2rJli4YNGyZvb+te8tu3b6/t27dr+PDhTqkhOjpaO3bs0N13323TvAoVKuibb77R1KlTPaKho0qVKtq5c6fuuOOOQlnP19dXDz/8sFncx8dHI0eOLJQaAAAAAAAAAAAAAHfCcUsA4CSdO3dW586dlZCQoOXLl2vjxo3at2+fTp48qStXriglJUU3b960OP/atWuKioqyupnFWhUrVtT06dM1fvx4/fTTT/r111918uRJXbp0Senp6QoNDVXNmjXVtm1b3XfffWrRokWu+dWqVZPJZHKohrJly2rBggXatm2bPvvsM61cuVKnT582uy4sLEzt2rVTv379NGjQIAUGBubK8fHHH+e6PiQkxOoa4uLi7K5/2LBhdh159HdVqlTRsmXLdOTIEc2ZM0c7d+7U/v37dfXqVSUlJSktLc3hNf7q6tWrZrE777xTVapUceo6AAAAAAAAAAAAQFHgZXL0yScAu2zevNlst5BNmzapdevWBbJeXFycUlNTc8UCAwNVrVq1AlkPeZs5c6aGDh1qFg8NDdW6devUqFEjF1RVuK5cuaLLly8rKSlJgYGBKl++vCpUqODqsjxGWlqaKleurISEhFzxRYsW6c4773RRVZ6L11gAAAAAAAAAAFCcFfbzb3uxkwwAuMCQIUN09uxZ/fOf/8wVv3btmu644w5t3LhR0dHRLqqucJQtW1Zly5Z1dRke68cffzRrkLntttvUq1cvF1UEAAAAAAAAAAAAuJZzz/QAAFht/Pjxeuyxx8zi58+fV48ePXThwgUXVAVP8dlnn5nFHn74Yacf5wUAAAAAAAAAAAAUFTwpAwAX+vDDD/WPf/zDLH78+HH17NlT169fd0FVKOo2bdqkTZs25Yr5+/vrkUcecVFFAAAAAAAAAAAAgOvRJAMALuTt7a3vvvtOHTp0MBvbvXu3+vbtq/T0dBdUhqLKZDJp/PjxZvEBAwaoQoUKLqgIAAAAAAAAAAAAcA80yQCAi5UoUUILFixQgwYNzMbWrFmjwYMHKysrywWVoSh68803tX79+lwxHx8fvfzyyy6qCAAAAAAAAAAAAHAPvq4uAAAglS5dWkuXLtXYsWOVkZGRaywlJUVz5szRoEGDXFQd3NGuXbv+3GXo2rVrOnHihGJjY/Xbb7+ZXfvggw+qTp06hV0iAAAAAAAAAAAA4FZokgEAN1GlShUtXLjQ1WWgiOjXr59OnTqV73Xly5fXpEmTCqEiAAAAAAAAAAAAwL1x3BIAAB7Kz89PM2fOVPny5V1dCgAAAAAAAAAAAOByNMkAAOCBKlSooJ9++kk9e/Z0dSkAAAAAAAAAAACAW+C4JQAAPIC/v7/KlCmjhg0b6q677tLQoUMVGhrq6rIAAAAAAAAAAAAAt0GTDAAARVBcXJyrSwAAAAAAAAAAAACKFI5bAgAAAAAAAAAAAAAAgMejSQYAAAAAAAAAAAAAAAAejyYZAAAAAAAAAAAAAAAAeDyaZAAAAAAAAAAAAAAAAODxaJIBAAAAAAAAAAAAAACAx6NJBgAAAAAAAAAAAAAAAB6PJhkAAAAAAAAAAAAAAAB4PJpkAAAAAAAAAAAAAAAA4PFokgEAAAAAAAAAAAAAAIDHo0kGAAAAAAAAAAAAAAAAHo8mGQAAAAAAAAAAAAAAAHg8mmQAAAAAAAAAAAAAAADg8WiSAQAAAAAAAAAAAAAAgMejSQYAAAAAAAAAAAAAAAAejyYZAAAAAAAAAAAAAAAAeDyaZAAAAAAAAAAAAAAAAODxaJIBAAAAAAAAAAAAAACAx6NJBgAAAAAAAAAAAAAAAB6PJhkAAAAAAAAAAAAAAAB4PJpkAAAAAAAAAAAAAAAA4PFokgEAAAAAAAAAAAAAAIDHo0kGAAAAAAAAAAAAAAAAHo8mGQAAAAAAAAAAAAAAAHg8mmQAAAAAAAAAAAAAAADg8XxdXQAAuKP4eGnHDunkSSk1VcrIkPz9pcBAKSpKatZMiohwdZUAAAAAAAAAAAAAAGvRJAMAkg4flmbNkrZty2mOuXAh/znh4TnNMs2bS4MHS7VrF3ydAAAAAAAAAAAAAAD70CQDoNi6eVNasED69FNp1Srb51+4IC1ZkvP2+utSly7S2LFS376SL6+uAAAAAAAAAAAAAOBWvF1dAAAUtuxs6aOPpGrVpP797WuQMbJqVU6+atWkjz/OWQdA4YmLi5OXl1eut2rVqrm6LAAAAAAAAAAAALgJ9joAUKwcPSqNGCFt2FBwa8THS088Ic2eLU2fLtWoUXBrwTGXLl3SkSNHdPr0aV26dEmpqam6efOmQkJCFBoaqtDQUFWuXFkNGjRQYGCgq8sFAAAAAAAAAAAA4ACaZAAUC9nZ0ocfSi+/LKWmFs6aGzZIjRpJb72V0zTjzd5dLpeamqqlS5dqwYIFWrduneLi4qya5+Pjo9q1a6tJkybq0aOH7r77bpUuXbpAawUAAAAAAAAAAADgXDTJAPB4KSnSP/4hLVtW+GunpkpPPy398os0d64UFFT4NSBnx5j33ntPX375pa5evWrz/KysLB04cEAHDhzQd999Jz8/P3Xr1k1Dhw7VfffdJ286oAAAAAAAAAAAAAC3x1M9AB7t2jWpRw/XNMj81bJlOXVcu+baOoqb7OxsTZ48WTVq1NDbb79tV4OMkczMTC1dulSDBg1SvXr19O233yorK8spuQEAAAAAAAAAAAAUDHaSAeCxUlKk3r2lTZtcXUmOjRulO++Ufv2VHWUKw8WLF3X//fdr5cqV+V4bFBSk2267TWXLllVgYKAyMzOVnJys06dP69KlS3nOPXz4sB566CFdvnxZTz31lJOqBwAAAAAAAAAAAOBsNMkA8EjZ2TlHLLlLg8wtGzdK/ftLixZJnNBTcE6ePKkePXro2LFjhuO+vr668847dc8996ht27aqUaOGvLy8DK+9fv26tmzZojVr1mjevHk6fPiw4XU3b950Wv0AAAAAAAAAAAAAnI9HtAA80kcfuf6IJUuWLs2pDwXjwoUL6tKli2GDjLe3t0aPHq2TJ0/qp59+0rBhw1SzZk2LDTKSFBISoh49euitt97SoUOHtHnzZg0ePFjedDkBAAAAAAAAAAAARQpP+AB4nKNHpZdecnUVeXv5ZcnCJidwQGZmpu6++27FxcWZjUVERGjt2rX6/PPPVaVKFbvXaNWqlb7//nvt3btXvXv3dqBaAAAAAAAAAAAAAIWJJhkAHiU7WxoxQkpNdXUleUtJkYYPz6kXzjNhwgT99ttvZvGoqCht3LhR7dq1c9pa9erV0+LFi/Xdd9+pdOnSTssLAAAAAAAAAAAAoGDQJAPAo0yZIm3Y4OoqrLNhQ069cI7Dhw/rnXfeMYuXKlVKixcvVmRkZIGse//992vHjh1q0KBBgeQHAAAAAAAAAAAA4By+ri4AAJzl5k3p7bddXYVt3n5bGjNG8uXV2GGvvPKKbt68aRZ/5513VLdu3QJdOzo6WtHR0U7JdeTIEe3bt09nzpxRcnKyvLy8VKpUKUVGRqpRo0YF1uzzV9nZ2dq/f78OHjyo+Ph43bhxQ76+vgoNDVW1atXUtGlThYeHF3gNO3fu1L59+3Tx4kXdvHlTISEhioqKUtOmTVWpUqUCXR8AAAAAAAAAAACeh8eyADzGggVSfLyrq7BNfLy0cKF0772urqRoO336tObNm2cWr1+/vh555BEXVGSbgwcPasqUKfrxxx914cKFPK+NiorSwIEDNW7cOFWpUsWpdWzdulWfffaZFixYoMTExDyvrV+/vgYPHqwxY8aoTJkyTqvhwoULmjRpkmbMmKHLly8bXuPl5aUWLVro8ccf1+DBg+XtzcZ4AAAAAAAAAAAAyB9PlQB4jE8/dXUF9imqdbuTr7/+WtnZ2Wbx559/3q0bKBISEjRy5EjVr19fU6ZMybdBRpJOnjypiRMnqnr16nrppZeUlpbmcB1nzpxR37591apVK82YMSPfBhlJ2r9/v1555RVFRkbq/fffN/z42yo2NlY1a9bUe++9Z7FBRpJMJpO2bt2qBx98UO3atVNcXJzDawMAAAAAAAAAAMDzue+TQwCwwaFD0qpVrq7CPqtWSYcPu7qKom3+/PlmseDgYPXv398F1Vhn3759atq0qaZNmyaTyWTz/IyMDP3nP/9R+/btdfbsWbvrWLt2rRo3bqyFCxfaNT85OVnPPvus7rzzTl2/ft3uOp5//nkNHz5cSUlJNs3bvHmzWrVqpQMHDti9NgAAAAAAAAAAAIoHmmQAeIT//tfVFdjPZCra9btafHy89u7daxbv2rWrgoODXVBR/g4cOKDOnTtb3AHFy8tLUVFRateunVq1aqWqVatazLV9+3Z17txZFy9etLmOtWvXqlevXrpy5YrhuK+vr2rUqKEOHTqoefPmqlixosVcy5YtU8+ePZWSkmJzHf/617/07rvvWhwPCwtT48aN1alTJ9WpU0cBAQG5xi9cuKA777xTV69etXltAAAAAAAAAAAAFB80yQDwCNu2uboCxxT1+l3pt99+M4x36tSpcAuxUlpamgYOHGh4nFBISIgmTpyo06dP68SJE1q/fr02b96s06dP6/Dhw3rxxRfl7+9vNu/IkSMaNmyYTXVcvnxZgwYNUmpqqtlYxYoV9emnn+rcuXM6evSo1q5dq99++03nzp3Tzp07NXr0aHl5eZnN27x5s5599lmb6ti0aZNef/11w7HevXtr5cqVunz5snbt2qXVq1fr4MGDunz5sr777jvVqlXrz2vj4uL09NNP27Q2AAAAAAAAAAAAiheaZAB4hB07XF2BY4p6/a60a9cuw3jjxo0LtxArjR8/Xvv27TOLN2/eXPv379eLL76oKlWqmI3XqlVLEydO1Pbt2xUZGWk2vnTpUn3yySdW1/Hwww/r/PnzZvHevXvrwIEDGjNmjMqVK2c23qRJE33++edavXq1wsLCzMY///xzLVq0yKoa0tPTNXLkSGVnZ+eKe3t7a+rUqVq8eLG6dOkib+/cP64EBwfr/vvv1+7duzVkyJA/4+vWrbNqXQAAAAAAAAAAABRPNMkAKPLi46ULF1xdhWPOn5fOnnV1FUXTiRMnDOO1a9cu5Eryd/z4cX388cdm8Xr16mnZsmWGzTF/17BhQy1fvlwVKlQwG3v55ZeVnJycb47Vq1frp59+Mot36tRJc+fONWx++buOHTtq8eLFCgoKMht7+umnZTKZ8s3x+eef69ChQ2bxjz76SI888ki+8wMDAzV9+nTde++9+V4LAAAAAAAAAAAA0CQDoMjzlF1YPOX9KGzx8fFmMW9vb4WHh7ugmrxNmTLFcNeUmTNnqkyZMlbnqVmzpmGzzfXr1zVjxox85xvNDQ4O1jfffKOAgACr62jdurVee+01s/ixY8e0ZMmSfOdPnTrVLNajRw+NGzfO6hq8vb315ZdfqmzZslbPAQAAAAAAAAAAQPFEkwyAIu/kSVdX4Bye8n4UtoSEBLNYWFiYfHx8XFCNZampqZo+fbpZfNiwYWrWrJnN+QYMGKD27dubxfM7cunMmTNauHChWdzSMU/5efrpp1W9enWb61i/fr0OHjxoFp88ebLNNZQpU8awWQcAAAAAAAAAAAD4K5pkABR5qamursA5POX9KGypBh84W3ZDMVKjRg15eXnZ/DZhwgSLObdu3arExESzuDXHClny6KOPmsUOHTqk06dPW5yzYsUKZWVl5Yp5e3tr5MiRdtXg5+enESNGmMVXr16tjIwMi/OWLl1qFmvVqpXq1atnVx0PPvig/P397ZoLAAAAAAAAAACA4oEmGQBFXh7P4YsUT3k/CtvNmzddXYJVNm/ebBarVq2aWrZsaXfOfv36KTAw0Kq18hrr0KGDKleubHcdDzzwgFksPT1du3btsjhn69atZrH77rvP7hrCwsLUvXt3u+cDAAAAAAAAAADA89EkA6DI85TNIzzl/ShsRrvGXL9+3QWV5G3Lli1mMUcaZCQpMDBQt99+u1k8ryaZgqgjMjJSFStWtLoOk8mk7du3m8WbN2/uUB2OzgcAAAAAAAAAAIBno0kGQJFnsJFGkeQp70dhCwoKMoslJycrOzvbBdVYdurUKbNYkyZNHM5rlCOv45bcoY6rV68aNjIZNfzYwtH5AAAAAAAAAAAA8Gy+ri4AABwVFeXqCpzDU96Pwma0g4nJZNK1a9cUFhZmV84ff/xRaWlpeV7Tr18/nT9/3uqcCQkJZrFKlSrZXNvfGR2TZLSWJGVnZxs2pxR2HUbxEiVKKCQkxKEaKlSo4NB8AAAAAAAAAAAAeDaaZAAUec2auboC5/CU96OwVa1a1TB++vRpu5tkGjdunO81JUqUsCmnUWOIo00hkhQaGmrVWpKUmJgok8nkFnUUVg0AAAAAAAAAAADALRy3BKDIi4iQwsNdXYVjKlaUDDbigBXq1atnGP/tt98KuZK8paammsUCnXDGllGOGzduWF2DK+pIT083i/n7+ztcg62NSwAAAAAAAAAAACheaJIB4BGK+i4sRb1+V2pm4YPnbk0yRjulJCUlOZzXKIelHVUs7dZS2HUYxZ1Rg9FRUgAAAAAAAAAAAMAtNMkA8AjNm7u6AscU9fpdqVmzZipZsqRZfP369S6oxjKjo5+c0dRx7do1s1iZMmUMry1VqpR8fc1PWizsOkqXLm0WS05OVnZ2ttNrAAAAAAAAAAAAAG6hSQaARxg82NUV2M/Lq2jX72r+/v7q0aOHWfzw4cPauHGjCyoyZtQkc+LECYfzHj9+3Kq1bjFqUCnsOsqWLSsvL69csezsbMMctjhy5IhD8wEAAAAAAAAAAODZaJIB4BFq15a6dHF1Ffbp0kWqVcvVVRRt999/v2H8s88+K+RKLKtXr55ZbNeuXQ7nNcphtFZB1mEymbRnzx6r6wgMDFTNmjXN4rt373aoDkfnAwAAAAAAAAAAwLPRJAPAY4wd6+oK7FNU63Ynffv2VeXKlc3ic+bM0eHDh11QkbnWrVubxTZv3qyMjAy7c54/f16HDh2yaq28xtauXWt3DZK0fft2JSUl2VRHy5YtzWIrVqxwqI6VK1c6NB8AAAAAAAAAAACejSYZAB6jb18pIsLVVdgmIiKnbjjG19dXL730klk8IyNDDz74oDIzM11QVW5t2rQxiyUkJGjJkiV25/zuu++UlZWVK+bl5WXYgJJXHfv373doF5aZM2eaxcqWLataeWyRZFTHnDlz7G4a2rp1q44ePWrXXAAAAAAAAAAAABQPNMkA8Bi+vtKLL7q6Ctu8+KLk4+PqKjzDI488orp165rFt2/frpdfftkFFeXWsGFDw6aRDz74wK58aWlp+vTTT83iPXr0UGhoqMV5Xbt2VenSpc3ikydPtquOS5cu6dtvvzWL9+/fP8959913n0qUKJErlpCQoC+//NKuOiZOnGjXPAAAAAAAAAAAABQfNMkA8Cjjxknt2rm6Cuu0a5dTL5zDz89PM2bMkK+vr9nYpEmT9Oqrr8pkMrmgshxeXl567LHHzOJr167Vf//7X5vzvf322zpx4oRZ/IknnshzXnBwsEaMGGEW/+abb7Rp0yab63jhhReUmJhoFn/88cfznFe2bFn94x//MIu/+uqrunDhgk01LFmyRD/99JNNcwAAAAAAAAAAAFD80CQDwKN4e0vTpkmBga6uJG9BQdL06Tn1wnmaN29ucUeUN998U71791ZcXJzD65w7d043btywed6wYcMMd3EZPXq0du7caXWe+fPn64033jCL16lTR7169cp3/rhx4+Tn55crZjKZNGDAAJs+Ph999JFiY2PN4j169FD9+vXznf/MM8/I+283QUJCgnr37q3r169bVcOuXbt0//33W3UtAAAAAAAAAAAAijcezwLwODVrSm+95eoq8vbvf0s1ari6Cs/02GOP6aWXXjIcW7ZsmerWratHH31Uu3btsjn3zp079cQTTyg6OlqXL1+2eX6pUqU0ZcoUs/j169fVo0cPzZ8/P8/5JpNJn3zyiQYPHqysrKxcYz4+Ppo2bZq8vLzyrSM6OloTJkwwi8fHx6tz585at25dnvMzMjL0f//3f3rqqafMxkqWLGl4DJSRZs2a6cknnzSL79y5U61bt9Zvv/2W5/zY2Fh16dJF165dkyQFBQVZtS4AAAAAAAAAAACKJ/MzKQDAAzzxhPTLL9KyZa6uxFyvXjn1oeD8+9//VmhoqMaPH292xFJaWpqmTp2qqVOnKjIyUu3atdPtt9+uyMhIlS1bVgEBAcrMzFRycrKuX7+uY8eO6dChQ9q4caNOnz6d57phYWH51nb//fdr0aJFmjVrVq74lStXdO+996pr16568MEH1a5dO1WqVElZWVmKj4/XypUrFRsbqx07dhjmfemll9S6det8179l/PjxWrp0qTZs2JArHhcXp06dOumee+7R4MGDFRMTo4oVKyotLU1//PGHli5dqmnTpunIkSOGeT/88ENVr17d6jrefPNNLVq0SEePHs0VP3DggFq3bq327durX79+ioqKUunSpXXhwgXt27dPP/zwgw4fPpxrzltvvWXYuAMAAAAAAAAAAABIkpfp708PARSKzZs3q02bNrlimzZtsukhty3i4uKUmpqaKxYYGKhq1aoVyHruICVF6tFD2rjR1ZX8T7t2Oc07bHhROFasWKEhQ4bo3LlzBbpOtWrVNGnSJPXv39+q62/cuKGePXuaNajYa9CgQfr222/l4+Nj07wLFy6oU6dOOnTokFPqeP755/XOO+/YPO/IkSNq3769Ll68aPfaL7zwgsaMGaOoqKhc8cjISKccsZWf4vgaCwAAAAAAAAAAcEthP/+2F8ctAfBYQUHS4sVS27auriRH27bSokU0yBSmbt266dChQ3r++ecVEBDg9Py1a9fW559/riNHjljdICNJwcHB+uWXXzRw4ECH1vfy8tJzzz1nV4OMJIWHh2v9+vXq0qWLQ3X4+vrq/ffft6tBRpJq1aqlDRs2qHbt2nbNf+655zRx4kS75gIAAAAAAAAAAKD4oEkGgEcLDZV+/VXq2dO1dfTqlVNHaKhr6yiOQkJC9M477+iPP/7Qf/7zH9WvX9+hfOHh4XrkkUe0evVqHTp0SKNHj5afn5/NeYKCgvTf//5XP/zwg03HE93StGlTrV69WpMmTbKrQeaWcuXKafny5fr0009VsWJFm+d37txZ27dv19NPP213DZJUs2ZN7dixQ88++6xKlChh1Zzq1atr4cKFmjRpkry8vBxaHwAAAAAAAAAAAJ6P45YAF+G4pcKVnS199JH00kvS3z4MBSooSHrrLenxxyVv2hLdxvHjx7Vu3Tpt27ZNhw8f1unTp3X58mWlpqYqMzNT/v7+Cg4OVnh4uCIiIlSnTh01bNhQbdu2Vb169ZxeT1ZWlpYuXarZs2dr3bp1OnXqlNk1Xl5eqlWrljp37qxBgwapY8eOTq8jPT1d8+bN07x587RhwwadP3/e7BofHx/Vr19fXbt21QMPPKBmzZo5vY5Lly7pu+++0/Lly7V3715dvHhRWVlZKlWqlKKiohQTE6M+ffqod+/e8naTG6u4v8YCAAAAAAAAAIDiragct0STDOAiNMm4xrFj0vDh0oYNBb9Wu3bS9OlSjRoFvxY8S3Jyss6cOaMbN25IytkNp2rVqgVyZFRerl27pvj4eKWkpMjHx0ehoaGqWrWqXTvneDpeYwEAAAAAAAAAQHFWVJpkfF1dAAAUpho1pLVrpSlTpLffluLjnb9GRIT04ovSuHHsHgP7lCxZUnXq1HF1GQoNDVUoZ4QBAAAAAAAAAADAQ/D4FkCx4+2dc/xRXJw0d67UtavjOb28cvLMnSudOsXxSgAAAAAAAAAAAADgbthJBkCx5esr3Xtvztvhw9KsWdL27dKOHdL58/nPr1hRatZMat5cGjRIql274GsGAAAAAAAAAAAAANiHJhkAUE6Dy4QJ//vvs2dzmmVOnpRSU6WMDMnfXwoMlKKicppjKld2WbkAAAAAAAAAAAAAABvRJAMABipXpgkGAAAAAAAA+H/s3XeYXGXhNuBn0xNISOglNEEQKQoBJPSigCICNgSVJkVQUBDLT7ELilhBmiBdRZEqJShVIQElASE0KQklEGkJCUlIssl+f5wPMeym7O7snNmz931duS44O/O+z8zuzs6c85z3AABAlfQqOwAAAAAAAAAAAHQ1JRkAAAAAAAAAACpPSQYAAAAAAAAAgMpTkgEAAAAAAAAAoPKUZAAAAAAAAAAAqDwlGQAAAAAAAAAAKk9JBgAAAAAAAACAylOSAQAAAAAAAACg8pRkAAAAAAAAAACoPCUZAAAAAAAAAAAqT0kGAAAAAAAAAIDKU5IBAAAAAAAAAKDylGQAAAAAAAAAAKg8JRkAAAAAAAAAACpPSQYAAAAAAAAAgMrrU3YAAACAxZoyJRk3Lnn66eT115OmpmTgwGSttZJNN02GDCk7IQAAAB0xb17y738nDzyQvPpqMmdO0r9/sswyySabJG9/e9JrCc/5fu215N57kyefTGbNSlpakgEDktVXTzbbLFl22a59LEA1TZ1avLY89VTx2tLUVLy2vLFfapllyk7IwsyfnzzxRHL//cX+xdmzk379in2JG2+crL9+0rt32SmpMyUZGsasWbNy7733ZsKECZk6dWpeffXV9O3bN0OHDs2yyy6bjTfeOG9/+9vT1NRUdlQAALravHnJqFHJ736X3HVXsYNzUdZbLxk5Mvn0p5Oddy52VgAAANCYnn8+Oe+85MYbiwPPr7228NsOHlwUXHbfPTn44GSlld78WktL8re/JRddlIwenTz6aLFtYdZaK3nPe5L99kv22CPp4zAZ0Ib585O//CX57W+L/VKPP77o27/97clWWyWf+lTy3vcuebGPrvHSS8kFFyTXX5+MHZtMm7bw2y61VPLudye77pocckgyfHi9UlKippaWRb1boMqefPLJjB07doF/U6ZMaXW7W2+9NTvuuGOXZJg6dWouvvjiXHzxxbn33nvT3Ny8yNsvs8wy2WWXXXLooYdmt912S69u/EdmzJgx2XrrrRfYNnr06IwcObJL5ps4cWJmzZq1wLaBAwdmrbXW6pL5AHoSr7FQQ1OnJmefnZx1VjJxYsfGWH/95Kijks98pvigCwAAQGO4887kl79MrrwyWczxgDb17Zt89KPJEUck48cnZ5yRPPRQx7KsvnoxzpFHWmEGKEyblvz618mZZy7+hK2Fefvbi9eVQw8tSn7Uz9ixxd+YP/6xWDGmvXr3TvbaKznmmGSHHWqfrweo9/HvjlKS6SEmTJiQe+65Z7GFmLZ0RUlm3rx5+cUvfpFvfetbmTlzZofG2GCDDXLuuee2+kXrLpRkAKrDayzUyFVXJZ/9bPKf/9RmvDXWSH7zm+IMHgAAAMozZUryxS8WK740muWXT04/Pfn4x8tOApTpuuuSww9PnnuuNuMNH56cc06xChZd67XXkq9+tShO1sonPpGcdlrxN4Il1l1KMt13GQ7aZdNNN83HP/7xnHzyybnpppuWuCDTFaZOnZoddtghxx9/fIcLMkny8MMPZ7vttsuJJ55Yw3QAANTdK68kn/xkss8+tSvIJMnTTyfve19RvFnU0t0AAAB0neuuSzbcsDELMklxWY59900+9rHkxRfLTgPU26uvJgcdlHzwg7UryCTJs88m739/sdLxoi73Q+fcdluy8ca1LcgkyaWXFn+7rryytuPSEJRkqKvp06dnt912y5133rnQ2wwcODDvete7stNOO2XbbbfNeuutt9DLKs2fPz8nnHCCogwAQHf19NPFNZt/97uum+Pss5Ptt09eeKHr5gAAAKC1n/ykOPD8/PNlJ1m8P/0pec97kieeKDsJUC+TJiUjRyYXXth1c5x3XrLNNt3jdbC7+c1vkl126fgl2xfnhReSD384+cEPEhfnqRQlGerqq1/9av7xj3+0+bUPfOADufnmm/Pqq6/mvvvuyy233JK///3vefTRRzNlypScf/75WX/99du87ze/+c2MHj26K6MDAFBrTz2VbLtt8thjXT/XvfcW1xJ2ViAAAEB9nHhi8uUvl52ifSZMSLbbLnn88bKTAF3t2WeL3/eHH+76ucaPL07gUpSpnTPPTA49NJk/v+vn+uY3k299q+vnoW6UZHqwNdZYI/vss09OPPHEjBo1Kvfcc0+Xznf//ffn7LPPbrW9V69e+fWvf53rrrsuO++8c/r27dvqNkOGDMlBBx2U++67L5/61Kdafb2lpSWf+9znuiQ3AABd4OWXi0shPfNM/eZ85JHiOtAuvQQAANC1zjorOeGEslN0zPPPJ+99b20vBww0lqlTk113LYpx9fL448luu7n0Ui384Q/JUUfVd84f/CD5+c/rOyddpk/ZAaiPNdZYI+uuu25GjBiRESNGZPPNN8/yyy+/wG0mdtVSVP/fxRdfnPlttPm++93v5rDDDluiMQYMGJALLrggkyZNyq233rrA1+6777488MAD2XjjjWuSFwCALvTZz9ZnBZm3Gjcu+cpXan+dYgAAAArjxyfHHFN2is556qlihYJrrkmamspOA9Ta0UfXZwWZt3rggeTYY4vLBNExEycWr89l+PKXixWBRowoZ35qxkoyPcT999+fK664It/4xjey++67tyrI1MM111zTatvKK6+cL7dzucXevXvnpz/9aZtf+/Of/9yhbAAA1NFllxXXei/LmWcmt9xS3vwAAABV1dycHHRQMndu2Uk679prk4svLjsFUGvXXJNcckl58593XnLDDeXN3521tCSf+Ux5q0TPm1f8jZs9u5z5qRklGepi/vz5efLJJ1tt/+AHP5j+/fu3e7xNN90066yzTqvtTzzxRIfyAQBQJy+/XP/lUNtyyCHJzJllpwAAAKiWn/wkGTu27BS184UvJJMnl50CqJWpU5Mjjig7RXLYYcn06WWn6H7OPbf8E9/Gj09OOqncDHSakgx18fLLL6e5ubnV9ne+850dHnODDTZote3555/v8HgAANTBaaclL71Udopi6ezzzis7BQAAQHXMmJH86Edlp6itqVOTn/2s7BRArZx5ZmMU3yZNSn7967JTdC/Nzcl3v1t2isJPfpK8+mrZKegEJRnqoqWlpc3tSy+9dIfHHDJkSKttvXv37vB4AAB0sblzG2sHwJlnFsu0AgAA0Hm/+101Dxqed17y+utlpwA6a9685Kyzyk7xprPOSubPLztF93HNNUW5qBHMnJlcdFHZKegEJRnqYtlll02fPn1abX/55Zc7POZLbZyBvPLKK3d4PAAAutjVVyeNtPLfQw8lf/tb2SkAAAC6v5aW5Iwzyk7RNV5+ObnssrJTAJ11/fXJ00+XneJNjz+e3HRT2Sm6j0b7G3PGGU6+68aUZKiLPn36ZLPNNmu1/R//+EeHxps/f37uueeeVtu32mqrDo0HAEAdXHxx2Qlac9YHAABA5z34YHLffWWn6Do+O0L3Z79U9/Xcc8nNN5edYkGPPJK0caya7qH10h7QRT7ykY+0KsXceOONmTx5crtXgLnqqqvyyiuvLLCtf//+2XPPPTudE5IUS7aNHZtMmJDMmpXMmZP065cMHJisvXYyYkSy2mplpwSA7qOlJRkzpuwUrd11V9kJAAAAur9G/LxXS3ffXVwWpZdzz6HbasTXKfullkyjPk933ZVssUXZKegAJRnq5rDDDsuPfvSjTJky5b/bZs6cmc997nP505/+lKampiUa54UXXsjxxx/favuhhx6aFVdcsWZ56WEefTT5/e+Tf/6zKMf85z+Lv89KKxVlmS22SPbbL1l//a7PCQDd1bPPJi++WHaK1h55JJkxI1lqqbKTAAAAdF9jx5adoGtNn15cGmW99cpOAnTECy8U+6YazRNPJFOnJkOHlp2ksTXq35hGzcViKclQN8OGDcsZZ5yR/fbbb4HtV1xxRfbff/+cffbZGTJkyCLHePDBB7PvvvtmwoQJC2xfd91188Mf/rDmmRdlTCcbpw888ECNktBhzc3J1VcX1w285Zb23/8//ymuYXn99cl3v5vsvHNy1FHJXnslfby8AsACGvVD4/z5xZLg22xTdhIAAIDuq1E/89XS2LFKMtBdNfJr1LhxxfElFq5Rv3+NmovFchSXuvrEJz6RZ599Nl/+8pcX2H7ppZfmpptuymc+85nsuuuu2XDDDTNs2LA0NzfnxRdfzNixY3P55Zfnsssuy9y5cxe479ve9rbcdNNNGTx4cD0fSrbeeuu6zkcNzZ+f/OpXyY9/XFxWqVZuuaX4t9pqyVe/mnzuc5bfpLJ23HHH3H777Qtsu/XWW7PjjjuWEwhofE89VXaChZs4UUkGAACgMxr5M1+t9ITHCFXVyL+/EyeWnaDxNer3z/eu21KSoe6OP/74bLDBBjnssMPy/PPP/3f7Sy+9lJNPPjknn3zyEo3T1NSUT37ykznttNMy1DJkLKnHHksOOSS5446um2PSpOSYY5I//jE5//xk3XW7bi4A6C5mzSo7wcK9/nrZCQAAALq3Rv7MVys94TFCVTXy76/9UovXqN8/37tuyxIHlGKPPfbIk08+mV/96lcZOXJkerVjtY2VV145n//85/PAAw/k4osvVpBhycyfn/z858m73tW1BZn/dccdySabJL/4RTE/Xe473/lOmpqa2v2vd+/eWWaZZbLGGmtks802y4EHHpif//znefDBB8t+SADV0dJSdoKFa+RsAAAA3UFP+FzVEx4jVFUj//46frR4jfr9a9RcLJaSDKXq379/lllmmfTps+SLGr3yyit5/PHHc++996a5ubkL01EZM2cme+yRHHdc/dums2Ylxx5bzD9zZn3nZonNnz8/06ZNyzPPPJN77703F110UY477rhstNFG2XzzzXPxxReXHRGg+xs0qOwECzdwYNkJAAAAurdG/sxXKz47QvfVyK9RXlsWr1G/f7533ZbLLVGK888/P1//+tczefLkdt93zpw5GTVqVEaNGpVvfetbOeuss7Lrrrt2QcpFGz16dKfu/8ADD+SII46oURoW6tVXi4LKnXeWm2PUqGTXXZPrrkuWWabcLLTL2LFjc8ABB+Scc87JxRdfnDXXXLPsSADd0+qrl51g4Ro5GwAAQHew+urJiy+WnaJrrbFG2QmAjmrkfT9eWxZv9dWTRx4pO0VrjfxzxSIpyVBXc+fOzQEHHJBLL7201deampqy8847Z+edd84GG2yQZZddNnPnzs3LL7+csWPHZtSoUXnggQcWuM+ECROy++675zvf+U6+9a1v1ethJElGjhxZ1/nogJkzkw98IOlkoalm7ryzKOz85S+N23plof7+979n++23zy233JJ11lmn7DgA3c+IEWUnaFtTU7LppmWnAAAA6N5GjEjGjSs7Rddq1M+1wOI18u9vI2drFCNGJH/9a9kpWtt887IT0EFKMtTVJz/5yVx22WWttu+888751a9+lQ022KDN++2777758Y9/nBtvvDGf/exnM3HixP9+raWlJd/+9rfTv3//fPWrX+2q6HQ38+cnH/lI4xRk3nDnnclHP5pce23SyxXv6mXMmDGL/PrcuXMzbdq0TJw4MePGjcvVV1+dl19+udXtnn766Xzwgx/Mv/71r/Tr16+r4gJU0xprJMstl7Tx+lqq9ddPBg8uOwUAAED3NmJEcs45ZafoOksvnay3XtkpgI5aeeVk1VWT554rO8mC1l47WXbZslM0vkYtEjVqLhZLSYa6OfPMM9ssyBx22GE566yz0msJCgO77bZbxo0bl/e9730ZO3bsAl874YQTsvPOO2eLLbaoWWa6sVNPLS5x1IhuuKHI98Uvlp2kx9hqq63adfuzzjorv/zlL3PCCSdk9uzZC3ztkUceySmnnJJvfOMbtYwIUH1NTclWWxWXHmwk73lP2QkAAAC6v3buf+t2ttjCSY/Q3W21VXLFFWWnWJD9UkumUZ+nRs3FYvmLTl3MmDGjzQPK22yzTc4888wlKsi8YdiwYbnmmmsydOjQBbY3NzfnK1/5SmejUgWPPZZ8/etlp1i0b3wjefzxslOwEH379s3xxx+fP/3pT2lqamr19bPPPruEVAAV8MlPlp2gtU99quwEAAAA3d8mmyQbbVR2iq7z6U+XnQDorEbcB9SImRrR6qsn229fdooFrbtusuWWZaegg5RkqIvf/va3mTJlSqvtJ598cnr37t3u8VZdddUcf/zxrbbfdtttefDBBzuUkYqYPz855JBk1qyykyzazJnJwQcXeWlYH/zgB7P//vu32v7MM89kXNWvsQzQFT784WTFFctO8ab11kt23rnsFAAAAN1fU1Ny5JFlp+gaQ4cm++5bdgqgs/bcM1lttbJTvGmttZLddy87Rfdx1FFlJ1jQkUdaYawb852jLm688cZW29Zaa61ss802HR6zrQPXSfLXv/61w2NSAaefntxxR9kplswddxR5aWifXshZIg8//HCdkwBUQP/+yaGHlp3iTZ/9rA+zAAAAtfKpTyVLL112ito76KBk0KCyUwCd1adPcvjhZad40xFHJB1YSKDH2mefZKWVyk5RGDCg+NtAt9Wn7AD0DG2tuLDtttt2asy11147q622WiZNmrTA9vvuu69T49KNNTcnJ59cdor2Ofnkom3ax8txo9p0003b3D558uROjTtjxow8+uij+fe//51XXnkl06ZNS1NTU5ZddtkMGzYs66yzTjbZZJMOrbbVXs8880zuueeeTJw4MTNmzMigQYOy8sorZ6ONNsrGG2/c5iWnADrsC19IzjgjmTq13ByrrdZYhR0AAIDubsiQ5Pjjk+98p+wktTN4cPGYgGr4/OeT005LXnqp3BwrrVScvMWS69cvOeGE5Oijy05S7N9cdtmyU9AJjspSFy+++GKrbSvVoO230kortSrJvFT2HzbKc/XVyVt+HhrepEnJNdcUl5+gIQ0bNqzN7XPnzm3XODNnzswNN9yQW265JbfddlsefvjhtLS0LPI+Q4YMyTbbbJMjjjgiH/rQh2paVpk/f34uvvjinHrqqYu8dNQqq6ySAw88MMcee2xWbKRLpADd14orJqeemhxwQLk5zjmn2NkJAABA7fzf/yVXXJHcf3/ZSWrjpz9trMuzAJ2z7LLFyVsf/3i5Oc4+u7iUG+1z1FHJH/5Q7hUl1l8/+fa3y5ufmrC2OHXR3Nzcalvfvn07PW5bY8yfP7/T49JNnXFG2Qk6prvm7iGmLmSlg4WVZ97qmWeeyX777ZcVV1wxH/3oR3PGGWfkoYceWmxBJkmmTZuWG264IXvvvXc23njj3Hnnne2JvlD//ve/s+WWW+aggw5aZEEmSZ5//vn86Ec/yjve8Y5ceumlNZkfIJ/6VHEd6LIcckjy/veXNz8AAEBV9euXXHBBNVbOft/7rEAKVfSxjxX/yvLJTyZ77VXe/N1Zr17J+ecnAweWN/8FF5Q3PzWjJENdLL/88q22tbW6THu1NcYKK6zQ6XHphh55JLnllrJTdMwttySPPlp2ChZiYZdwe+c737lE93/00Udz6aWXZsaMGZ3K8eCDD2bnnXfOueee26lx7rzzzmy55ZYZO3Zsu+43ZcqU7LfffvnpT3/aqfkBkiRNTcVKLmuuWf+5N9ww+dnP6j8vAABAT7HppsmPf1x2is5ZddXkvPOKz69A9ZxxRrLOOvWfd731iss90XHrrlveyeff+16y1VblzE1NKclQF21doqO9B2jf6qWXXsrEiRNbbVeS6aG68woXLS3dO3/FXXLJJa22LbXUUhkxYkSnxx4yZEg22GCDbLXVVtlll12y1VZbZd11102vXm3/eZ4zZ04OO+ywXHXVVR2ab/z48fnABz6QV199tc2v9+3bN+utt1522GGHbLbZZm0WHL/85S/n8ssv79D8AAtYaaXkr39NVl65fnO+7W3JX/6SLLNM/eYEAADoiY49trj0Une0/PLF59Xhw8tOAnSVN37P63k5tTXWKOZcwlXqWYSDDkpOOaW+c37xi8nXv17fOekySjLURVsHk//1r39lwoQJHR7zqquuavPSSltuuWWHx6Qb++c/y07QOd09f0WNGjWqzZLM/vvvn0GDBrV7vFVWWSWHHXZYrrjiijz55JOZOnVqHnrooYwZMyY33XRTxowZk8ceeyyvvvpq/vznP2fPhVyK5JBDDsnTTz/drrnnzp2b/fffP9OmTWv1tdVWWy3nnHNOXnjhhTz66KO57bbbMnbs2Lz44osZPXp09ttvv//etqWlJUcccURNVgMDyNvfnvztb/VZUead7yzmWnXVrp8LAACA5MQTk+9+t+wU7bPaasVnxyVcRRroxtZeO/n73+uzosx66xVzrbFG18/VUxx/fPLLX9Znrq99rViZ2upilaEkQ13svvvurba1tLTkO9/5TofGe/3113PiiSe22t6rV6+8973v7dCYdHOdXJmodN09f8U0NzfnF7/4RfbZZ59WZbyhQ4fme9/73hKP1dTUlF122SXXXXddJk2alF//+tfZZ599svbaa6dpIW+oll566Xzwgx/MNddck1GjRmXo0KELfH3KlCn50Y9+1K7HdNJJJ+WBBx5otX2PPfbI+PHjc+ihh7aaJ0lGjhyZ3/3ud7niiivSv3//JMnLL7+chx56qF3zAyzU29+e3H13116L+dOfTu68s75nBwEAAPR0TU3Jt76V/PGPyXLLlZ1m8T7wgeQf/0g22KDsJEC9rL12ctddyUc/2nVzfOITyZgxCjJd4Zhjkuuv77qT4oYNSy65JPnhDxVkKqZP2QHoGXbdddcsu+yyeeWVVxbYftFFF2X77bfPZz7zmSUea/78+TnwwAPbvNTSbrvtlmWXXbazceluJk1K/vOfslN0zuTJyXPPObu9i9x1112L/PrcuXPz2muvZeLEiRk3blyuvvrqNldKWWqppXL11Vdn5XZcGmTnnXfOLrvs0u7Mb9htt91y4403Ztttt83cuXP/u/2iiy7KSSed1Gax5a1eeOGF/PCHP2y1fbvttsuf/vSnDBgwYLFj7LPPPvn973+fj3zkI2lpaWnXYwBYrJVWSq68Mvnd75Kjj06mTKnNuCuvnPz618lCVuYCAACgDj72sWSHHZKjjkoa8TLeyyyT/OIXyYEHOggKPdHyyyeXXVb8O+qo5KWXajPuiismZ56ZfPjDtRmPtr3//cn48cVl/i68sHbj7rlncvbZySqr1G5MGoaVZKiLwYMH5+sLuU7b4YcfnhNOOCFz5sxZ7DiTJ0/OBz7wgfzxj39s9bWmpqacdNJJnc5KN1SVVViq8jga0MiRIxf5b/vtt88HPvCBHHXUUTn33HPbLMi8973vzbhx47L99tu3a+6FrRbTHltuuWWOPvroBbbNmDEjV1111RLd//zzz8/s2bMX2DZgwIBceOGFS1SQecM+++yTgw46aIlvD9AuTU3JJz+ZPPpo8s1vFgWXjlpjjWJZ70ceUZABAABoBCuuWByAvvHGZI89Ol5G6dWrWIn02muTk08uVoHoqBVWSP7v/4rPjgcdpCADPd3HPla8HnznO507oXn48OR730seflhBpl6GDUsuuKC4XN5HPpL07t3xsXbbrfgbc/XVCjIVpiTTQ0ycODFNTU2L/Lf2Qt5M7rTTTou9b1ururzV5z//+Wy22Watts+fPz8nnnhi1lprrXzrW9/KbbfdlsmTJ2fOnDmZMWNGnnrqqVxxxRU57LDDsvbaa+fGG29sc/yjjz467373u9vztFAVEyaUnaA2qvI4KqR///45+uij8+CDD+avf/1r1ltvvdKyHHjgga22jRkzZrH3a2lpyTnnnNNq+9FHH73Q1/1F+dGPftSuYg1Au62wQrEj4emniyW5P/ShYqWZxVlttWJp3GuuSZ58Mvn614uzAQEAAGgMTU3JrrsWBx+feKIoqGy6adK376Lv169fMmJEcsIJxT7Uq64qijZf+Ury+OPFpTY+/vFk9dUXn2GFFZIPfrBYyfSZZ5KTTurcSRpAtSy3XPLtbycTJxYrX+2995K9RqyySrLPPsVKyRMmFCeAufJF/W23XfKnPyVPPVWUnbbYIunff9H36dMnefe7i78pjz2WjBrVuTIn3YLLLVE3/fv3zw033JBtttkmjz/+eKuvP//88/n+97+f73//++0e+8Mf/nB+/vOf1yIm3dGsWWUnqI2qPI4KmT17dk477bTceuutOfroo3PAAQeUVhDZZJNN0q9fvwVW3VrcZaSS5LHHHssTTzzRant7LnP3v1ZcccXsueeeueyyyzp0f4Al1rdvcQbPxz6WtLQUlyUcO7bYiTlrVvFBdeDAZK21ip2lS1KkAQAAoDGsvXZRUDnppGT27OSBB4p/06YV/9+/f3HiwyabJBttVBRl2tKrV3Gpjfe/v/j/F14oPjtOmFB8dpw/v/jsOHx48dlx+HAHPoHF69u3WAXmjZVg3tgv9fTTb+6XGjAgWXPN4rXFiiONZbXVirLTt7+dzJ2bPPhg8q9/JVOnFn9j+vVLhgwp/r5ssknxvaRHUZKhrlZcccX87W9/yyGHHJJRo0Z1erxevXrluOOOy4knnphevSyM1GMtwaW6uoWqPI4KGj9+fI444oiccsopueiiizJy5MhScqy44op59tln//v/bZVf3uruu+9utW3jjTfO+uuv3+EcH//4x5VkgPpqaio+3K62WtlJAAAAqLX+/ZPNNy/+ddaKK75ZmAGolVVX7dwlmChP377FSjGuRsL/0Cqg7lZZZZXccMMNOe+88/LOd76zQ2M0NTVll112ye23355TTjkl/RbWIqdnqMr3vyqPowG1tLQs9t+MGTPy/PPP54477sgvf/nLbLPNNq3Gefzxx7PDDjvkiiuu6FSeSZMm5dxzz80xxxyTHXfcMeuuu25WWmmlDBw4cJGXtvvfgkySzJgxI83NzYuc6x//+EerbVtssUWn8nf2/gAAAAAAAFAGK8n0EKusskrGjBnTpeO318EHH5yDDz44t912W6655pr84x//yL333puZM2e2efvll18+W2yxRbbaaqt84hOfyHrrrdfZ2FTFwIFlJ6iNqjyObmrQoEEZNGhQVl555WyzzTY55phj8re//S0HH3xwnnzyyf/ebu7cudl3331z++23Z+utt27XHH/+85/z85//PLfffnvmz59fk9xTp07N8ssvv9CvT5w4sdW2d73rXZ2ac80118zQoUMzderUTo0DAAAAAAAA9aQk00P0798/W221Vdkx2rTjjjtmxx13TJLMnz8/U6ZMydSpU/Pqq6+md+/eGTp0aIYOHZplllmm3KA0rrXXLjtBbVTlcVTI9ttvn9tuuy0jR47MpEmT/ru9ubk5Bx54YB588MElWslq8uTJOfTQQ3PdddfVPOOMGTMWWZKZMmVKq20rrrhip+ddYYUVlGQAAAAAAADoVpRkaCi9evXKcsstl+WWW67sKHQnI0aUnaA2qvI4Kmb11VfPKaeckv3333+B7Y8//nh+//vf58ADD1zk/Z977rnstNNO+fe//90l+VpaWhb59baKLEOGDOn0vIqLAAAAAAAAdDdKMkD3t9pqyUorJf/5T9lJOm7llZNVVy07BQux77775phjjslLL720wPbzzz9/kSWZ+fPnZ6+99lpoQWa55ZbL1ltvnU022STDhw/PKquskoEDB2bAgAFtrlCzzz77ZPLkye3KPnv27FbblmT1m8Xp379/p8cAAAAAAACAelKSAaphxIjk+uvLTtFxVpFpaL169cp2222XK6+8coHtd999d2bPnr3Qwsi5556be+65p9X2TTbZJN///vfzwQ9+ML169VriHL17925f8LS94sv06dPbPc5bTZs2rdNjAAAAAAAAQD0t+ZE5gEa2xRZlJ+ic7p6/Bxg+fHirba+//nqefvrphd7ntNNOa7Vtp512ypgxY/KhD32oXQWZJJkyZUq7bp8kQ4cObbXt1Vdfbfc4XTEGAAAAAAAA1JOSDFAN++1XdoKOa2rq3vl7iMGDB7e5/eWXX25z+4QJEzJ+/PgFtvXp0ycXXnhhBg0a1O75Z82alZkzZ7b7fssvv3yrbY899li7x3lrlkmTJnVqDAAAAAAAAKg3JRmgGtZfP9l557JTdMzOOyfrrVd2ChbjlVdeaXP7wi61NHbs2Fbbdtxxx6y++uodmn/cuHEdut+73vWuVtvuu+++Do31hvvvvz/z5s3r1BgAAAAAAABQb0oyQHUcdVTZCTqmu+buYRa2+srKK6/c5vb//Oc/rbZtsMEGHZ7/73//e4fu9573vKfVtjvvvDOvv/56h7PcfPPNHb4vAAAAAAAAlEVJBqiOvfZKVlut7BTts9pqRW4a2muvvZY777yz1fallloqK664Ypv3efXVV1ttW3rppTs0f0tLS84///wO3XeLLbZI3759W2W79tprOzReklx88cUdvi8AAAAAAACURUkGqI4+fZKvfrXsFO3z1a8mvXuXnYLF+MUvftHmyiu77757ei/k+7fMMsu02vbcc891aP6rr746//73vzt038GDB2evNopYP/7xj9PS0tKhLI888kiHsgAAAAAAAECZlGSAavnc55Jtty07xZLZdtsiLw3tlltuyfe///02v/bxj398ofdbddVVW2276aab0tzc3K75X3755RzVyUtyHX744a22/fOf/8w555zTrnFmzJiRY489tlNZAAAAAAAAoCxKMkC19OqVnHdeMnBg2UkWbdCg5Pzzi7w0pBkzZuSkk07K+9///syZM6fV10eOHJmPfexjC73/tttum6ampgW2TZo0KaeffvoSZ5g2bVr23nvvPP/880sevA3vfe97s+mmm7bafswxx+Tmm29eojHmzJmTvffeOxMmTOhUFgAAAAAAAChLn7IDANTc29+enHRS0sgrXpx4YrLuumWn6DHuuuuuxd5m1qxZmTZtWh5//PHcc889ufbaa/Paa6+1edvBgwfn7LPPblWC+V8rrLBCtt5669x5550LbD/++OMzbNiwHHDAAYvMM27cuBxyyCH517/+9d9tvXv3zrx58xb7WN6qqakp5557brbccssF7j979uzsueee+cEPfpAvfvGL6bWQ0tbDDz+cgw8+OHffffd/tw0aNCgzZ85sdxYAAAAAAAAoi5IMUE3HHJPceGMyalTZSVp7//uLfNTNyJEjazbWkCFDMmrUqGy88caLve03v/nN7L777gtsa25uzoEHHpiLLroohx56aEaOHJmVV145zc3NmTx5cv7xj3/k8ssvz5VXXpn58+f/936f/vSn87e//S1PPfVUh3Jvttlm+epXv5qTTjppge2zZs3Kl770pZx66qnZd999s+mmm2aVVVbJa6+9lqeeeip//vOfW10mau+9986UKVNy++23dygLAAAAAAAAlEFJBqimXr2Syy9Pdt01ectKHqXadtvkT39ymaVuavvtt8/ZZ5+dd7zjHUt0+9122y2f+tSncskll7T62s0337zElzrabLPNcvrppy9RMWdRvv/97+eRRx7JFVdc0eprTz31VH784x8vdoz1118/5513XvbZZ59OZQEAAAAAAIB6c5QWqK5Bg5Lrrku22absJIVttkmuvbbIRbfR1NSUHXbYIb/73e9y++23L3FB5g3nnntu3vve93Z4/q222iqjRo3K4MGDOzzGG3r16pU//OEPOeywwzp0/0022SQ333xzhg0b1uksAAAAAAAAUG9KMkC1LbNM8pe/JG+55E3dvf/9RY5llik3BwvVr1+/LLfccnnb296WrbfeOkcddVTOOeecPPnkk7ntttuy3377dWjc/v37Z9SoUfna176Wvn37tivP17/+9dx2221ZYYUVOjR3W/r06ZNf//rXufzyy/O2t71tie4zcODAfOUrX8ldd92V1VZbrWZZAAAAAAAAoJ6aWlpaWsoOAT3RmDFjsvXWWy+wbfTo0Rk5cmSXzDdx4sTMmjVrgW0DBw7MWmut1SXzNZz585NTT02+/vXkLc9Dlxo0KDnppOToo11iiTz77LM57bTTMmrUqDzwwAN565/gAQMGZMSIEdljjz1yyCGHZKWVVlrg6xdddFGmTZu2wLYDDzyww6vMzJs3L9dee22uvvrq/POf/8xTTz2VGTNmZNCgQVlppZWy0UYb5X3ve1/23XffLL/88h2ao6fo8a+xAAAAAABAj1bv498d1afsAAB10atX8sUvJh/8YHLwwckdd3T9nNtum5x/frLuul0/F93C8OHDc/LJJ+fkk0/Oa6+9lhdeeCFTpkxJ3759M2zYsKy22mrptYgy1QEHHFDTPL17985ee+2Vvfbaq6bjAgAAAAAAQCNSkgF6lnXXTW6/PTn99OTkk5NJk2o/x2qrJV/9avK5z1k9hoVaeumls/TSS5cdAwAAAAAAAHoMR2+BnqdXr+LyRxMnJpdfnuyyS+fHbGoqxrn88uSpp1xeCQAAAAAAAKDBWEkG6Ln69Ek+/OHi36OPJr//fXLPPcnYscnkyYu//8orJyNGJFtskXziE8n663d9ZgAAAAAAAAA6REkGICkKLt/5zpv//9xzRVlmwoRk1qxkzpykX79k4MBk7bWLcsyqq5YWFwAAAAAAAID2UZIBaMuqqyrBAAAAAAAAAFRIr7IDAAAAAAAAAABAV1OSAQAAAAAAAACg8pRkAAAAAAAAAACoPCUZAAAAAAAAAAAqT0kGAAAAAAAAAIDKU5IBAAAAAAAAAKDylGQAAAAAAAAAAKg8JRkAAAAAAAAAACpPSQYAAAAAAAAAgMpTkgEAAAAAAAAAoPKUZAAAAAAAAAAAqDwlGQAAAAAAAAAAKk9JBgAAAAAAAACAylOSAQAAAAAAAACg8pRkAAAAAAAAAACoPCUZ6CGamppabZs/f34JSQCqp63X07ZedwEAAAAAACiPkgz0EL16tf51nzdvXglJAKqnrdfT3r17l5AEAAAAAACAhVGSgR6irYO1zc3NaW5uLiENQHUs7LW0rXIiAAAAAAAA5XH0BnqI/v37t7l9+vTpdU4CUC0Lex1d2OsuAAAAAAAA5VCSgR5iyJAhbW6fNm1anZMAVMvCXkcX9roLAAAAAABAOZRkoIfo27dvBgwY0Gr7zJkzrSYD0EHTp0/PzJkzW20fOHBg+vbtW0IiAAAAAAAAFkZJBnqQha1qMGnSJEUZgHaaPn16Jk2a1ObXBg8eXOc0AAAAAAAALE6fsgMA9TN48OC88MILrba3tLTk2WefzaBBgzJkyJAMHjw4ffp4eQB4q+bm5kyfPj3Tpk1rcwWZN7jUEgAAAAAAQONxFBx6kH79+mXYsGGZMmVKm1+fOXNmZs6cmcmTJ6dPnz7p3bt3evWy4BTA/PnzM2/evDQ3Ny/2tsOGDXOpJQAAAAAAgAakJAM9zEorrZQkCy3KvKG5uXmJDgYD8KZhw4b993UWAAAAAACAxmKJCOhhmpqastJKK2XYsGFlRwGolDcKMk1NTWVHAQAAAAAAoA1KMtADKcoA1JaCDAAAAAAAQONzuSXooZqamrLyyitnueWWy7Rp0zJ9+vTMmjWr7FgA3cbAgQMzePDgDBkyJH379i07DgAAAAAAAIuhJAM9XN++fbPccstlueWWy9y5czNt2rTMnj078+fPz7x589LS0lJ2RIDSNTU1pXfv3unVq1f69++vGAMAAAAAANANKckA//VGYQYAAAAAAAAAqqZX2QEAAAAAAAAAAKCrKckAAAAAAAAAAFB5SjIAAAAAAAAAAFSekgwAAAAAAAAAAJWnJAMAAAAAAAAAQOUpyQAAAAAAAAAAUHlKMgAAAAAAAAAAVJ6SDAAAAAAAAAAAlackAwAAAAAAAABA5SnJAAAAAAAAAABQeUoyAAAAAAAAAABUnpIMAAAAAAAAAACVpyQDAAAAAAAAAEDlKckAAAAAAAAAAFB5SjIAAAAAAAAAAFSekgwAAAAAAAAAAJWnJAMAAAAAAAAAQOUpyQAAAAAAAAAAUHlKMgAAAAAAAAAAVJ6SDAAAAAAAAAAAlackAwAAAAAAAABA5SnJAAAAAAAAAABQeUoyAAAAAAAAAABUnpIMAAAAAAAAAACVpyQDAAAAAAAAAEDlKckAAAAAAAAAAFB5SjIAAAAAAAAAAFSekgwAAAAAAAAAAJWnJAMAAAAAAAAAQOUpyQAAAAAAAAAAUHlKMgAAAAAAAAAAVJ6SDAAAAAAAAAAAlackAwAAAAAAAABA5SnJAAAAAAAAAABQeUoyAAAAAAAAAABUnpIMAAAAAAAAAACVpyQDAAAAAAAAAEDlKckAAAAAAAAAAFB5SjIAAAAAAAAAAFSekgwAAAAAAAAAAJWnJAMAAAAAAAAAQOUpyQAAAAAAAAAAUHlKMgAAAAAAAAAAVJ6SDAAAAAAAAAAAlackAwAAAAAAAABA5SnJAAAAAAAAAABQeUoyAAAAAAAAAABUnpIMAAAAAAAAAACVpyQDAAAAAAAAAEDlKckAAAAAAAAAAFB5SjIAAAAAAAAAAFSekgwAAAAAAAAAAJXXp+wAAD3SrFnJzJlJS0syYECy1FJJU1PZqWqjpSWZMSN5/fXiMQ0alAwcWHYqllRzc/Laa8mcOUn//snSSye9e5edqtrmzi1+ZzznAAC81ezZxXvFefOKz45LL12dz44AAABQAiUZgK7W3JzccksyenRyzz3J2LHJ5MkL3maZZZJNN0023zzZcsvk/e8vdn52B6+9ltxwQ3L33cVjGzcumTZtwdusvHLx2EaMSLbeOtl556SPP0EN4eGHk7/8pfjejR2bPPJIMn/+m1/v0yfZcMPiezdiRLL77snb3lZe3ioYPz656abi+b7nnuTRR4ty2Rv69Ek22qh4vjffvHjO11qrtLgAANTJ/PnJnXcmf/vbm+/Pn356wdsMGlR8dhwxItlii+QDH0iWXbacvAAAANANNbW0/O9RGaBexowZk6233nqBbaNHj87IkSNLSkTNTZ6cnHNOcvbZyaRJ7bvv4MHJgQcmRx6ZvPOdXZOvsx58MDnzzOSii5Lp09t33+HDkyOOSA49tCjQUF9z5iRXXJGccUby97+3//677ZYcdVSyxx5WPFlSs2cnf/pT8ZyPHt2++zY1FcW5z32ueO495wAA1TJlSnLhhcXnq3//u333HTAg+cQnivfnW2zRNfkAAABgCXSX49+9yg4AUDmzZiVf/nKyxhrJt77V/oJMUpROfvWrYgWPj340ef752ufsqOefTz7ykWKli9NPb39BJkmefTb55jeL5+grXymeM+rjyiuLlWD2269jBZkkufHGZK+9kne8I7n55trmq5qWluQPf0jWXjv51KfaX5B5Y4zrry9KSRttVJxZDABA99fcnPzwh8VJBMce2/6CTFJc5vaCC4oVSXfZJXn88ZrHBAAAgCpRkgGopdGjk3e/O/nJT5K5c2sz5uWXF2WZ3/52wUuy1FtLS3LxxcXKNldcUZsx585NTjmlWC58zJjajEnbXnqpKMZ8+MMdK2615fHHk/e+t1jxqCNlqap74YXkYx8rzuytVdHtkUeSHXZIvvCFZMaM2owJAED9PfhgMnJk8vWvJzNn1mbMW25JNtkk+eUvF7yEKgAAAPBfSjIAtXLKKcm223bs7L/FmTKlWIXigAOKS+XU25w5yac/Xcw/dWrtx3/00WSbbZKf/rT2Y5OMHZtsvHFy6aVdM/5ZZxXlsK742e+u7rqrWPXl8su7ZvxTT0022yx58smuGR8AgK5zySXFe7l77qn92LNmJV/8YrL77orsAAAA0AYlGYDOamkpzv77yle6fqWXSy5J9tknmT27a+f5X6+/Xlxa57e/7dp5WlqS449PvvGNclfMqZo77kh22imZPLlr53nyyWS77ZIHHujaebqDW28tVth58cWuneff/y6KeQ8/3LXzAABQO2ecUZyA0NUnP/z1r8Xll7riJAcAAADoxpRkADrrxBOL68jXy/XXF5fNaW7u+rmam4tLxYwa1fVzveGkk+r7fFbZuHHJHnvU7wzSF15I3ve+4jJMPdXddyd77lm/SyE9/3zxnE+cWJ/5AADouAsuSD73ufrN989/Fp8HXKYTAAAA/ktJBqAz/vzn5JvfrP+8V16ZfO97XT/Pd7+bXH1118/zVt/4RnLddfWft0qmTi1WAJo2rb7z/uc/yd5713e1o0bx8svFY6/3QYhJk4oVpubOre+8AAAsubFjk8MOq/+8o0cnn/98/ecFAACABqUkA9BRr7ySHH54efOfdFKxUkhXueeecld0OfzwZMqU8ubv7o47Lnn22XLmfvDBomDV0xx9dNdf1mph7rvPCkwAAI1q9uzkwAPrsxpoWy64wEkIAAAA8P8pyQB01LHHlndAPEnmzUsOOqhrrmU/e3Zy8MHFHGV57rniOab9brghOf/8cjOcfHKxvHtPceWVye9/X26G738/+de/ys0AAEBr3/9+USQv0+GHF6tNAgAAQA+nJAPQEf/8Z3LRRWWnSB54IDnnnNqPe845yfjxtR+3vS68sFjRhiU3f37yhS+UnaLI0VNKTs3NjfFYm5uTL32p7BQAAPyvZ54pCuRle+655Ec/KjsFAAAAlE5JBqAjfvWrshO86Ve/SlpaajdeS0ty2mm1G6+zTj+97ATdy1/+kjz2WNkpCnfemdx7b9kput611yZPPVV2isLNNycPP1x2CgAA3nD22eVdZumtzjknmTWr7BQAAABQKiUZgPZ66aXkD38oO8WbHnkkue222o13yy3Jv/9du/E669JLk5dfLjtF93HGGWUnWNCZZ5adoOt5zgEAaMucOV2z8mdHvfJKctllZacAAACAUinJALTXxRcns2eXnWJBv/51Y45VC6+/XjznLN6kScWqJo3kt79NXnut7BRdZ8KE5K9/LTvFgi68sPi9AQCgXNdck7zwQtkpFnT22WUnAAAAgFIpyQC01803l52gtVtuqc0ll1pairEaTSNmakS33VbbS2/VwsyZyT/+UXaKrnPrrWUnaG3atGTs2LJTAADQiJ9j7rormTGj7BQAAABQGiUZgPZqxIPPL7xQrCLSWc88U1xOqtGMG1d2gu6hEX82k8bNVQuN+tgaNRcAQE/SiO/J5s9P/vWvslMAAABAaZRkANrjueeSyZPLTtG2WuyAbcSduElRAPrPf8pO0fga9fvXqLlqoVEfW6PmAgDoKebObdwyiveKAAAA9GBKMgDt8dBDZSdYuAcf7PwYVX98Vdeo378qf+8a9Tlv1FwAAD3FhAnJ7Nllp2ib94oAAAD0YEoyAO3x2mtlJ1i4WmSbPr3zY3SVRn7uG0WjPkeNmquzWloa93emqs85AEB30ajvExPvFQEAAOjRlGQA2mPu3LITLFwtsjXy45szp+wEja9Rv3+Nmquz5s0rO8HC+X0BAChXI78H9l4RAACAHkxJBqA9+vcvO8HCDRjQ+TGq/viqrlG/f1X93vXpk/TuXXaKtlX1OQcA6C4a+f1YI2cDAACALqYkA9Aeyy1XdoKFW3bZzo+x/PKdH6OrNPJz3yga9Tmqxc9mo/KcAwDQlkZ9n5h4rwgAAECPpiQD0B6bbJI0NZWdom2bbtr5Md797s6P0RWampKNNy47ReNr1O9fLX42G5XnHACAtgwf3rhlFO8VAQAA6MGUZADaY/DgZL31yk7Rtlrs6Nxss86P0RXe8Y5k6aXLTtH4RowoO0HbGjVXLTTqY2vUXAAAPUVTU+O+J2vUXAAAAFAHSjIA7bX55mUnaG299ZJllun8OEOHJuuu2/lxaq0Rn/NG1KjPU6PmqoVGfWyNmgsAoCdpxPdkSy1VnIQAAAAAPZSSDEB7fehDZSdobc89G3OsWmnE57wR7bhjsdpRIxk+PHnXu8pO0XV22SUZOLDsFAt629uSd76z7BQAADTiZ6s99kh69y47BQAAAJRGSQagvfbeO1lppbJTLOizn23MsWph5ZWTvfYqO0X3sNRSyQEHlJ1iQZ/9bLV3wi+zTPLJT5adYkFHHlks7w8AQLm22ip597vLTrGgI48sOwEAAACUSkkGoL369UsOO6zsFG/abbfaXiJpvfWS972vduN11uGHJ337lp2i+2iknd59+yaf+UzZKbpeIz3n/fsnBx9cdgoAAJKiuHzUUWWneNMGGyQ77FB2CgAAACiVkgxARxx5ZONcYuW442o/5pe+VPsxO2LQoOSII8pO0b1suGGy++5lpyh88pPFSkBVt9lmyU47lZ2icNBByXLLlZ0CAIA37L9/46xEetxxVhwEAACgx1OSAeiIVVdNTjqp7BTJfvslu+5a+3F32y3Zd9/aj9teP/xh8VzTPqefXhSMyrT88smPf1xuhno644xiFZcyrbJK8TsDAEDjWGqp4v152bbbLjnkkLJTAAAAQOmUZAA66uijk222KW/+FVdMTj2168b/1a+SFVbouvEXZ7vtks9/vrz5u7O3vS05+eRyM5xxRrk/P/X2jnckP/hBuRnOPjsZNqzcDAAAtPaRj5R7EsLAgcl55yW97AYEAAAAn44BOqp37+T885PBg8uZ/5xzitU6usryyxdzlGHIEDtxO+uoo5L3vrecufffP/nYx8qZu0zHHluUu8pw8MHJnnuWMzcAAIt32mnlrZL5058m665bztwAAADQYBx9BOiMt789ueaa+l9m5dRTkw99qOvn2Wuv5Be/6Pp5/teAAcmf/2wnbmf16pVcdlny7nfXd96ddkp+85v6ztkoevdOrroq2Wij+s67227JWWfVd04AANpnhRWSG2+s/8p/X/5y8tnP1ndOAAAAaGBKMgCdteOORalj0KD6zPfznxeXeqqXL3yhOPOwHpZaqngut9++PvNV3dChyV//mmy2WX3m22WXojQ2YEB95mtEyy6b3HRTsskm9Zlv992TK65I+vWrz3wAAHTcRhslN9/ctSuC/q/jjisuw9rUVJ/5AAAAoBtQkgGohfe9L7nllmTNNbtujqWXTi65JPniF7tujoU57rhi7qWX7ro51lyzeA7LukRQVS2/fHLrrcWqQF3poIOSa6/t2p+R7mKllZLbbks+8IGunefww5Orr65fQQ8AgM7bdNPkjju6dvXBfv2Sn/0s+clPFGQAAADgLZRkAGrlPe9JHniga5ayfu97k/Hjk09+svZjL6lPfrJ4fLvsUvuxjzyyGHvLLWs/NsmQIcmVVyYXX1z75d1XWaVYPeb883v2CjJvNWxYURo677zi+a+l4cOTG25Izj7bCjIAAN3R+usn99yTfOMbxSU7a2nzzZOxY5Njj1WQAQAAgDYoyQDU0uDByZlnFktov+c9nR/vbW9LfvOb5C9/6dpVapbUWmsVl+8599wiW2dttVWxeswZZxTPHV2nqSn51KeSBx8sVn3pbLli0KDk858vxttzz5pErJympuTgg4vn6FOfSvr27dx4Sy9drCQ1fnxxmSUAALqv/v2TH/wgufvuYmXSzlpllWLlmDFjunaVGgAAAOjmlGQAusLOOyd33VWcHfiZz7Tvcii9eycf/GCxUsRjjyWHHNJYZwA2NRWP6bHHkuuvT/bYI+nVjj8ngwYlhx5anN04Zkyy005dl5XWVlmlWPXl2WeTH/0oWXvt9t1/gw2SU09NnnsuOe202q9MU0XDhxer+DzzTHLiie0vvG20UXL66cmkScnPf54ss0zX5AQAoP5GjChOinjkkaIQPXRo++6/447JZZclTz2VfOlLSZ8+XRASAAAAqqOppaWlpewQ0BONGTMmW2+99QLbRo8enZEjR5aUiC71+uvJ/fcXxZCxY5Mnn0xmzkzmz08GDkxWWy3ZbLNiaexNN+1+B8FffTUZN654bOPGFQfzZ80qyjODBhWrzowYUTy+TTYpzpqkMbS0JE888ebP5gMPJNOmJXPmFN+noUOL79nmmxffwzXWaKzSVnfU0pI8/njxfN9zT7EyzPTpbz7nw4Yl73pX8Xy/8ZwDANAzzJ1brET4xvvzf/87mTEjaW4uPjuutFLxmfGN9+fLLVd2YgAAAEjSfY5/K8lASbrLiwQAAAAAAAAALEp3Of7tcksAAAAAAAAAAFSekgwAAAAAAAAAAJWnJAMAAAAAAAAAQOUpyQAAAAAAAAAAUHlKMgAAAAAAAAAAVJ6SDAAAAAAAAAAAlackAwAAAAAAAABA5SnJAAAAAAAAAABQeUoyAAAAAAAAAABUnpIMAAAAAAAAAACVpyQDAAAAAAAAAEDlKckAAAAAAAAAAFB5SjIAAAAAAAAAAFSekgwAAAAAAAAAAJWnJAMAAAAAAAAAQOUpyQAAAAAAAAAAUHlKMgAAAAAAAAAAVJ6SDAAAAAAAAAAAlackAwAAAAAAAABA5SnJAAAAAAAAAABQeUoyAAAAAAAAAABUnpIMAAAAAAAAAACVpyQDAAAAAAAAAEDlKckAAAAAAAAAAFB5SjIAAAAAAAAAAFSekgwAAAAAAAAAAJWnJAMAAAAAAAAAQOUpyQAAAAAAAAAAUHlKMgAAAAAAAAAAVJ6SDAAAAAAAAAAAlackAwAAAAAAAABA5SnJAAAAAAAAAABQeUoyAAAAAAAAAABUnpIMAAAAAAAAAACVpyQDAAAAAAAAAEDlKckAAAAAAAAAAFB5SjIAAAAAAAAAAFSekgwAAAAAAAAAAJWnJAMAAAAAAAAAQOUpyQAAAAAAAAAAUHlKMgAAAAAAAAAAVJ6SDAAAAAAAAAAAlackAwAAAAAAAABA5SnJAAAAAAAAAABQeUoyAAAAAAAAAABUnpIMAAAAAAAAAACVpyQDAAAAAAAAAEDlKckAAAAAAAAAAFB5SjIAAAAAAAAAAFSekgwAAAAAAAAAAJWnJAMAAAAAAAAAQOUpyQAAAAAAAAAAUHlKMgAAAAAAAAAAVJ6SDAAAAAAAAAAAlackAwAAAAAAAABA5SnJAAAAAAAAAABQeUoyAAAAAAAAAABUnpIMAAAAAAAAAACVpyQDAAAAAAAAAEDlKckAAAAAAAAAAFB5SjIAAAAAAAAAAFSekgwAAAAAAAAAAJWnJAMAAAAAAAAAQOUpyQAAAAAAAAAAUHlKMgAAAAAAAAAAVJ6SDAAAAAAAAAAAlackAwAAAAAAAABA5SnJAAAAAAAAAABQeUoyAAAAAAAAAABUnpIMAAAAAAAAAACVpyQDAAAAAAAAAEDlKckAAAAAAAAAAFB5SjIAAAAAAAAAAFSekgwAAAAAAAAAAJWnJAMAAAAAAAAAQOUpyQAAAAAAAAAAUHlKMgAAAAAAAAAAVJ6SDAAAAAAAAAAAlackAwAAAAAAAABA5SnJAAAAAAAAAABQeUoyAAAAAAAAAABUnpIMAAAAAAAAAACVpyQDAAAAAAAAAEDlKckAAAAAAAAAAFB5SjIAAAAAAAAAAFSekgwAAAAAAAAAAJWnJAMAAAAAAAAAQOUpyQAAAAAAAAAAUHlKMgAAAAAAAAAAVJ6SDAAAAAAAAAAAlackAwAAAAAAAABA5SnJAAAAAAAAAABQeUoyAAAAAAAAAABUnpIMAAAAAAAAAACVpyQDAAAAAAAAAEDlKckAAAAAAAAAAFB5SjIAAAAAAAAAAFSekgwAAAAAAAAAAJWnJAMAAAAAAAAAQOUpyQAAAAAAAAAAUHlKMgAAAAAAAAAAVJ6SDAAAAAAAAAAAlackAwAAAAAAAABA5SnJAAAAAAAAAABQeUoyAAAAAAAAAABUnpIMAAAAAAAAAACVpyQDAAAAAAAAAEDlKckAAAAAAAAAAFB5SjIAAAAAAAAAAFRen7IDANTc7NnJ/fcnY8cm48Ylzz6bzJqVNDUlgwYla6+djBhR/Ntgg6SPl0J6uOeeK35fxo5Nxo9PXn01mTMn6d8/GTYs2WSTN39nVlih7LQAANBwXnml+Pg5dmzyr38lL79cfDTt2zcZPDh55zvffEu9+urFx1NYmJaWYlfGPfcUP1MPPZRMn57MnVt8TFt22eRd70o23zzZbLPi/wG6rcmTixe7e+5ZcL9Uv37J0KHJxhu/+Ud0pZUWPk5zc/Lww2/u45owIZk5s3hRHTgwGT68eNEcMaLY19W/f90eIgDQWBwZpiHNnz8/Dz/8cB555JFMmjQpr732WpqamrL00ktnxRVXzDrrrJP1118/gwcPLjsqjaKlJRk9OjnjjOSKK5LXX1+y+w0dmnzqU8mRRxZ7LaGnePXV5OKLk7PPLnZALMof//jmf2+xRfLZzyaf+ERROgMAgB5q9uzk8suTM89M7rhj0be98so3//vtb08OPzw5+OBkueW6NiPdy8svJ+efn/z618ljjy36tpde+uZ/b7ttsVvjIx9xzBfoJqZPTy65JDnrrOJkx0W57LI3/3uzzYr9Uvvvnyy1VLHtwQeLP8aXXFLs71oSAwYUL5pHHZWMHKm9CgA9TFNLS0tL2SEox5NPPpmxY8cu8G/KlCmtbnfrrbdmxx137PI8LS0tuemmm3L++efnxhtvzCuvvLLI2/fq1SsbbLBBtt1223zgAx/ILrvskqXeeGPcDYwZMyZbb731AttGjx6dkSNHlpSom2ppKUox3/ve4j9QLc6OOyY/+EGyzTY1iQYN6eWXk29/O7nggmTGjI6PM3RocsQRyTe+UZwaCwAAPcTrryennJKcdlry4osdH6d//+IY3w9+kKy6au3y0f0891zyzW8mv/1tUb7qqBVWSD7/+eQrXymO/wI0nClTku9+N/nNb5LXXuv4OEOGJO9/fzJp0uKbqovzrncl3/pW8uEPd24cAKDbHP9WkukhJkyYkHvuuWexhZi21KMkc/vtt+dLX/pSxo4d2+Exvv3tb+c73/lO7UJ1se7yItHQ/vOfou1/xRW1G7OpKTnmmOSkk6ySQfVceWVxts0LL9RuzLXWKnZs7Lxz7cYEAIAGdffdxQowDz9cuzGHDk1++cvk0592IntP09JSLHxwzDHJ1Km1G/cd7yjOi3jPe2o3JkCnXXttsZTa88+XnaRtH/1ocvrpyYorlp0EALqt7nL8u1fZAaiPTTfdNB//+Mdz8skn56abblrigkxXa25uznHHHZeddtqpUwUZeqA//znZcMPaFmSSYg/VL39ZXJfWzyRVMWNGcVmxD3+4tgWZJJk4Mdlll+Too5O5c2s7NgAANIj585MTTki23rq2BZmkKEcceGCy117FCfb0DFOnJnvvnRxwQG0LMknyyCPFz+o3vlH87AKUatasomG6556NW5BJkj/9qdjffN11ZScBALpYn7ID0HPNmDEjH/3oRzNq1KiF3mappZbKyiuvnJVWWin9+vXLlClTMmnSpLz00kt1TErDOf/85NBDu3ZPzxNPFJdfuuaaZKedum4e6GpTpyZ77JGMHt218/zqV8mECcV1ogcO7Nq5AACgjubOLY7t/fa3XTvPn/+c7LBD8pe/JCuv3LVzUa7//CfZddfOXzV6UebPLxbJnTixWFWmb9+umwtgoaZNSz70oeT228tOsmReeqnI+5vfJAcdVHYaAKCLKMlQiubm5oUWZJZaaqkcdthh2XvvvbPtttumd+/erW7z7LPP5u677861116b6667Li925iLgdC8XXZQcckh95nrttaJc8Je/JNtuW585oZZeey3ZffdiTfh6uO665CMfSa66KunXrz5zAgBAF5o3r1jl5fe/r898DzxQLNT4t78lyy1Xnzmpr5dfLr7HDz5Yn/l+97uiMHPJJUkbu9gAus7MmcW+1TvuKDtJ+8yfX7Rj+/QpVmYGACpHSaYHW2ONNTJixIhsvvnmGTFiRJZffvlsvvnmdZn7uOOOa7Mg89GPfjQ///nPM3z48EXef/jw4Rk+fHg+8pGPZM6cObn88svT1ykx1XfLLfUryLxh1qzkgx8sLr20zjr1nRs6o6Ul2W+/+hVk3nDDDcmRRxZn3AAAQDf3jW/UryDzhoceevOk+z723FVKc3NxWa16FWTecOmlyeqrJz/+cX3nBXqwlpbk05/ufgWZ/3XQQcnw4cVq4wBApfio3UOsscYaWXfddTNixIj/FmOWX375BW4zceLEumS5/vrrc9ppp7Xa/sUvfjE///nP2z1ev379st9++9UiGo1s2rSiwT9vXv3nfvXVYu7bbkt69ar//NARv/lNcu215cx93nnJ3nsX15oGAIBu6s47yysVjB6dnHJK8n//V878dI2f/rT4uSrDT35SfETbbrty5gd6mEsuSa64ouwUnTNvXlGUeeCBZPDgstMAADWkJNND3N+VFzluh9dffz2f//znW20/4IADOlSQoQf58peTp58ub/6//z351a+SY44pLwMsqaefTo47rtwMhx9enB657LLl5gAAgA6YObM4V6KlpbwM3/lOsaLMhhuWl4Haeeih5FvfKm/+lpZicd5//SsZNKi8HEAP8Nxz1dmH+tRTyVe/mpxxRtlJAIAasiQCdXXmmWdmwoQJC2xbYYUVFGRYtDvvTH7967JTJF/7WjJpUtkpYPGOPjqZPr3cDJMnO+0VAIBu66STksceKzfDnDlF97zMog610dJSfC/nzCk3x+OPJz/4QbkZgB7gi19Mpk4tO0XtnHlmscQbAFAZSjLUTXNzc5tlmO9973tZ1koDLMpPflJ2gsKsWcWHImhkjz6aXHNN2SkKF1yQvPhi2SkAAKBdZs5MTj+97BSF0aOTu+4qOwWddffd5V1m6a3OOCOZMaPsFEBlTZiQ/OlPZaeovZ/9rOwEAEANKclQNzfccEOeeeaZBbYNGDAg+++/f0mJ6BaeeaZxDvgnyTnnlH/qFyzKWWeVneBNc+Yk551XdgoAAGiX3/++sU6Ad4WH7q+Rvoevvlr8jAN0ibPPruYSaFddZYVxAKgQJRnq5tJLL221bc8998yQIUNKSEO3cc45yfz5Zad40wsvJFdcUXYKaNvMmcn555edYkFnndVYv8MAALAYjbaA6B//aIHG7uzll5M//KHsFAtqpNIOUCGzZye/+U3ZKbrGvHnFfmoAoBKUZKiLlpaW3Hjjja2277rrriWkoVu5+uqyE7TWiJkgSf72t+K0wEYycWJy//1lpwAAgCXy7LPJ2LFlp1jQnDnJqFFlp6Cjbryx8Rakvffe5Omny04BVM7o0clLL5WdoutcdVXZCQCAGlGSoS4eeOCBvPzyy622b7LJJgu9z7PPPpv77rsv999/f55//vnMnTu3KyPSiGbOTMaPLztFa/fcU3YCaNs//1l2grb5nQEAoJto1LeujZqLxfMxDegxGvUFr1bGj09mzSo7BQBQA0oy1MW4ceNabevVq1c22mij//7//Pnzc+WVV+bDH/5wlllmmay++urZdNNN8653vSurrrpq+vXrl4033jjHHntsbr311nrGpyz/+ldjXqbl8ccbb7UOSBrvlNc3NGouAAB4i0Z969qouVi8Rv3etbGrDqBzGvUFr1bmzUseeKDsFABADfQpOwA9w4MPPthq24orrphBgwYlSe64444ceeSRGb+YVUPGjx+f8ePH5xe/+EW22WabnHjiidlhhx26JPPijBkzplP3f8Ab6sW7776yEyzcffclJf3swUI16u/MvfeWnQAAAJZIo76lvu++pKUlaWoqOwnt0dLSuD9TPqYBNdeoL3i1dO+9yZZblp0CAOgkJRnq4uk2LnQ8ePDgJMlpp52WY489NvPmzWvXmHfeeWd22mmnfP/73883vvGNmuRsj6233rruc/Y4L75YdoKFq/L1dem+GvV3xu8LAADdxAsvlJ2gbTNmJK+/ngwcWHYS2mP27GT69LJTtK1RPz4C3VhPeGHpCY8RAHoAl1uiLp5//vlW2wYPHpwzzjgjxxxzTLsLMm9oaWnJCSeckM985jOdjUgjmj277AQL9/rrZSeA1hr1d8bvCwAA3USjvqVOvK3ujvw8AT1KI7/o1YoXTwCoBCUZ6mLKlCmttj377LP5whe+sMC2QYMG5eijj85NN92USZMmZfbs2XnhhRcyZsyYfPOb38yKK67Y5vjnnXdeTjvttC7JTon6NPBiV337lp0AWmvU3xm/LwAAdBON+pY68ba6O/LzBPQojfyiVytePAGgEpRkqIvZbbTIX3jhhTQ3N//3/7fffvs88sgjOfXUU7PLLrtk1VVXTb9+/bLCCitkq622yve+9738+9//zqc//ek25/jSl76U8ePHd9ljoARLL112goVr5Gz0XI36c7nUUmUnAACAJfL/rwzdcJqaXGqpOxo4MOnVoHtfG/XjI9CN9YQXlp7wGAGgB+gB1V4awf+WYdqy00475frrr8+AAQMWebtlllkmF154YQYMGJBzzjlnga/NnTs3J510Un73u991Ou+SGD16dKfu/8ADD+SII46oUZqK2mCDshMs3DveUXYCaG2DDZI77ig7RWuN/LsMAAD/Y4MNkttuKztFa+utl/TuXXYK2qtXr2L3wUMPlZ2kNR/TgJrbYIPkuefKTtG1vHgCQCUoyVAXfRexDOGwYcNy8cUXL7Yg84ampqaceuqpufPOO/PQW/Yy/PGPf8yJJ56Ytddeu1N5l8TIkSO7fI4eb8SIshO0bdiwpA4/Y9BuI0Y0Zklm883LTgAAAEukUT+GekvdfY0Y0ZglmUb9WQe6sREjkptvLjtF1/LiCQCV0KALflI1/fr1W+jXPve5z2W11VZr13gDBgzIt7/97Vbb582blz//+c/tzkeDWmWV4l+jGTGiWOsaGk2jflBv1FwAAPAWjfrWtVFzsXiN+r1r1FxAN1b1F5bVVktWWqnsFABADSjJUBdDhw5d6NcOPfTQDo354Q9/OMsvv3yr7bfffnuHxqNB7bhj2Qlaa8RMkCQ77FB2gtYGDEje856yUwAAwBLZaKNkueXKTtGaj6HdVyN+75ZdNtl447JTAJWz/fbFdeaqqhFf0AGADqnwOxYaSVtlliRZc801s+aaa3ZozD59+rR5yaO77rqrQ+PRoA47rOwEC+rdOznooLJTQNvWWCPZffeyUyzoE59IBg8uOwUAACyRPn2Sgw8uO8WCNt882XTTslPQUe96V7LFFmWnWNDBByeLuDI6QMesvHKy555lp+g6hx9edgIAoEaUZKiLhV1O6d3vfnenxm3r/i+++GKnxqTB7Lhj8o53lJ3iTXvvXSytCY3qqKPKTrCgRssDAACL8dnPlp1gQd5Sd3+N9j1stJ9xoEIa7QWvVjbcMNluu7JTAAA1oiRDXbztbW9rc/uyyy7bqXGXa2MN5Llz52batGmdGpcG0tSUfP7zZad4UyNlgbZ84APJ2muXnaKw5ZaNd8okAAAsxjrrFG+rG8FyyyX77lt2Cjpr332ThSyyXHe7756su27ZKYDKeu97k/XWKztF7X3uc8V+agCgEpRkqIsNNtigze2DBg3q1LhLLbVUm9tfe+21To1Lgzn00OLC8GXbe+9khx3KTgGL1rt38vOfl52i2HHws5+VnQIAADrkxz9O+vUrO0Xyox8lndx1QgMYOLD4XpatX7/klFPKTgFUWq9eyS9+UXaK2tpkk+Qznyk7BQBQQ0oy1MXmm2/e5vbOrvjy6quvtrm9syvU0GD6908uuKA4+F+WZZdNzjzTGQN0D3vtley/f7kZjj022WabcjMAAEAHbbhh8p3vlJth110dk6uSQw4pVnEp07e/3RjnIAEV9/73JwcfXHaK2ujdu9gv3QjNWQCgZpRkqIsVVlghb3/721ttf+GFFzo1blv3X2qppTJgwIBOjUsDGjEi+drXypv/V79KVl65vPmhvU49tbyf2fXWS77//XLmBgCAGvnyl8u7euiQIck55zhPo0qampJf/7r43pZh882Tr3ylnLmBHuhnP0uGDy87Red9/evJppuWnQIAqDElGepmt912a7Vt7NixnRrzn//8Z6tta621VqfGpIF95zvJnnvWf97jj0/226/+80JnLLdccuWV9V+bfbnlkquusiY8AADdXp8+yZ/+VP9jfH37Jn/8Y7LGGvWdl663+urJZZcV3+N6Gj68+Fnu06e+8wI92NChxX6pwYPLTtJxe+2VfOtbZacAALqAkgx189GPfrTVtpdeeinjxo3r0HjTpk3L3Xff3Wr7Tjvt1KHx6Ab69Cn2FO66a/3mPPLI4mL00B1ttVVyzTXJwIH1mW/ZZZMbb0w22KA+8wEAQBdbY43kppuSVVetz3x9+ya//33SxnlGVMSuuyaXXlq/oswqqyR//Wuy5pr1mQ/gvzbfPLn22mTppctO0n677Va8WGsXAkAlKclQN9tvv33WWWedVtvPOOOMDo13/vnnZ+bMma2277LLLh0aj25iwIDioP/HPtb1c/3f/yWnn259a7q3XXYp9ogut1zXzjN8eHL77cWl0QAAoELWXz+5447iqqJdaemlk6uvTj7yka6dh/J9+MPFro2uXmDh7W8vfnbf8Y6unQdgobbfPrn55mSFFcpOsuT23bf4gzxgQNlJAIAuoiRD3TQ1NeW4445rtf3CCy/MPffc066xJk+enB/84Aettg8fPjzvf//7O5yRbqJ//+QPf0h+85uuuZj38OHJqFHJSScpyFAN22yTPPBA8qEPdc34BxyQ3H9/stFGXTM+AACUbO21k7Fjk89/vmvG32mn4i21XRo9x+67F9/znXfumvGPOioZNy5529u6ZnyAJbbllsn48Y3fAl1mmeS884ol3fr3LzsNANCFlGSoq8985jOtVpNpbm7Ovvvum6effnqJxpg+fXo+/vGP56WXXmr1ta997Wvp7w1sz9DUlBxySPEBa489ajfmYYcVY1rbmqpZZZXkqquSSy6p3dk7w4cXpz9eeGEybFhtxgQAgAa19NLJaaclt95arNBRC8ssUyxgetNNRRGHnmWttYrv/ZlnFj8LtbDuuskttxQ/V93xCidARa24YnLZZcUljFZaqTZjDhpUuxMc99yz2Cd88MFOmgSAHkBJhrrq379/zjzzzDS95Y3mk08+mW222SY33HDDIu8/bty47Ljjjvn73//e6mvvfve7c+ihh9Y0L93A6qsX17YdN64ouAwa1P4xllsu+cpXkieeSH7969rtmYJG09SUfPKTycSJxUpMm23WsXG22644q+aJJ4qdCAAA0IPsuGPy0ENFB33XXTs2xoYbFiWGp58uVvzoZQ9dj9XUlHz2s8kzzyRnnFH8bHTE+96XXHll8vDDxcpEAA2nqam4lNGECckFFxQrzHTE1lsnv/1t8soryWOPJV/+crLssu0fZ9CgYn/yvfcWJ4ENH96xPABAt9PU0tLSUnYIut7EiROzdheekjRhwoSstdZaS3z7E044ISeeeGKbX9tyyy2z11575Z3vfGeWW265vPrqq3nyySdz3XXX5aabbsr8+fNb3Wf55ZfPPffckzXXXLOjD6HuxowZk6233nqBbaNHj87IkSNLSlQRU6cWH2r+8Y9iLez77ktef33B2wwZUpQDRoxIRo4sVqJxjVl6opaWomD2l78Uvy9jxxYFmrdad91k882L35n3v7/je20BAKCCHnssue66N99SP/JI8Vb7fw0fXrydHjGiuLzO1ls7UZ22tbQkY8YkN9/85s/Us88ueJumpmT99Yufp803L3Zr1Gp1I4C6uvfe5MYb33zBmzCh9W3WWefNP6K7755ssknr28yalVx/ffEC+sZY06cveJsBA5J3v7sYZ8sti8uSDx3aFY8KAHqs7nL8W0mmh2i0kkxLS0uOOOKInHPOOZ2ee8UVV8zVV1+drbbaqtNj1VN3eZHo9pqbk5dfLj4o9epVnCGw7LJO04OFmT49mTYtmTOnuP7yMsskSy1VdioAAOg2Zs0qzt94/fWkX7/ikjcWLKUzXn01ee214mPagAHFMd2BA8tOBdAFXnut2C81e3bn9kvNn1+sNDNzZvHfAwcWq4n36VP7zADAf3WX49/eEVCKpqamnH322VlnnXVywgknpLm5uUPjbLrpprnqqquyxhpr1DghldGnT+2ucws9weDBxT8AAKBDBg5UYKC2lllG0QroIZZeuvjXWb16Jcsv3/lxAIBKspQCpWlqaspXv/rV3Hvvvdljjz3S1I51htdZZ52cf/75+ec//6kgAwAAAAAAAAAslpVkeohVVlklY8aM6dLxO2qjjTbKtddemyeeeCJXXXVVbr/99jz88MOZPHlyZs2alSFDhmT55ZfPaqutlu222y7ve9/7MnLkyPSxNCIAAAAAAAAAsIS0DHqI/v37Z6uttio7xiKts846+dKXvpQvfelLZUcBAAAAAAAAACrG5ZYAAAAAAAAAAKg8JRkAAAAAAAAAACpPSQYAAAAAAAAAgMpTkgEAAAAAAAAAoPKUZAAAAAAAAAAAqDwlGQAAAAAAAAAAKk9JBgAAAAAAAACAylOSAQAAAAAAAACg8pRkAAAAAAAAAACoPCUZAAAAAAAAAAAqT0kGAAAAAAAAAIDKU5IBAAAAAAAAAKDylGQAAAAAAAAAAKg8JRkAAAAAAAAAACpPSQYAAAAAAAAAgMpTkgEAAAAAAAAAoPKUZAAAAAAAAAAAqDwlGQAAAAAAAAAAKk9JBgAAAAAAAACAylOSAQAAAAAAAACg8pRkAAAAAAAAAACoPCUZAAAAAAAAAAAqT0kGAAAAAAAAAIDKU5IBAAAAAAAAAKDylGQAAAAAAAAAAKg8JRkAAAAAAAAAACpPSQYAAAAAAAAAgMpTkgEAAAAAAAAAoPKUZAAAAAAAAAAAqDwlGQAAAAAAAAAAKk9JBgAAAAAAAACAylOSAQAAAAAAAACg8pRkAAAAAAAAAACoPCUZAAAAAAAAAAAqT0kGAAAAAAAAAIDKU5IBAAAAAAAAAKDylGQAAAAAAAAAAKg8JRkAAAAAAAAAACpPSQYAAAAAAAAAgMpTkgEAAAAAAAAAoPKUZAAAAAAAAAAAqDwlGQAAAAAAAAAAKk9JBgAAAAAAAACAylOSAQAAAAAAAACg8pRkAAAAAAAAAACoPCUZAAAAAAAAAAAqT0kGAAAAAAAAAIDKU5IBAAAAAAAAAKDylGQAAAAAAAAAAKg8JRkAAAAAAAAAACpPSQYAAAAAAAAAgMpTkgEAAAAAAAAAoPKUZAAAAAAAAAAAqDwlGQAAAAAAAAAAKk9JBgAAAAAAAACAylOSAQAAAAAAAACg8pRkAAAAAAAAAACoPCUZAAAAAAAAAAAqT0kGAAAAAAAAAIDKU5IBAAAAAAAAAKDylGQAAAAAAAAAAKg8JRkAAAAAAAAAACpPSQYAAAAAAAAAgMpTkgEAAAAAAAAAoPKUZAAAAAAAAAAAqDwlGQAAAAAAAAAAKk9JBgAAAAAAAACAylOSAQAAAAAAAACg8pRkAAAAAAAAAACoPCUZAAAAAAAAAAAqT0kGAAAAAAAAAIDKU5IBAAAAAAAAAKDylGQAAAAAAAAAAKg8JRkAAAAAAAAAACpPSQYAAAAAAAAAgMpTkgEAAAAAAAAAoPKUZAAAAAAAAAAAqDwlGQAAAAAAAAAAKk9JBgAAAAAAAACAylOSAQAAAAAAAACg8pRkAAAAAAAAAACoPCUZAAAAAAAAAAAqT0kGAAAAAAAAAIDKU5IBAAAAAAAAAKDylGQAAAAAAAAAAKg8JRkAAAAAAAAAACpPSQYAAAAAAAAAgMpTkgEAAAAAAAAAoPKUZAAAAAAAAAAAqDwlGQAAAAAAAAAAKk9JBgAAAAAAAACAylOSAQAAAAAAAACg8pRkAAAAAAAAAACoPCUZAAAAAAAAAAAqT0kGAAAAAAAAAIDKU5IBAAAAAAAAAKDylGQAAAAAAAAAAKg8JRkAAAAAAAAAACpPSQYAAAAAAAAAgMpTkgEAAAAAAAAAoPKUZAAAAAAAAAAAqDwlGQAAAAAAAAAAKk9JBgAAAAAAAACAylOSAQAAAAAAAACg8pRkAAAAAAAAAACovD5lBwCAbqGlJXn66eS++5KXXkpmz0769EmWXjp55zuTDTdM+vYtOyUAVNqMGcWf4ieeSGbOLP48DxiQrLZastlmyfLLl50QoLqam5NHHknGj0+mT0/mzEn690+WXTZ517uSt70taWoqOyWwKDNnFu+lHn88mTUrmTdvwfdSK6xQdsJOevnlZNy45Nlnk9dfL16UBg4sXqA23bTYh0PxAj5+fPLww8Ub7Obm4gV9hRWK52n4cC/o0FO0tCQTJiT/+lfxGjp7dtKvXzJ4cLG/e4MNin3g1E5LS/Lkk8Vz/sorCz7nG22UvOMd3fs5nzs3eeih4t/06cX/DxiQLLdc8aFhrbXq/zdm/vxiR9L99ydTprz5nA8Zkmy8cbL++knv3vXNROm68W8ZAHSxadOS3/42ufrq5J57ig8KC9O/f7LJJslOOyWf+Uyy3nr1ywkAFdXSkowZk1xwQXLnncXB2fnzF377NdZIttwy2XffZK+99FcBOuupp5Lf/Ca56abiwPqsWQu/7dChyYgRyR57JAceWJRngHK1tCR33fXme6mHH170e6nVV3/zvdTee3eD91LNzcm11yaXXprcfXcyceLCb9vUVBwE23rr4kVqu+16VhHk4YeLF/TbbkseeKAoyizMCiskm29e/BDsv79yEVTNlCnJRRcVr59jxxb/vzADBxbFhl12KfZ5r712/XJWycsvJxdemFx/ffGcT5268NsOHJi8+93J+95XPOdrrFGvlB335JPJuecmt9xSlH9ef33ht1122eJDw557Jp/+dPEhoiu89FLxBuiN53zatIXfdqmliud8112TQw4pyqJUXlNLS0tL2SGgJxozZky23nrrBbaNHj06I0eOLCkR8F+PPpqcemrxYeG11zo2xvvel3z+88WbvZ600wUAamD27GL/0RlnFPtXOmLVVZPDD0+OOqoCZ0UD1FFLS7F/+9RTi2MnizqgvjADBiT77Zd84QvFcRWgvmbPTi6+ODn99KLg1hGrrJIcdljyuc8lK65Y03id98oryZlnJmefnTzzTMfG2HDD4o3iwQcXBySraP784sSv005Lbr21Y2MMGVKUio45Jll33drmA+rrgQeSX/4y+d3vFt18XpimpqINffTRxb5v+7wX7777iuf80ksXXRxZmF69iuMLRx+d7LxzYz3nLS3JqFHF35hRo4r/b69Bg5JPfar40PDOd9Ym19ixxXP+xz8Wb4jaq3fv4qyrY45JdtihNpl6mO5y/FtJBkrSXV4koEeZMyc58cTkpJOKs5Fq4b3vLVrUa65Zm/EAoOLuuqs4VvHII7UZb+jQ4kDvpz7VWPuTABrRf/6THHlkcuWVtRmvqanY533iicU+cKDr/eMfxXuphx6qzXjLLJP84hdFT6L091ItLcVBr899btGr/bbHOusk559frCxTJU88UaxAcPvttRmvb9/k299OvvKVbrDEELCAWbOSb30r+dnPOtZ+bsuHPpScdVbRqKS1mTOTr3+92BlRq8PwH/5wcSbRSivVZrzOmDSpOCvp+utrM16vXsXfl29/u2jbd8RrryVf/WrxHNXKJz5RlIBc27tdusvx715lBwCAhnDffckWWyTf+17tCjJJsS75xhsn55xTuzfEAFBBs2cX+0S22aZ2BZmkWMX4gAOKfXiTJ9duXICqufTS4gTOWhVkkuIj0C9+UaxePnp07cYFWpszJ/m//0tGjqxdQSZJXn21KN188IPJc8/Vbtx2e/HF5KMfLQ5Y1aogkxRlkh12SL74xY6trNBoWlqSX/2quCR4rQoySTJ3bnLCCclWWyUPPli7cYGuddddyaabJj/5Se0KMklyzTXFily//W3txqyKO+4oXoN/+cvaHg+44oriOf/jH2s3Znu1tBTL/m64Ye0KMknxs/mjHxWXYbrnnvbf/7bbimMwtSzIJMUHpA03rO0HJBqGkgwAXHddsRfp/vu7Zvzp04tm9ZFHJvPmdc0cANCNTZtWXPr5lFNqu9/uf117bbL55snDD3fN+ADdVUtL8o1vFJdHeuWVrpnjsceS7bd3HAW6yvTpye67F8eXuuq91PXXF++lSulHPP54cWLTFVd0zfgtLcXBzJ137roXwnpobi4aTUcfXaxi0BXGjUu23LI4KQxobH/4Q7FK1qOPds34U6YUS7Z+5StODn3DxRcnO+5YFDC7wssvJ/vuW6wMVO/nfP785LjjkoMOKhq0XeGhh4ozpy6/fMnv85vfJLvskkyc2DWZXnihWMXnBz/wc14xSjIA9GxXX53svXfHrgnaXmefXSx121V7rACgG5o2rbg64d/+1vVzTZpUHKSt5dnVAN1ZS0ty/PHFFWe72rx5yac/XVzVBKid6dOT970vufXWrp/r+eeL91Ljx3f9XP/12GPFQd6nnur6ue66qyjKTJnS9XPV2rx5xcHqCy/s+rlmzkz22CMZNarr5wI65pJLigZ0LVdMX5hTTimur9nTCwS/+U2xjG09TpL9/vfrW05qaUmOOqpYIrKrzZmTfPzjRclrcc48Mzn00Pocb/nmN4tyEpWhJANAz3X77cUbrnp8WHjDhRcmX/pS/eYDgAY2Z06y117JP/9Zvzlfeqk4kPTMM/WbE6BR/fCHyc9+Vr/5WlqK/dhXX12/OaHK5s5N9tknufvu+s35yivFe6l6dFYyeXLRpq7nNTP/9a+iAFKPk6lq6XOfW7IDirUyZ05xZv1dd9VvTmDJXHddsdpHPUsrp52WfO979Zuv0Vx5ZXLYYfWd8yc/SU4+uT5znXBCcQJwvcyfXxQ///KXhd/mD38oijv19IMfJD//eX3npMsoyQDQM02Zkuy/f/Ghvt5+8Yvkz3+u/7wA0GB+8IPi0tH19txzyYEHWtwN6NnuvLPY311v8+cXx22ee67+c0PV/PCHyc0313/eyZOLk+W79L1US0tyyCHJ00934SQLMWZM9zpb/I9/rO/ByzfMmlWsVPHaa/WfG2jbGy/Q9VjN5K2+8536LBHbaCZNKi51V8ZKOt/4RteXFW+6qT7LTr5Vc3OxDOVLL7X+2sSJRfO+DF/+cjJ2bDlzU1NKMgD0TMcdV+5e2SOO6J7L9wJAjYwbV85+ljfcemty1lnlzQ9QplmzytuXnyRTpyaHH25VfuiMf/2ruNpCWf72t+T007twggsvTG64oQsnWIyf/rR7rJLywgvFKjJlmTixuOQHUL6WluTII4slv8py8MHJjBnlzV9vLS3Fm9pXXy1n/jfa57Nmdc3406cnn/lM14y9JF54Ifn85xfc1tJSZCqroDlvXvGcz55dzvzUjJIMAD3PqFHJBReUm+H554uiDgD0QM3Nxb6zMk5u+19f+UqdLhUA0GC+/e3kscfKzXDddclvf1tuBuiu5s0r3kvV8+rRbfna15IJE7pg4OefT774xS4YuB3eOPBYxgrE7XHMMW2fZV9PZ55ZzvKQwIIuuyy56qpyMzz5ZDlLFZbl4ouT668vN8Ojjybf/W7XjP21r5Wzotv/+sMfistZveHcc5NbbikvT5KMH1/uWV/UhJIMAD1PoyyZe8EFyeOPl50CAOru8suT++8vO0VxgtuPf1x2CoD6evHF5Jf/j737DrOjLNwG/Gx6AgESitTQlV4jkoD0JiDFgqCgSC8qIMoPREEExIIiilQpAhZUUIoIAgFRElQSehUhiI0eWiAJyfn+mC+EdRNIOefM7Ox9X9desCebeZ/dzM45Z+aZ9z297BSF44+39B3MjV//OrnzzrJTJBMnJt/8Zgs2/N3vlndX/ls9/HC123z33VdcPKyC448vOwH0bI1Gdc55n3FGsexT3U2dWp1j3/e+lzz3XHO3+c9/lrOU38wcd1yxj7/xRusKQXPq1FOr8VqFuaYkA0DP8te/Fh9VUZUXmgDQRmeeWXaCGS65pJhBGKCnuOCC6kyM8Nhjye9/X3YK6H6q9Frq0kuTl15q4gZfe604UFXFWWeVnWDWqpTt1luT++8vOwX0XKNGFcW+KnjjjWK2j7q77rpiybkqmDQpufDC5m7z3HPLn/53uvvuS/70p+Sqq5J//avsNIWJE5OLLy47BfNASQaAnqVKJxCS4sRPq9YMBYAKuu++4hx6Vbz8crVvEAZopqlTk7PPLjtFZ1W62A/dwYMPJjffXHaKGV59tSgdN80vfpE8/3wTNziP/vrX5I47yk7R1csvV+/iXNXOuUFPUrUXVOecU/6agK1WtZ/5WWc1b4rGyZOT885rzraa5cwzq/czP/PMYoYbuiUlGQB6jkmTqjMN7XTPP1/+uqUA0EaXXlp2gq6qdn0BoFVuu606N7xO99vfNn92eKiz2r+Wamrjpkmq+GLxyiuTV14pO0VnP/lJdWYdgJ7kxReLY0KV/POfyS23lJ2idZ55Jvnd78pO0dljjyWjRzdnWzfdVL0lsy6/vMhVJQ89VM0iLbNFSQaAnuPee4tp8Krm9tvLTgAAbTNmTNkJuho7tjpLjwC0UhWPwdOmVWtFXKi6Kv4e33lncV/SPJs2Lfnzn5uwoSar4nmbKu4IEyZUZ7kX6EnuuKOaBbUqHjub5S9/qeYMIs36mVfxOWbKlLITzFyd9/OaU5IBoOcYO7bsBDNX1VwA0GTTphUXUapm8uTk/vvLTgHQelV961HVXFA1jUYyblzZKbqaMqW4L2mePfJI9WZHSZJ77qnexbmqHjirmgvqrKq/d1XN1QxV/d6alauq318V+Vl1W0oyAPQcVX3BMm5cNZvnANBkf/tb8vLLZaeYuaq+TABopqoe66qaC6rm738vVtWooqb8Hlf1YDBpUrUa1W+8kdx9d9kpZq6q/4ZQZ1X9vatqrmao6vemJNN+flbdlpIMAD3HE0+UnWDmXnyxmJIWAGpu/PiyE8xalbMBNEOjUd23RI7BMHuq+jucNOn3uMoHgyple/rp5PXXy04xc1X6OUFPUdXfuyefrOYyUM1Q1SfkZuwLr7+ePPXUvG+np6jq7x/vSEkGgJ7jtdfKTjBrVT25AQBNVOWnuypnA2iGN96o7nUKx2CYPVU+rdGUbFU+GFQpW5V3hCr9nKCnqPLv3aRJZSdojaoeh6dMKV70z4sq709V5OfVbSnJANBzVHlJoypnA4AmqfLTXZWzATRDlY9zVc4GVVLl35WmZKv9N9gkVcryv6ZNKzsB9DxVPiZUOdu8qOv3ldT7e2sFP69uS0kGgJ5j0KCyE8zawIFlJwCAlqvy012VswE0Q9++Se/eZaeYOcdgmD21P61R5YNBlbLVfkcA5kiVf+8GDCg7QWtU9Tjcp0/xMS+qvD9VkZ9Xt6UkA0DPscwyZSeYucGDkwUXLDsFALTcsGFlJ5i1qr5MAGiWjo7qHuuqmguqpsq/K015nefF4uxZdNGkf/+yU8xclf8Noa6q+nu35JLVbWjPqyo9J7xVM/aFAQOK5xlmT1X3Bd6RkgwAPcf665edYObWWy/p5SkZgPp797uT+eYrO8XMDR9edgKA1qvqWyLHYJg9K61U3GdTRU35Pa7qQapfv2SNNcpOMUPfvslaa5WdYuYc0KH9qnrsrPPxoO4/86p+f1VU5/285lyRA6DnqOqLu6rmAoAm6907WXfdslN01bdvta57ALRKVd96VDUXVE2vXsV9NlXTp0+TOhvveU81G9Vrrlm9mVuqeuCsai6os6r+3lU1VzNU9XtrVq6qfn9V5GfVbSnJANBzrLVWNddBfd/7yk4AAG2z4YZlJ+hq3XWrd90DoBWqeAzu6Eje+96yU0D3UcXf47XXbtLplt69q3lAqOJ5myruCIMHJ6usUnYK6HmGD6/mLOVVPHY2ywYblJ1g5pr1M6/ic0xVl+6q835ecxU8agJAiwwYkHzkI2Wn6GzBBZMddig7BQC0zSc+UXaCrvbaq+wEAO3x/vcnSy9ddorOtt02WXTRslNA91HF11J77tnEjVXxG6zii8VddkkGDSo7RWd77FFMKwS015Ah1Tu/vMQSyRZblJ2idd71rmSbbcpO0dmwYcnGGzdnW1tvnSyySHO21Sy77ppssknZKTpbaaXqFqZ4R0oyAPQshxxSdoLO9t67mlMJA0CLrLNOMmJE2SlmGDSomtc9AFqhT5/kwAPLTtFZ1d6iQdWtuWbzroE1w8CByac+1cQN7rFHcUNRVayzTjXvEl9wweoVig4+uOwE0HNV7QXV/vsX6xrXWdWOeQcd1LzZVvr3T/bbrznbapaDD67efn7wwdWcxYnZ4l8OgJ5lww2LExxVcdBBZScAgLar0nmNT3yiWtdhAFptv/2qc81i2LBk++3LTgHdT5VeS+2xRzGJQdPMN19xQ1FVHHxwsS5cFVVpRxgxolrn26Cn2WabZMUVy05R6N27KMnU3Y47VmeKxr59k333be42DzywOs9/73lPsvnmxWwy73pX2WkKAwZU6/UKc0xJBoCepaMjOeGEslMU9tjDWs0A9Egf+1iy6qplpyjOafzf/5WdAqC9Fl+8Oje+Hndc8254hZ7kIx9J1lij7BTFjeZHH92CDR95ZDL//C3Y8BxaccXkk58sO8WsrbNOsexSFVTlXBv0VL16JccfX3aKwgEHVKc80kp9+hQvZqvg0EOTxRZr7jaXWy7ZZ5/mbnNunXBCcV2nX7/ky18uO03hsMOSoUPLTsE8UJIBoOfZaadk993LzbDoosnpp5ebAQBK0rdvcuGF5c9K+/WvV+dmO4B2OvnkZPnly82w9dbVOe8O3c3011Jll8xOOilZeeUWbHiZZZJvf7sFG55DF1xQtKqr7Ic/TBZaqNwM++xTHNSBcu25Z/lT9A0blnzjG+VmaKf99ku23LLcDCuuWDwht8KppyZLLtmabc+uXXZJdtttxueHHFL+upPveU91SmnMtR5Vknnttddyyy235Otf/3p23333bLPNNhk+fHhWXnnlrLDCClnR2VGAnuMHP2h+u3pOnHVWUZQBgB7qfe9LvvCF8sbfaKPkc58rb3yAMs0/f3HttyyDByc/+lF1ZnCH7mj48HJnxNtww+SII1o4wIEHlnvh8XOfSzbZpLzxZ9eSSybf/3554y+9dPLd75Y3PjBDR0dy7rnlrid8/vnJAguUN367dXQU33OZs59dcEGxVGErLLRQct55rdn27Bg6tLiO8tY3Db16FU3hgQPLydSrV3LRReWNT9P0iJLMnXfemU996lMZOnRottxyy3zlK1/JL3/5y9x0000ZN25c/v73v2f8+PEZP378227nkksuyfbbb//mxy677JLJkye355sAoLkWWSS55JJiWsR2O+CA5MMfbv+4AFAxJ5xQXGBpt0UXTS6+uPy7rwHKtNlmybHHljP2eecVNxoD8+a444rib7stvHBxSqWlr6U6OoqLYEss0cJBZmG99ZJTTmn/uHNrzz2TvfZq/7j9+iWXXlruBXmgs6WWKkobZTSRjzoq2Wqr9o9btmWXLcpJZfjKV1pf6Nx+++Tww1s7xsxML8MsvnjXP1tppeTMM9ufKUm+9rVyTmTRdLUuyTz77LPZZZddMnz48Fx66aWZNGlSGo1Gp48k6ZjNJ4sRI0bk+uuvz/XXX5/rrrsuV199da666qpWfgsAtNI22xRXyNq51sNHP1reCzgAqJgBA5Lf/jZZa632jbnggsn11ycrrNC+MQGq6sQTi8ka2umMM5KPfay9Y0Jd9e+fXHNNss467RtzgQWK11IrrdSGwZZZJrnhhqKV0y6rrJJcd10yaFD7xpxX02cy+OAH2zdm797Jz3+ebLpp+8YEZs+HP5ycfXZ7x9xnn561zNL/2mOP9s/qdcghxZ1H7fCd77S/jPmjHyU77TTrP9977/YvzXj44cmXvtTeMWmZ2pZkRo0alTXXXDNXX331m4WYjo6OmX7MrpVWWinbb7/9m+WaJLnoootakB6Attljj+Syy4oFvVttr72Sn/7UbesA8BZDhyajRiUbbND6sRZbLLnllmTddVs/FkB30NFRdPgPO6w9Y517bnLooa0fC3qShRYqXkuNGNH6sRZdNLn55mT99Vs/1ptWXz259dZiWaFWW2ed5A9/6J7LY/ftm/zqV8luu7V+rP79k1//Otl119aPBcydAw4oluFpx82hhxxSTBPY09fR/Oxni3JSO34On/980Txv1898+qwuBxzQ+rF69y6mq/v0p9/5a7/wheT001ufKUmOPrpYXrCn7+c1UsuSzJ/+9KfsuOOOeeqppzqVY5J0mUnmrYWX2bH33nsnKWafaTQaufHGG/Paa681+1sAoJ0+8pHihMu7392a7Q8cmJx2WrFWZRnLOwFAxS28cHHBpZUXTrfcMvnrX9t7pzVAd9CrV/F25fzzixkiWmHYsGIyiP33b832oacbMiS56abi+lyrbLZZ8pe/FCsRtd1qqxWDb7dd68bYf//i3NBii7VujFbr1y/52c+Sb36zKLK0wuqrJ7fd1t5Za4C58+lPF08Oyy3Xmu3PP3/RgD7jjPbO1F5lBx5YTLe2zDKt2f4CCxRllVNPbX9Zo3fvogT0wx8m883XmjFWWKE4ObTnnrP/dz73ueTaa1tXph0ypFha8JRTFGRqpnZHrUceeSQ77bRTXn/99S7lmEUXXTSHHHJIfvazn2XMmDH5+c9/Psfb32677dL/LS8wp0yZkltvvbVp+QEoyYYbJnfdlRx5ZHNf7Gy0UXL33cVUfN4sAMAsDRpUnFsbNaq55/Dmnz8566zi4uywYc3bLkCddHQUs+Tfd1+y7bbN3fYBByT33luUFYHWGTiwWOnhlluau6zkfPMV18NaeZ11tiy1VHERrNmNvmWWKS5onntuMnhw87Zbll69kqOOSsaNa+5Ujb17F0tMjB3b5qmEgHmy2WbJPfckBx/c3O1utVXxwnH//RUH/tfWWxcvfvfbr7nb3W675P77i2WGyvqZd3QUMwfdc0+xbzXT5z5XbPf975/zv/uBDxT746c+1dxMH/xg8TP/xCeau10qoXZX64444ohMmDChUzmmf//+Oe200/LEE0/kjDPOyMc+9rG8733vy7LLLjvH259vvvmy+eabd5qBZtSoUU3LD0CJBg4sWtjjxhUvqOblrpuNNiqWVvrDH5KVV25eRgCouc03L85tfPe78/YUOnRo8sUvJg8+mBx0kPN2ALNjmWWS3/0u+c1v5q3U0qdPseLH6NHJOee0boYaoKtNNy2uzX3ve/M2Ye7QocV9RA8+WFwPq8R9P9MbfQ89lBxzzLwti7TCCsm3vlVc/Npmm+ZlrIrVVitmfLn44uR975v77QwcWPzM77orOfnk1s1QA7TO4MHF+pq3357svnuxPNvc2nzz5Iorkt//PpmLa6w9xoILFktQ3XZb8aJ4XmaX32qr5Mori6Lo0ks3L+O8WGGFoj37y18mm2wy99vp168ooPz1r8WySfMyQ82QIcVM/rfemnz4w0W5c25tu21yzTXFz32JJeZ+O1RaR2NO1xuqsBtvvDHbbLNNp4LMIosskhtvvDFrrbVWl6//85//nBEjRry5dFJHR0emTp36juMcf/zxOfHEE98cZ4sttsgNN9zQ3G+G2hszZkxGjhzZ6bHRo0dnRDsWEAZmz3PPFdMXXnllUZyZOHHWX9urV7LKKsUbhf33T9Zeu305AaCmpk0rzrtcdFFxbumJJ97+6xdeuLhh9mMfKz4GDGhLTIDaevjhYnKFG28sriO/3WmzAQOKt0Ef/GCy777J4ou3Lycwc41GMUvfhRcWr6XGj3/7rx86tPNrqYED2xJz7k2alFx+eXGT0l/+kjzzzNt//TLLJCNHFnfhb7NNRZo/bTJ2bPKjHxVTDT38cLFzzMr88xfrau26a3ET2ZAhbYsJtMFTTyUXXJBcfXVy553J66/P+mt79y5Kd1tuWUwPuOqq7ctZJ//5TzET2jXXFLPOv9PPfPXVixlp9t8/ec972pdzbt13X1EKGjUqeeCB4mTOrAwcmKy7brLTTsWSYK1a5vBf/yqe937722KGmkmTZv21ffoka6xRvDbYf/9kpZVak6mH6C7Xv2tVktltt93yq1/96s3SS58+fXLrrbdmww03nOnXz21J5vLLL89HP/rRN//eUkstlSeffLLZ3w41110OEsD/N3VqcRLhrruSZ58tXsj27VucOFh11WSddYr/BwBa5tlni97q3/+evPZa8fQ8cGCx9PT66xfLKZkxBqA1XnutOL98333Jyy8nkycXxZghQ4pyzKqrztuNyUDrPfdc0ZWY2Wup9dYrJgXotq+lGo3kySeLF4v//GfxDfbqVazpufzyxYvFeZl5pk5efrk4v/Xgg8mrryZTphQ7wiKLFBcu3/3unlUggp7sjTeKY8FddyUvvFCc8+7XrzjPvfrqxYu8QYPKTlkvU6YURZK7704mTJjxMx88uChqrLVWN2ipvo1XXy2+twceSF55ZcabhqFDi2soq6wybzPrzI0pU4rG//Sf+aRJxc98gQVm/MzdZdU03eX6d21KMlOnTs0iiyySl1566c3Cy/7775+zzz57ln9nbksyDzzwQNZYY41Of++VV17JwO580KLtustBAgAAAAAAAADeTne5/l2bOvBf//rXvPjii50eO/TQQ1sy1tChQ7s89txzz7VkLAAAAAAAAAAA5l1tSjL//Oc/O33+rne9K2uuuWZLxlpggQW6PPbyyy+3ZCwAAAAAAAAAAOZdbUoyT0YyJr8AANn+SURBVD31VKfPhw0b1rKx+vfv3+WxiRMntmw8AAAAAAAAAADmTW1KMhMmTHjz/zs6OjJ48OC2jDVdv379WjYeAAAAAAAAAADzpjYlmYEDB775/41GI88//3zLxnr22We7PLbgggu2bDwAAAAAAAAAAOZNbUoyiy66aKfPn3zyyZaNdeedd3b6vFevXllqqaVaNh4AAAAAAAAAAPOmNiWZFVdcsdPnzz33XO6///6WjPXHP/6x0+crr7xyevfu3ZKxAAAAAAAAAACYd7Upyay77rrp06dPp8d+/vOfN32c1157LT//+c/T0dGRRqORjo6ObLjhhk0fBwAAAAAAAACA5qlNSWbgwIHZeOON3yyuNBqN/PCHP8wLL7zQ1HHOPffcLtvccccdmzoGAAAAAAAAAADNVZuSTJJ8/OMf7/T5iy++mL322qtp23/ooYdy7LHHpqOj483Hhg4dmh122KFpYwAAAAAAAAAA0Hy1Ksnstddeede73pUkb84m87vf/S4f//jHM3ny5Hna9sMPP5wddtghEydOTJI3Z6w5+OCD079//3nODgAAAAAAAABA69SqJNO/f/98/etfT6PRSDKjKHPZZZflve99b2644YY53uaUKVPywx/+MCNHjszjjz/eaRaZd73rXTnqqKOalh8AAAAAAAAAgNboU3aAZvv0pz+dK6+8MldddVU6OjreLMrce++92W677bLyyivnwx/+cIYPH/7mrDBv9cgjj+TZZ5/NE088kZtvvjnXXntt/vOf/7w5c0wyYxaZ888/P/PPP3+7v0UAAAAAAAAAAOZQ7UoySXLJJZdkiy22yNixYzsVZRqNRh555JF84xvf6PT102eeaTQaWXXVVWf6Z2+dQSZJTjrppHzgAx9o4XcBAAAAAAAAAECz1Gq5pekGDx6cG264Idtvv32nksv/Fmam/9lbvfXPps8Y89YZZBqNRk488cQcc8wxbf2eAAAAAAAAAACYe7UsySTJQgstlGuuuSbf+ta30qdPn06FmLcWZv7XW//srX/eaDSy8MIL59e//nWOPfbYtnwPAAAAAAAAAAA0R21LMtN94QtfyMMPP5zPfOYzGTRoUJcZZGZViklmzBwz33zz5YgjjsgjjzySnXfeud3fAgAAAAAAAAAA86hP2QHaYbnllsv3v//9nHDCCbn66qtz66235tZbb82jjz46y7+z9NJLZ8SIEdlxxx2zyy67ZPDgwW1MDAAAAAAAAABAM/WIksx0Q4YMySc/+cl88pOfTJJMnjw5zz33XJ5//vlMmDAhffr0yQILLJBlllkm888/f8lpAQAAAAAAAABolh5Vkvlf/fr1yxJLLJElllii7CgAAAAAAAAAALRQr7IDAAAAAAAAAABAqynJAAAAAAAAAABQe0oyAAAAAAAAAADUnpIMAAAAAAAAAAC1pyQDAAAAAAAAAEDtKckAAAAAAAAAAFB7fcoO0A6jRo3KH//4x4wbNy6PPPJIXnzxxbz44ot5/fXX53nbHR0deeONN5qQEgAAAAAAAACAVqltSWbKlCk59dRTc8455+TJJ5988/FGo1FiKgAAAAAAAAAAylDLksy4cePyiU98Io888kiXUkxHR0fTxlG4AQAAAAAAAADoHmpXkvnzn/+c7bbbLi+99FIajUZTSzEAAAAAAAAAAHRPtSrJvPTSS9l1113z4osvpqOjo1NBxqwvAAAAAAAAAAA9V61KMieccEL++9//dinH9OnTJx/4wAey8847Z6211spyyy2XwYMHp3///iWmBQAAAAAAAACgXWpTkpk2bVouvvjiNwsy02eOee9735sf//jHWWWVVcqMBwAAAAAAAABAiWpTkrn99tvz3HPPpaOj482CzBprrJFRo0ZlvvnmKzkdAAAAAAAAAABl6lV2gGZ59NFHO33e0dGR7373uwoyAAAAAAAAAADUpyTz1FNPdfp86NCh2XLLLUtKAwAAAAAAAABAldSmJPNWHR0dWWmlldLR0VF2FAAAAAAAAAAAKqA2JZmhQ4d2+nzQoEElJQEAAAAAAAAAoGpqU5JZbbXV3vz/RqORZ555psQ0AAAAAAAAAABUSW1KMuuuu27mn3/+Nz9/7LHHMmnSpBITAQAAAAAAAABQFbUpyQwYMCA777xzGo1GkuS1117LqFGjSk4FAAAAAAAAAEAV1KYkkyTHHHNMevXqlY6OjiTJySefXHIiAAAAAAAAAACqoFYlmdVWWy1HHHHEm7PJjBkzJqeeemrJqQAAAAAAAAAAKFutSjJJcsopp2SrrbZKo9FIo9HI0Ucfne9+97tlxwIAAAAAAAAAoES1K8n06dMnV111VbbffvskybRp0/LFL34xW2+9dW699daS0wEAAAAAAAAAUIY+ZQdohQEDBuTqq6/OSSedlJNPPjmTJ0/OqFGjMmrUqCy77LLZaKONsuqqq2bo0KEZNGjQPI/3yU9+sgmpAQAAAAAAAABolVqWZJKko6MjX/nKV9K/f/8cffTRSZJGo5Hx48fniSeeaOpYSjIAAAAAAAAAANVW25LMDTfckMMOOywPP/xwOjo6kuTN/zYajaaNM32bAAAAAAAAAABUVy1LMscff3xOOumkLmWY/y3LzKtmlm0AAAAAAAAAAGid2pVkTj755Jx44olvfj6zQoxyCwAAAAAAAABAz1Krksy4ceNy/PHHdynGTC/F9O3bN+9+97uz7LLLZvDgwRkwYEAZMQEAAAAAAAAAaLNalWSOO+64TJs2rVNJptFoZJNNNskRRxyR7bbbLv379y8xIQAAAAAAAAAAZahNSeaZZ57J9ddf/2ZBptFopKOjI9/+9rdz5JFHlpwOAAAAAAAAAIAy9So7QLPcfvvtmTp1apIZBZl99tlHQQYAAAAAAAAAgPqUZMaPH9/lsS9/+cvtDwIAAAAAAAAAQOXUpiTz0ksvdfp8xRVXzLLLLltSGgAAAAAAAAAAqqQ2JZlBgwa9+f8dHR1ZaqmlSkwDAAAAAAAAAECV1KYks8QSS3T6/I033igpCQAAAAAAAAAAVVObksxaa6315v83Go3897//LTENAAAAAAAAAABVUpuSzGqrrdZpiaXHHnss//nPf0pMBAAAAAAAAABAVdSmJJMk++yzTxqNxpufX3bZZSWmAQAAAAAAAACgKmpVkjn88MOz6KKLpqOjI41GIyeffHImTJhQdiwAAAAAAAAAAEpWq5LMkCFDct5556WjoyMdHR15/vnns9NOO2XSpEllRwMAAAAAAAAAoES1KskkyU477ZQzzjgjHR0dSZLbbrstG2+8cf72t7+VnAwAAAAAAAAAgLLUriSTJAcddFCuuOKKDBkyJEkyduzYrLnmmvnUpz6VW265Ja+//nrJCQEAAAAAAAAAaKc+ZQdopi222KLT54sttlief/75dHR0ZPLkybn00ktz6aWXpk+fPll22WUzdOjQDBo0aJ7G7OjoyE033TRP2wAAAAAAAAAAoLVqVZK55ZZb3lxm6X91dHSk0WgkSaZMmZJHH330zcfnVqPRmKe/DwAAAAAAAABAe9SqJDPd9DLMWz/v6OjoUmhpNBpdvnZ2KccAAAAAAAAAAHQftSzJzG6BRdEFAAAAAAAAAKBnqF1JZm5nhgEAAAAAAAAAoL5qVZK5+eaby44AAAAAAAAAAEAF1aoks+mmm5YdAQAAAAAAAACACupVdgAAAAAAAAAAAGg1JRkAAAAAAAAAAGpPSQYAAAAAAAAAgNpTkgEAAAAAAAAAoPaUZAAAAAAAAAAAqD0lGQAAAAAAAAAAak9JBgAAAAAAAACA2lOSAQAAAAAAAACg9vqUHeDtfO1rX5vp48cdd9wcfX2rzSoPAAAAAAAAAADV0NFoNBplh5iVXr16paOjo8vjU6dOnaOvb7VZ5YG3M2bMmIwcObLTY6NHj86IESNKSgQAAAAAAAAAc667XP+u9Ewy0721xzM7JZh29n7KKOUAAAAAAAAAADBnukVJZnoRZXbLL+0qrlR4Eh4AAAAAAAAAAN6i8iWZOS2iKK4AAAAAAAAAAPC/Kl2SOf7441v69QAAAAAAAAAA9AxKMgAAAAAAAAAA1F6lSzLT/eMf/+j0+RJLLJG+ffuWlAYAAAAAAAAAgO6mW5RklltuuXR0dLz5+ZgxY7LBBhuUmAgAAAAAAAAAgO6kV9kB5kSj0Sg7AgAAAAAAAAAA3VC3KskAAAAAAAAAAMDcUJIBAAAAAAAAAKD2lGQAAAAAAAAAAKg9JRkAAAAAAAAAAGpPSQYAAAAAAAAAgNpTkgEAAAAAAAAAoPaUZAAAAAAAAAAAqD0lGQAAAAAAAAAAak9JBgAAAAAAAACA2lOSAQAAAAAAAACg9pRkAAAAAAAAAACoPSUZAAAAAAAAAABqr0/ZAebGIYcckgUWWKDsGG8688wzs8oqq5QdAwAAAAAAAACAWeh2JZlGo5E777yz7BhJiiwdHR156aWXyo4CAAAAAAAAAMDb6HYlmaQop5Sto6Oj7AgAAAAAAAAAAMymblmSUVABAAAAAAAAAGBOdMuSTBVmkgEAAAAAAAAAoPvodiWZjo6OrLPOOllggQXKjvKmKmUBAAAAAAAAAKCrbleSSZKzzjorG2ywQdkxAAAA8vrrycSJybRpyYAByXzzJWWvEDt5cvLqq8mUKUWm+edPevUqNxM02/T9/I03Zvzu2c8BqKupU5NXXkkmTUr69Ste3/Xplmf3gdp67bXizXGjkQwcmAwaVP6b4yqaMqV4IzN5ctK/f3FA79277FS029SpxX4waVLSt2/xhrZv37JTQY/hZTQAAMBsmjo1ueWW5LbbkrFjkzvuSP79785fM3hwsu66yfrrJxtskGy/fdLKyScbjWTcuGTUqCLT2LHJo492/pr+/ZO11ioyDR+efOADyZJLti4TNFujkdx+e/KHP8zYzx9/vPPXDBiQrLPOjP18++2TxRYrJS4AzLPHHkuuu27Ga84HHiiKodP16pWsssqM572tt05WXbW8vEAPM3lycuONyZgxxUFq7NjkmWc6f82QIcVBav31k/e9L9luu6I809Pcd1/xs5p+QH/44eINznR9+iRrrDHjgL7ddslyy5UWlxZ54oniiX3678t99xWFqek6OpL3vGfG78zWWxf7BdASHY3GW4/E1dSrV690dHSk0Wiko6MjY8aMMZMM3d6YMWMycuTITo+NHj06I0aMKCkRAACz8swzyfnnJ2efXZzXmBPzzZfstVdy8MFFUaVZXn01+dnPkjPPTO68c87+bu/eyS67JIcemmy2mZv7qK6XXkouvbTYz++/f87+bt++yUc/mhxySDJypP0cgOqbOjW55priee/3v5/zv7/JJsXz3q67FrPNADTdk08m556bnHde8tRTc/Z3hwxJ9tknOeigZKWVWpOvKiZNSn71q+KAPnr0nP3djo7izpZDD0223dYsM93Z1KnJ9dcX+8G113YuR82OkSOLJ/aPfKS4+wm6ge5y/dtExD3YY489ll/+8pc5+uijs/XWW2fo0KHp6Ojo8nHLLbeUmvMrX/nKTHN1dHRks802KzUbAAD1NmlS8uUvJ8sskxxzzJwXZJKizHL22cnaaycf/GBxTnFeNBrF+chhw5L995/zgkxSnKe5/PJkiy2KG9XGjZu3TNBs06Ylp59e/O4deuicF2SS4qa8n/402XjjZKON5m4bANAuN95YzAyzyy5zV5BJkltvTXbfPVlxxeQ3v2lmOqDHe/nl4oX58ssnJ5005wWZJHnhheQ730lWXrm4k+TZZ5ufs2yNRnLZZcXPac8957wgM30b116b7LBDMZPIrbc2Pyet98c/JmuuWfw7/va3c16QSYr9Z889i5mFfv7zudsGMFNKMj3E448/3qUQs+KKK2a33XbLN7/5zdx444154YUXyo7Zxb333ptvfvObZccAAKAHuuOOYobbk08uyjLNcM01xTmu88+fu3Mb//hHcSPZAQckzz/fnEzjxhXLQn3lK8WM2VC2Rx9NNt00OfzwYiaZZhgzJllvveSUUzovVQEAZXv55WJSha237rpk5tz65z+L2WQ+8Ynkueeas02gB7vppuJi/5lnFndcNMOllyarr578+tfN2V4VPP10MZXl7rsn//lPc7b50EPFm6PDDivuwKH6Xn21+PfadNPkwQebs83//jfZY49iRpm5KagBXSjJ9BDrrrtu5Qsx/2vq1KnZd999M+Wta/IBAEAbnHFGsuGGrZl54qWXkv32K86dvf767P+93/++OC95ww3NzzR1anEz4MiRzrdQrl//uph16U9/av62J09OvvSlZPPNm1cyA4B58fDDyTrrJOec05rt//SnxetHswYCc6XRSI47Ltlqq7mbVvWdPP108qEPFWsTN6t8U5bbby/uiLn88tZs//vfL1r/jz/emu3THI8/Xtxt9f3vt2bWlyuuKPazMWOav23oYZRkqKzvfe97+etf/1p2DAAAepiTTko++9nWn6O7/PJi1t2JE9/5a6+4Itlxx+bNqjErY8cWS9PM65JQMDcuuaS4MW52fifmxZ/+VNzU9/TTrR0HAN7OPfck739/8thjrR3nP/8pCqJzs+IH0IM1GslnPpOceGLrxzr77OTjH+++Uz7efHNRJHrmmdaO88gjxTqyDz3U2nGYOw89VJxQefjh1o7z7LPF/jZqVGvHgZpTkqGSHnvssRx33HGdHuvVy+4KAEBrnXZasexQu4walXz4w2+/zNH11xezNbdrgsVHHy2m+2/1+T14q8svT/beO5k2rT3j3XdfsXTZhAntGQ8A3upvf2vv662XXko+8IHkzjvbMx5QA0cdVSyv1C6/+EWy777te0PQLH/+c/LBD7ZvKaT//KcoSIwf357xmD1PPFE8sf/73+0Zb+LEZKedihmMgLmiddCDDRs2LLvuumtOPvnkXHfddbnjjjvKjvSm/fffPxPfcvvgWmutlREjRpSYCACAuhs1Kvn859s/7nXXJcccM/M/e+KJYlmmdq9A+vDDxXLXrZgdGP7Xgw8me+7Z/vPhd92V7LOP/RyA9nr99WSXXdo/o9lLLyU775y8+GJ7xwW6oZ/8JDn11PaPe/HFxZ0r3cVzzxUH9HYVZKb717+KZarafaKAmZsypfj3+Oc/2zvuq68W+9+zz7Z3XKgJJZkeYnoh5qSTTsrvfve7PPPMM3niiSdyxRVX5Etf+lK23XbbLLzwwmXHTJKcf/75GfWWacJ69eqVc889N3369CkxFQAAdfbyy8XF8rKcdlpy222dH2s0kv32K7KV4aabknPOKWdseo6pU5NPf7q4YFiGX/86+fnPyxkbgJ7pq19NHnignLGffDI58shyxga6if/8p1h/uCxf/nLrl6tpls9+Nvnvf8sZ+847k1NOKWdsOvvGN5Jx48oZ+6mnyv19hW5MSaaHuOeee3LFFVfk2GOPzXbbbZdFFlmk7Egz9Z///Cdf+MIXOj12yCGH5H3ve19JiQAA6An+7/+KWVvK0mgURYG3TKaY885LbryxvExJ8sUvmsWZ1vrud4sZysv0mc+Ud24bgJ7lL39Jvv3tcjOcf34xkyFAF41GctBByQsvlJfh9deLN8dTp5aXYXb8+tfJz35WboYTT0zuvrvcDD3dPfcU/w5l+vnPkyuuKDcDdENKMlTKZz7zmUx4y6LwSy21VE4++eTyAgEAUHv33ZecdVbZKZK//S0544zi/195JTn66HLzTM/xpS+VnYK6evbZ4m76sj3/fHLCCWWnAKAnOPzw9i8vODNVyQFUzE03JVddVXaKZMyY8gsob+eNN5Ijjig7RZHD9GDlOvLIaix7dcQRxf4AzDYlGSrj8ssvzxX/03b8wQ9+kAUWWKCkRAAA9ARnnll2ghnOPLO4Ye6nPy335r23+uUvzbJBa1x4YefZk8p08cXJiy+WnQKAOhs7trjuWwUPP1z+jIVABf3gB2UnmGH6HSRVdM015U5F+1Y33ZQ8+GDZKXqmBx+szpPpP/6RXH112SmgW+k2JZlGo9Hpv9TLhAkT8pnPfKbTY7vsskt23XXXkhIBANATvPRScsklZaeY4YknkmuvTX74w7KTzPDGG8mPflR2Cupm2rRqzOA03cSJRVEGAFqlSs97SbWK4kAFPPFEUf6oij//uWgXVlHVDqBVe4LpKc4+u+wEnVVtv4SK6xYlmccff7zTxzrrrFN2JJrs85//fP77lttTBw8enB9UqbUMAEAt/fznxZJCVfLtbxfLWlfJuecWy9NDs9x0U/L442Wn6Oycc8pOAEBdvfJKMVNglVx9dfLvf5edAqiMCy6o3jps551XdoKuHn88ueGGslN09uMfJ6+/XnaKnmXSpOLnXiU33pj8/e9lp4Buo1uUZJZddtlOH/369Ss7Ek1000035cILL+z02Mknn5yll166pEQAAPQUN91UdoKu/vKXshN09eSTzrXQXKNGlZ2gq/vvT55+uuwUANTRmDHJa6+VnaKzadOSW28tOwVQGVV8gV7FTDffXHaCrl56qbqz7tTV2LHVXK/3llvKTgDdRrcoyVBfEydOzAEHHNDpsfe+97059NBDS0oEAEBPUsXzSJMmlZ1g5qr4s6L7qur+VNVcAHRvVX1+qWouoM2mTk3uvLPsFF397W/VKyJU9cA5blzZCXqWqu4HVc0FFdSn7AD0bF/+8pfz2GOPvfl5nz59ct5556VXr+r3t8aMGTNPf//ee+9tUhIAAObGhAlmR5kTY8cmH/tY2Smog0ajuufuxo5NPvCBslMAUDdVft4DyCOPJK++WnaKmbvzzmSzzcpOMUNVD5xVzVVXVf15VzUXVJCSDKX5y1/+ktNPP73TY5///Oez9tprl5RozowcObLsCAAAzIMHHyw7Qfdy//1lJ6Aunn46ef75slPM3AMPlJ0AgDqq6vOL13dAkuoepJIiW5VKMlX9WTmgt5f9ALq96k/XQS1NmTIl++23X6ZNm/bmY8svv3yOP/74ElMBANCTvPJK2Qm6Fz8vmuXll8tOMGv2cwBaoarPL1XNBbRZlQ8GVcrWaFT3zUyVfk49QVV/3q++WuynwDtSkqEUp5xySpflhs4666wMGjSopEQAAPQ0U6aUnaB7mTy57ATURZV/9+znALRCVZ/7qpoLaLMqHwyq9AJ96tSyE8xalX5OPUGVf2eqnA0qREmGtnvggQdy8sknd3psjz32yLbbbltSIgAAeqL+/ctO0L0MGFB2Auqiyr979nMAWqGqz32e94Ak1T1IJdU6UPXunfSq6GXVKv2ceoKq/s50dCR9+5adArqFPmUHoGeZNm1a9ttvv0x+S6t1yJAhOe2000pMNXdGjx49T3//3nvvzYEHHtikNAAAzKmFFy47Qffi50WzVHlfGjq07AQA1NHCCyfjx5edoivPe0ASL9BnV0dHssgiydNPl52kqyr/G9ZRVX/eCy9c7KfAO1KSoa3OOOOMjBkzptNj3/rWt/Kud72rpERzb8SIEWVHAABgHqy6anGDjZloZ8+665adgLpYcMFk+eWTxx8vO0lX9nMAWmGddZKxY8tO0ZXnPSBJcZCqqqodqNZZJ/n978tO0VWV/w3raJ11kltvLTtFV1X7fYEKq+i8YNTRE088kWOPPbbTY5tsskn23XffkhIBANCT9e+frLlm2Sm6j/XXLzsBdVLV/amquQDo3qr6/FLVXECbLblksvjiZafoql+/ZPXVy07RWVUPnFXNVVdV/XlXNRdUkJIMbXPggQfmlVdeefPzfv365ZxzzkmHqb8AACjJ8OFlJ+hqoYXKTjBzzrXQTFX83evdO1l77bJTAFBHVXzeS6qbCyhBFQ8Ia69dFGWqpIo/p6S6ueqqqj/vquaCClKSoS0uvvjiXH/99Z0eO+aYY7LKKquUlAgAAJKddio7QVc77pj0qtg7tQ03TBZdtOwU1MkHP1h2gq622iqZb76yUwBQR+utlyy1VNkpOltggeT97y87BVAZVXyBXsVMW26ZDBxYdorOVlghWW21slP0LKuumqy0UtkpOhs4sNg/gdlSsVOv1NHTTz+dI444otNj73nPe3LMMceUlAgAAArbbZcsu2zZKTr74heTHXYoO0VnBx9cdgLqZrXVkk03LTtFZ/ZzAFqld+/kgAPKTtHZ3nsrhwJv8fGPF+25qujTJ9lvv7JTdLXggsknPlF2is4OPjixYkN7dXQkBx1UdorOPv7x6k5NDBWkJEPLfe5zn8vzzz//5ucdHR0555xz0r9//xJTAQBAccGiSuc1Nt44WWut5JBDyk4yw9ChyW67lZ2COqrSfr7MMtUrpwFQL/vtV1zzrQrlUKCT+edPPvWpslPM8KEPJUssUXaKmavSAbR//+TTny47Rc+0997JgAFlp5ihSm+woRuo0Mty6uqyyy7r9Pkmm2yS/v375/bbb5+j7bz00kszfWxm21l66aWz9NJLz1lQAAB6pP32S045JZnJy822+/zni/9us02yxhrJffeVmydJDj20Wud9qI9ddkmWXz55/PGykySHHVatC5cA1M+SSxY3eV98cdlJku23T1ZZpewUQOV89rPJWWclb7xRdpLkf1YnqJT11ks23zy5+eaykxRFjYUXLjtFz7TwwkVB6ayzyk5STNO63nplp4BupaPRaDTKDkE1jB8/Pssvv3yXx2+++eZsttlmc73djhKmeTv++OPz1a9+te3jzokxY8Zk5MiRnR4bPXp0RowYUVIiAICe67zzyp8Cf6edkt/8ZsYsybffnmy0UTJtWnmZ3v3u5K67qrfkOvVxww1FKaxM666b/PnPSd++5eYAoP6efjpZffXk2WfLyzDffMm99xZFVYAuvvrV5IQTys1w0EHVKB68nYceStZZJ5k0qbwMSyyR3H9/MmRIeRl6uhdeKO5w+ve/y8vQv39y553JqquWlwHeortc/7bcEgAA0OPtt1+y9dbljT9kSHL22Z2XEd9ww+TII8vL1NGRXHihggyttfXW5RbU+vZNLrpIQQaA9lhsseSHPyw3wze/qSADvI0vfSlZe+3yxl922eRb3ypv/Nm1yirJSSeVm+GccxRkyjZkSHLuueVm+NrXFGRgLijJAAAAPV5HR/KjHyVDh5Yz/plnzny59RNOKG5KKsP//V/yPzd+QEt8+9vJiiuWM/bXvpastVY5YwPQM330o8nuu5cz9tZbJwcfXM7YQDfRr1/y4x+Xs+Zur17FnRqDB7d/7LlxxBHJ+99fztj77JN88IPljE1nO+yQ7LtvOWNvvHG5d1dBN6YkAwAAkGTYsOS3vy2moG+nb3xj1hdKBg5Mfve74ma6dtpjj+Tkk9s7Jj3XAgsk112XLL54e8c98MCiDAYA7dTRkVxwQbLppu0dd731kl/+srgGDfC21l47+dWvkj592jvuhRcmm2/e3jHnRe/exZrJq6/e3nG33bb6y1H1NGeemWy3XXvHXH31Yv/r3bu940JNeElMyzUajaZ8bDqTd46bbrrpTL/2q1/9avu/UQAAur0NNyxKKe26ce3kk9/5Iv3SSyejRiUrrNCeTHvsUdw46AIK7bTSSsV+vtRS7RnvgAOK5S7eusQZALTLwIHJ1Ve371rw8OHJ9dcnCy7YnvGAGthhh6JZ169f68fq1auY2vWTn2z9WM02dGhy443tm55yu+2SK65oz78Ls69fv+Tyy5MPfKA94625ZrHfLbxwe8aDGnLaEwAA4C3e//7k1ltbu/zLoEHFOcAvfWn2vn6FFZI//amYSbdVOjqKws6llyZ9+7ZuHJiVVVdNbrutuJDXKr17F0ssnX22G+4AKNfgwcm11yaf+lRrx9lll+Smm5JFFmntOEAN7bJL0bCb2drAzTJkSFEuKGu5mmZYfPHklluS7bdv7TgHHJBceWVxQoHqGTSomNnlwANbO84HPpD84Q/tn4oVakZJBgAA4H+ss05yzz3JYYc1f6aJTTYptj2n5wCXWKI473baacXdx8208srJH/9YLP1kBhnKtOyyyZgxxSxLzS5rrbFG8uc/J1/5ihlkAKiGAQOSiy4qrnk2+1rXkCFF+fmKK4qlDQHmymabJfffn+y1V/O3/cEPFtveZZfmb7vdhgxJrrmmWE+v2QfdpZcuprw95xwzyFRdv37FHRnXXVf8uzXTAgsk559frBM+ZEhztw09kNOfAAAAMzFoUPK97xWzyjRjBpdlly2Wqb755rmfpaZ37+Tww5O7704+9KF5L7QMGZIce2xy113JRhvN27agWfr0KWZZGjeumOV9Xgstiy6anHhicscdyfrrNycjADTTTjsV14kPPXTeJwjo1y/59KeTBx5IPvEJxVCgCYYMSS6+uCiBrLvuvG9vlVWSn/60aAi2cpaaduvoKA7A99+f7LnnvLf+55+/OAFw333FMkt0H9tuW/y7HXFE8e84L/r2Lfan++5L9tnHEzs0iZIMAADA29h442KWlbvvTg46aM7Ob/TqVZzLuvrq5O9/Tw4+uDkztay8cjEj9fjxyZe/POd3Hg8fXtzg9q9/JSedZLZmqmmNNYrz8I8+mhx11JwvEzFyZPKTnyRPPln8nvTv35qcANAMQ4cmZ5xRvD47/fTiGvKcWGGF5JvfLP7+BRdYhQFogR12SMaOLaZ+3GuvYjqs2dWnT/LhDxfrvz3wQLLHHvW92L/00skllxRvRE4+ORk2bM7+/hprJD/8YXFAP+20ZMEFW5OT1lpwweS7303+/e/ijqk115yzvz9sWLH/PPlksT8ts0xrckIP1dFoNBplh6D1xo8fn+WXX75l23/88cez3HLLtWz7SbLZZpvlD3/4Q6fHNt1009xyyy0tHbdVxowZk5EjR3Z6bPTo0RkxYkRJiQAAmB2TJyf33lvMSjF2bHEB/7XXkqlTi2WQllgiWW+9YsaK9ddPFlqo9ZmmTk0efrjIM3Zscc7xlVeSKVOK85YLL1wsITV8eJGpTjfr0XO88Uby4IMz9vOHHkpefbXYzwcOLEo06647Yz9fbLGyEwPA3Gs0kieemPG8d889yYQJyaRJxWwxCyxQXG+b/ppzxRXre70ZqKjXXiumJZ1+oBo/vnis0SheoC+9dHGAGj68eKE+rzNqdFeNRvK3v834Od13X/Lyy8XJhf79i5l61l57xgF9Tks1dB9PPlnsA3fcUdyJNWFC8vrrxRP74MFFQWr6frDyyp7Y6Za6y/XvPmUHAAAA6E769ZtxzqIqevdOVlut+GjFUvFQBX36FBcD11wz2XvvstMAQGt1dCTLLVd8fPjDZacBmImBA5MRI4oPZq2jI3n3u4uPPfYoOw1lWmaZ4mOXXcpOAj2e5ZYAAAAAAAAAAKg9JRkAAAAAAAAAAGrPcks9xBJLLJExY8a0dPuttvfee2ezzTbr9Nhyyy3X8nEBAAAAAAAAgO5PSaaH6N+/fzbccMOyY8yTvS06DwAAAAAAAADMJcstAQAAAAAAAABQe0oyAAAAAAAAAADUnpIMAAAAAAAAAAC1pyQDAAAAAAAAAEDtKckAAAAAAAAAAFB7SjIAAAAAAAAAANSekgwAAAAAAAAAALWnJAMAAAAAAAAAQO0pyQAAAAAAAAAAUHtKMgAAAAAAAAAA1J6SDAAAAAAAAAAAtackAwAAAAAAAABA7SnJAAAAAAAAAABQe0oyAAAAAAAAAADUnpIMAAAAAAAAAAC1pyQDAAAAAAAAAEDtKckAAAAAAAAAAFB7SjIAAAAAAAAAANSekgwAAAAAAAAAALWnJAMAAAAAAAAAQO0pyQAAAAAAAAAAUHtKMgAAAAAAAAAA1J6SDAAAAAAAAAAAtackAwAAAAAAAABA7SnJAAAAAAAAAABQe0oyAAAAAAAAAADUnpIMAAAAAAAAAAC1pyQDAAAAAAAAAEDtKckAAAAAAAAAAFB7SjIAAAAAAAAAANSekgwAAAAAAAAAALWnJAMAAAAAAAAAQO0pyQAAAAAAAAAAUHtKMgAAAAAAAAAA1J6SDAAAAAAAAAAAtackAwAAAAAAAABA7SnJAAAAAAAAAABQe0oyAAAAAAAAAADUnpIMAAAAAAAAAAC1pyQDAAAAAAAAAEDtKckAAAAAAAAAAFB7SjIAAAAAAAAAANSekgwAAAAAAAAAALWnJAMAAAAAAAAAQO0pyQAAAAAAAAAAUHtKMgAAAAAAAAAA1J6SDAAAAAAAAAAAtackAwAAAAAAAABA7SnJAAAAAAAAAABQe0oyAAAAAAAAAADUnpIMAAAAAAAAAAC1pyQDAAAAAAAAAEDtKckAAAAAAAAAAFB7SjIAAAAAAAAAANSekgwAAAAAAAAAALWnJAMAAAAAAAAAQO0pyQAAAAAAAAAAUHtKMgAAAAAAAAAA1J6SDAAAAAAAAAAAtackAwAAAAAAAABA7SnJAAAAAAAAAABQe0oyAAAAAAAAAADUnpIMAAAAAAAAAAC1pyQDAAAAAAAAAEDtKckAAAAAAAAAAFB7SjIAAAAAAAAAANSekgwAAAAAAAAAALWnJAMAAAAAAAAAQO0pyQAAAAAAAAAAUHtKMgAAAAAAAAAA1J6SDAAAAAAAAAAAtackAwAAAAAAAABA7SnJAAAAAAAAAABQe0oyAAAAAAAAAADUnpIMAAAAAAAAAAC1pyQDAAAAAAAAAEDtKckAAAAAAAAAAFB7SjIAAAAAAAAAANSekgwAAAAAAAAAALWnJAMAAAAAAAAAQO0pyQAAAAAAAAAAUHtKMgAAAAAAAAAA1J6SDAAAAAAAAAAAtackAwAAAAAAAABA7SnJAAAAAAAAAABQe0oyAAAAAAAAAADUnpIMAAAAAAAAAAC1pyQDAAAAAAAAAEDtKckAAAAAAAAAAFB7SjIAAAAAAAAAANSekgwAAAAAAAAAALWnJAMAAAAAAAAAQO0pyQAAAAAAAAAAUHtKMgAAAAAAAAAA1J6SDAAAAAAAAAAAtackAwAAAAAAAABA7SnJAAAAAAAAAABQe0oyAAAAAAAAAADUnpIMAAAAAAAAAAC1pyQDAAAAAAAAAEDtKckAAAAAAAAAAFB7SjIAAAAAAAAAANSekgwAAAAAAAAAALWnJAMAAAAAAAAAQO0pyQAAAAAAAAAAUHt9yg4AAMyF115L7r47GTs2GTcu+fe/k9dfT3r1SgYNSlZcMVl//eLjPe9JevcuOzEAAFTLlCnJAw8Ur6nHjk3Gjy9eZzcaycCBybBhyXrrFa+p11wz6dev7MRAq0yblowZk1x5ZXLbbcnjjyeTJiVTpyZ9+iTzz5+stlqy+ebJRz6SLL982YmpuqlTk4ceSu64o3iOeeyxZOLE4jlmwIBkqaVmnLdZa63isVn5xz+SK65Ibropue++5OWXkzfeKM4B9e+fLLtsMnJksssuycYbF48DUF/TpiWPPDLjfcyjjyavvlo89wwcmCy++Iz3MeusU1wvADpRkgGA7qLRSG65JTnzzOSqq5LJk2fv7y28cPKpTyUHHZSsvHJLIwIAQOXdfXfxmvpnPysuNM6OQYOSj340OeSQZIMNWpsPaJ8HH0w+//nkxhuL0sGsPPdc8sQTye9+lxx1VLLggsX77JNPLgo0MN1DDyVnnZVccknywgtv/7Xnn1/8t3//ZNddi+eYjTdOOjqKG6GOO674mueff/vt/Pe/yZ//nJx2WnGT1GabJd/9blG+AaA+HnssOeec5KKLkqeffvuvveii4r99+yY77FA8x2y5pSIl/H8djUajUXYI6InGjBmTkSNHdnps9OjRGTFiREmJgMpqNJKf/KQ4+fbQQ/O2rW22KbYzfHhzsgEAQHcxalTyla8ko0fP23bWXz854YTiZDPQPf31r8keeyR///u8badXr+KC069+lSywQHOy0T3dfnty7LHFc828WG21YlaZO+8szgfNi2WXTS6+ONlkk3nbDgDluvvu5EtfKsq68/LcsPLKyTHHJHvvXRQyoQW6y/VvdTEAqLJ//rM4+b7XXvNekEmS3/8+2XDD4kX1pEnzvj0AAKi6l15KDjywuJA9rwWZpJjSfMcdi9fo73R3P1At06YVF4Y22GDeCzLTt3fDDcliixVlBHqe115LjjyyWO5oXgsySbEM4Lhx816QSYrZjzbdNNltt7efKQmAapo8OfnqV4sbXq+9dt6fG/72t2SffYobaZ94oikRobtSkgGAqrrssmSNNYqGeDNNnZqcckqxLun99zd32wAAUCWjRydrrpmce27zt33ppcnqqxfLtADV97e/JYsvnvz4x83f9qRJxfJLm22mjNCT3H13ss46xdJGVZ6w/5e/TBZdNLnnnrKTADC7HnmkKPWecELzX1vceGNx3eGSS5q7XehGlGQAoIpOPz3ZfffkxRdbN8YDDyTvf3+xbjUAANTNtdcWs8f84x+tG+O//00+8IGi4A5U17hxRWHumWdaO84f/pCsumry+uutHYfy/fGPxTJGjzxSdpLZM2FCsVzgn/5UdhIA3sm4cclGGxVlzFZ55ZXkk59MvvnN1o0BFaYkAwBVc8YZyeGHt2esF14oplccN6494wEAQDtcf32yyy7tuVD9xhvJxz+eXH5568cC5tz99ycjRrRvyeFHHy0KOWaUqa8xY4qC5EsvlZ1kzrzxRrL55skdd5SdBIBZuffeZKutkmefbc94Rx+dfPvb7RkLKkRJBgCq5Kqrks9+tr1jvvRSst12yb/+1d5xAQCgFe6/P/nQh5IpU9o35rRpyR57mKURquaVV5L3vS+ZPLm94z76aLLFFu0dk/YYPz7ZYYfk1VfLTjJ33ngj2Xjj5Pnny04CwP96+ulk222LG1vb6aijzIxJj6MkAwBV8eyzyX77lTP2M88kBxxQ7TW0AQDgnUyZUkwbPnFieWO/9lr7xwZm7oMfLK/M8Mc/JuefX87YtMa0ack++7T/4mWzTZpUzCoMQLUcemjyn/+UM/bBB5c3NpRASQYAquIzn2n9+uhv59prk4svLm98AACYV9/6VrlLiT7ySHLcceWND8xw2WXJLbeUm+GQQ5IJE8rNQPOcc05y881lp2iOsWOL7weAavjFL5Jf/aq88V94ITnoIDfR0mMoyQBAFfzud9WY0vDww025CwBA9/T3vycnnFB2iuQ730nuuqvsFNCzTZ/xo2yTJye77lp2CprhqaeK5Sjq5LDD2r8UGQBdvfRScQNt2a66Kvn1r8tOAW2hJAMAVfDtb5edoDBhgumgAQDonr7//WLJo7I1Gslpp5WdAnq273+/nGXXZuYPfzCbTB2cfXbyyitlp2iuSZOSk04qOwUAF19c7gzzb3XqqWUngLZQkgGAsj34YLWm6z3rrOKuOwAA6C5efTW56KKyU8xw2WXJs8+WnQJ6ru98p+wEMzQaydFHl52CeTFlSnLuuWWnaI2zzy47AUDP1mgkZ55ZdooZxoxJ7ryz7BTQckoyAFC2qp2QePzx5Prry04BAACz72c/K6Ypr4pJk5ILLyw7BfRMd92V/POfZafo7Cc/KTsB8+Lqq5N//7vsFK3xzDPJLbeUnQKg5/rDH4qbaKvkrLPKTgAtpyQDAGW78sqyE3RVxUwAADArVXz9WsVM0BOcfnrZCbp65ZXkvvvKTsHcqvvx/PvfLzsBQM9VxeeYK68sZriBGlOSAYAyPfNM8sQTZafo6o47yk4AAACzp9FI/vrXslN0deedydSpZaeAnucvfyk7wcxdfnnZCZhbVXyOaaa77io7AUDPVcXnmKefrt6sfNBkSjIAUKaxY8tOMHP33ptMnlx2CgAAeGf//nfy1FNlp+hq4sTkoYfKTgE9TxVvREmSW28tOwFz45VX6n8s/9e/yk4A0DNNnVrdomJVr1tAkyjJAECZqvoiePLk5IEHyk4BAADvrKqvqZNiNhmgfd54I3n11bJTzNyDD5adgLlx7731X3Ji8uTk+efLTgHQ8/z979V93eJ9DDWnJAMAZXrmmbITzNqzz5adAAAA3tnTT5edYNaq/Hof6ujf/y47waxV9SIYb6+nHMcfe6zsBAA9j/cxUBolGQAo06RJZSeYtddfLzsBAAC8M6+pgelefrnsBLM2dWrZCZgbVX6OaaaXXio7AUDPU+XnGO9jqDklGQAoU58+ZSeYtb59y04AAADvzGtqYLoBA8pOMGu9nIrvlqr8HNNMAweWnQCg56nyc4z3MdScV+YAUKb55y87waxVORsAAEw3eHDZCWbNa2por0UXLTvBrPXrV3YC5kZPOY4vtljZCQB6Hu9joDRKMgBQplVXLTvBrK2yStkJAADgnVX5NXWVs0EdLbBAde/KXnrpshMwN3rCcbyjI1l++bJTAPQ87353cQyuop7w/EePpiQDAGVaf/2yE8zccsslCy9cdgoAAHhnq61WzSVWOjqSddctOwX0PIsvXnaCmdtww7ITMDeWWqr+s6wssojlwADKMP/8yXveU3aKmRs+vOwE0FJe+QBAmd797mpOXVjV8g4AAPyvPn2StdcuO0VX7353MasF0F5rrFF2gpnbfvuyEzA3Ojrqf46kqhdoAXqCKj7H9O+frL562SmgpZRkAKBMvXolm2xSdoquNtus7AQAADD7qvj6tYqZoCf4yEfKTtBVr17JdtuVnYK5Vffj+U47lZ0AoOfafPOyE3S10UZJ375lp4CWUpIBgLLtv3/ZCTobODD5xCfKTgEAALNv333LTtBV1V7nQ0/x6U9Xbwm2DTdM+vUrOwVz65OfrO/Fwj59kiOOKDsFQM+1227J4MFlp+jM+xh6ACUZACjbjjsmSy9ddooZ9tgjGTKk7BQAADD7Vl452WabslPMsMEG1Zw6HXqCXr2SXXctO0Vn3/pW2QmYF4svnnz4w2WnaI1tty2KMgCUY/DgooxZFYstlnzoQ2WngJZTkgGAsvXpkxx8cNkpZjj00LITAADAnPvMZ8pOMIPX1FCuU08tO8EMSyxRLFtA91al55hmOu20shMAcMghZSeY4cADzX5Hj6AkAwBVcNhhyfLLl50i+dSnkvXWKzsFAADMuR13TLbaquwUxSwyH/942SmgZ1tyyeSjHy07ReH888tOQDNstFF19qlm2W67YiY2AMq12mrJQQeVnaKY7f7II8tOAW2hJAMAVTDffMkFF5SbYckl3UEEAED31dGR/OhHxZTlZenfP7noIktXQBX89KfJQguVm2HHHZMPfKDcDDTPD3+YLLpo2SmaY775kl//uuwUAEz3rW8lyy5bboYf/ShZcMFyM0CbKMkAQFVstlm50/eee24yZEh54wMAwLxadtlyl1k54YRk1VXLGx+YoU+f5Moryxt//vmTyy8vb3yab9FFkzPPLDtFc/z0p8mAAWWnAGC6wYPLvYl2332Tbbctb3xoMyUZAKiSb3872WKL9o974onJDju0f1wAAGi2/fdPDjyw/ePuvnvyxS+2f1xg1jbZJPnKV9o/bp8+yc03J/36tX9sWusjH0mOOabsFPPm8MOTnXYqOwUA/2uLLcop/G+0UfL977d/XCiRkgwAVMmAAclvflO8MG2X//u/5Nhj2zceAAC0UkdHsSTGXnu1b8ydd04uvjjp5VQbVM7XvpZ87nPtG6937+S665Lhw9s3Ju118snt3aeaae+9LbUNUGVHHpl89avtG++9702uuSYZNKh9Y0IFeOcOAFUzeHBy/fXJ9tu3fqxTTik+OjpaPxYAALRL797JRRe15yLm3nsnv/xl0rdv68cC5s7ppydf/nLrx+nXL/njH5Mtt2z9WJSnoyP53veS444rO8mcOfzw5MILy04BwDs5/vjku99tfQF/q62Sm25KFlqoteNABSnJAEAVzTdfcvXVyQ9+0JoW9worJH/4Q3L00QoyAADUU69exYXxK69MFl+8+dsfOjT56U+TCy5QkIHu4MQTiwtBCy7Ymu2vs07yr38lI0a0ZvtUS0dHcsIJyY03JssuW3aatzf9HJMZZAC6jyOOSP70p+Q972n+tgcMSL7znWLmu8GDm7996AaUZACgqnr1Sj7zmeSee4r1SJuhd+/ibtp77inWZgcAgLrbaafk/vubu/zShz9cbHOPPZTOoTvZYovk2WeTD32oedvs16+4weXOO5NFFmnedukettwyuffe5OCDm3fHfzNnDvjAB4p9fscdm7dNANpjxIji9cUXv5j06dOcbb7//clddyWf/3xxrQB6KCUZAKi6FVcs7kz685+TT34y6d9/zrfxrnclX/lK8vjjxd20883X/JwAAFBVQ4cmF1+cPPxwcVfm3EwpPv/8ySGHFBdDf/Wr1sxOA7Renz7J5ZcnTzyRfOQjRcllbiyySPE+++WXixtc6LkGD07OPDP5+9+TY45JFl10zrcxcGCy777JHXckkyYlJ51UnMuZG337JjvvnDz6aHLttcWMAQB0TwMHJt/6VvG65atfTZZccs630a9f8olPJLfdVswu34rZaaCb6Wg0Go2yQ0BPNGbMmIwcObLTY6NHj84IU7IC7+TZZ4tpcv/yl2Ts2OTuu5PJkzt/zUILJeuvX3xstFGy3XZzf+IPAADqZuLE5JprkttvLy5I3nln8sornb9m0KBi+ZT110/e975iRhrTkUP9TJtWFByuuCJ58MHk6aeLx/5X//7JUksVx4VDD23ejK/Uz6RJRTll9OjivM24ccmLL3b+mv79k7XXToYPTzbYIPngB4tC5/+67bbiZqc770yefLLY9v/q1asoba2ySlGO+dznmjfjAADVMmVK8vvfF0sxjR1bfDz/fOev6ds3WWut4n3Me99bvI9ZbLFy8tLjdJfr30oyUJLucpAAuoEpU4oXwq+9VkyROGhQcWLFtO8AADB7pk1LnnuueE3daBR3bC68sCnIoaf6xz+KsszEickCCyTDhs28wACzo9EonmMmTiyeb6Y/x8xNkWXChGL/nDCh2M5iiyXLLtvsxAB0F41GcW1g4sRk6tRi9rCFFy6KMlCC7nL9W50YALq7vn3nfgpeAACguAt/bpbHAOpp2LDiA5qho6OY6aUZFlpo7pYMBKCeOjqKUszCC5edBLqVXmUHAAAAAAAAAACAVlOSAQAAAAAAAACg9pRkAAAAAAAAAACoPSUZAAAAAAAAAABqT0kGAAAAAAAAAIDaU5IBAAAAAAAAAKD2lGQAAAAAAAAAAKg9JRkAAAAAAAAAAGpPSQYAAAAAAAAAgNpTkgEAAAAAAAAAoPaUZAAAAAAAAAAAqD0lGQAAAAAAAAAAak9JBgAAAAAAAACA2lOSAQAAAAAAAACg9pRkAAAAAAAAAACoPSUZAAAAAAAAAABqT0kGAAAAAAAAAIDaU5IBAAAAAAAAAKD2lGQAAAAAAAAAAKg9JRkAAAAAAAAAAGpPSQYAAAAAAAAAgNpTkgEAAAAAAAAAoPaUZAAAAAAAAAAAqD0lGQAAAAAAAAAAak9JBgAAAAAAAACA2lOSAQAAAAAAAACg9pRkAAAAAAAAAACoPSUZAAAAAAAAAABqT0kGAAAAAAAAAIDaU5IBAAAAAAAAAKD2lGQAAAAAAAAAAKg9JRkAAAAAAAAAAGpPSQYAAAAAAAAAgNpTkgEAAAAAAAAAoPaUZAAAAAAAAAAAqD0lGQAAAAAAAAAAak9JBgAAAAAAAACA2lOSAQAAAAAAAACg9pRkAAAAAAAAAACoPSUZAAAAAAAAAABqT0kGAAAAAAAAAIDaU5IBAAAAAAAAAKD2lGQAAAAAAAAAAKg9JRkAAAAAAAAAAGpPSQYAAAAAAAAAgNpTkgEAAAAAAAAAoPaUZAAAAAAAAAAAqD0lGQAAAAAAAAAAak9JBgAAAAAAAACA2lOSAQAAAAAAAACg9pRkAAAAAAAAAACoPSUZAAAAAAAAAABqT0kGAAAAAAAAAIDaU5IBAAAAAAAAAKD2lGQAAAAAAAAAAKg9JRkAAAAAAAAAAGpPSQYAAAAAAAAAgNpTkgEAAAAAAAAAoPaUZAAAAAAAAAAAqD0lGQAAAAAAAAAAak9JBgAAAAAAAACA2lOSAQAAAAAAAACg9pRkAAAAAAAAAACoPSUZAAAAAAAAAABqT0kGAAAAAAAAAIDaU5IBAAAAAAAAAKD2lGQAAAAAAAAAAKg9JRkAAAAAAAAAAGpPSQYAAAAAAAAAgNpTkgEAAAAAAAAAoPaUZAAAAAAAAAAAqD0lGQAAAAAAAAAAak9JBgAAAAAAAACA2lOSAQAAAAAAAACg9pRkAAAAAAAAAACoPSUZAAAAAAAAAABqT0kGAAAAAAAAAIDaU5IBAAAAAAAAAKD2lGQAAAAAAAAAAKg9JRkAAAAAAAAAAGpPSQYAAAAAAAAAgNpTkgEAAAAAAAAAoPaUZAAAAAAAAAAAqD0lGQAAAAAAAAAAak9JBgAAAAAAAACA2lOSAQAAAAAAAACg9pRkAAAAAAAAAACoPSUZAAAAAAAAAABqT0kGAAAAAAAAAIDaU5IBAAAAAAAAAKD2lGQAAAAAAAAAAKg9JRkAAAAAAAAAAGpPSQYAAAAAAAAAgNpTkgEAAAAAAAAAoPaUZAAAAAAAAAAAqD0lGQAAAAAAAAAAak9JBgAAAAAAAACA2lOSAQAAAAAAAACg9pRkAAAAAAAAAACoPSUZAAAAAAAAAABqT0kGAAAAAAAAAIDaU5IBAAAAAAAAAKD2lGQAAAAAAAAAAKg9JRkAAAAAAAAAAGpPSQYAAAAAAAAAgNpTkgEAAAAAAAAAoPaUZAAAAAAAAAAAqD0lGQAAAAAAAAAAaq9P2QEAepRXXknuuit57LFk4sSk0UgGDEiWWipZb71kkUXKTgh0Ry++mNx5ZzJ+fPL668WxZeDAZNiw4tiy0EJlJ6SneuON5IEHkvvvT15+OZkypXjeW3jhZO21k+WWSzo6yk4JAAAAnTUayT/+UZzLffbZZNKkpE+fZP75k9VWS1ZfPenbt+yUMG8ajeTxx5O7706ee67Yz/v1SwYPLvbxVVct9nuYXVOmFOcCH3jAuUAqzZGN0r3xxht59NFH8+CDD+aZZ57JhAkTMm3atCy00EIZMmRIll9++ayzzjrp169f2VFhzjUayW23JT/+cTJ6dPLgg8Vjs7LssskGGyS7757stJMXoMDMTZuW3HRTcumlyZgxyd/+9vZfv+KKyYYbJp/4RLLttkkvkwnSQo89lvzoR8moUcVJltdfn/XXDh2arL9+8sEPJnvtpdAFAABAeV56KfnJT5Irr0zuuKMoDcxK//7JWmslm2+e7Ltv8u53ty8nzIsXXkguvji55ppk7Nji81kZOLAoNmy5ZbGfL798+3LSfTgXSDfU0Wi83dVa6uyxxx7L2LFjO328MJMnw5tvvjmbbbZZ08adOHFi/vjHP+bmm2/OzTffnLvvvjuTJk1627/Tv3//DB8+PHvttVf23HPPzDfffE3LU5YxY8Zk5MiRnR4bPXp0RowYUVIimur114tizJlnJvfcM3fbWGqp5IADkkMOMcMMUHjlleINx5lnvnMxZlZWWCE5+ODi+LLAAs3NR8/VaCTXXZf84AfFf+fmLcagQcmeeyaf+1xxtxIAAAC0w8MPJ6efnlxySXHuZW5svXXy2c8mO+5olgSq6d57i/38pz9NXnttzv9+R0eyww7Ffr711vbznq6Z5wIPO6yYoYta6C7Xv5VkeojHH388d9xxxzsWYmamGSWZ1157Lddcc01++ctf5re//W0mTpw419taYIEF8qUvfSlf+MIX0rt373nKVabucpBgLowenXz608kjjzRne0OGFC80Pv5xLzyhJ7v++mS//ZJ//rM521tiieTcc4uTNzAv/vWvonR17bXN2V6vXslRRyXHH19MxwoAAACtMHlycvLJyde/XiwX3AxbbVXc4LTsss3ZHsyr115Ljjsu+e53i9mpm2GnnZKzzy7OL9LzOBfI2+gu17/Ntd9DrLvuutltt93yzW9+MzfeeONsF2Sa5fLLL89uu+2WX/7yl/NUkEmSl156KUcffXQ22mij/OMf/2hSQmiC119PvvCFZOONm1eQSYrpDvfcM9lll+Spp5q3XaB7ePnlZP/9k+22a15BJkn+859iWstPfSqZMKF526XnaDSKWdNWX715b4qT4oTNN75RTL16xx3N2y4AAABMd9ddyXvfm3zta80ryCTJjTcma66ZnHfe3M2sAM10++3Juusmp57avIJMklx1VXE+6Cc/ad42qT7nAqkRJRkqY9CgQVlhhRWy4YYbZvPNN89aa62VgQMHzvLr//znP2eLLbbIv//97zamhFmYMKG4S+A732ndm5+rrireuD38cGu2D1TPf/9bFO9+9KPWjXHxxcmIEc0t4FB/06Yln/98svfeyYsvtmaMBx5INtooufzy1mwfAACAnum3vy3OhdxzT2u2//LLxSwLBx+cTJ3amjHgnVx2WfL+97fuesL0m3uPOkohrCdwLpCaUZKhNL179852222X733vexk7dmxefvnl/P3vf8+YMWMyatSo3H333ZkwYUJGjRqVXXbZZabb+Pvf/55tttkmkydPbm94eKsXXywKMrfd1vqxnnwy2WST5KGHWj8WUK7//rf4fW/VCZu3euih4k2zogyzo9FIDjkk+d73Wj/W5MnJbrsVJ3YAAABgXl15ZTFj9+uvt36sc85J9t23uTN4wOy49NJkjz2aO0vSrHz728lhhynK1JlzgdSQkkwPNmzYsOy66645+eSTc9111+WONk1htfzyy+eUU07JP/7xj/zud7/LYYcdlvXWWy+9enXdHfv165fNN988v/71r/Ob3/wmCy64YJevuf/++/Od73ynHdGhq0mTiuVKxo5t35hPP51svXWx7iNQTy+/nGy7bfK3v7VvzPHji2NLm5dkpBv68peLE33tMm1acWfS73/fvjEBAAConz/8obj42o7iwHQ//nHyhS+0bzz47W+L2T7aWVr5wQ+KpcuoJ+cCqaE+ZQegPYYNG5aVVlop66+/ftZff/0MHz48iyyySKevGT9+fEszLLfccjn22GOz9957p0+fOd/1dt5551x55ZUznTnm5JNPzuc+97nMN998zYoLs+drX0v++Mf2j/vPfyaf/nRy/fVJR0f7xwda64gj2jODzP966KHkM5+xnjCzduONyde/3v5x33ijeHN8//3Joou2f3wAAAC6txdeSD7+8WKWgnY77bRkyy2THXZo/9j0LP/9b/LJT5azzNdXv5psvnkxMzb1Uea5wL32Ks4F/s/1bGgGM8n0EPfcc0+uuOKKHHvssdluu+26FGRabdttt80jjzyS/fbbb64KMtNtuumm+fznP9/l8VdffTXXXXfdvESEOXfHHck3v1ne+DfckJx3XnnjA61x/fXJ+eeXN/5Pf5r85jfljU91vfxyMU10WZ55pihxAQAAwJz6/OeTf/+7vPH339/svbRWo5EcfHDy/PPlZfj0p5NXXy1vfJqr7HOBTz/tXCAtoyRDWyy66KLp27dvU7Z15JFHznRppmuvvbYp24fZMmVKMWVhGY3stzryyGJWGaAeXnkl2W+/slMkBx3kxA1dHX108o9/lJvhF79Ifv3rcjMAAADQvVx3XXLRReVm+M9/inO50Cq//GX5N7499lixNA/1UIVzgZdd5lwgLaEkQ7ezyCKLZL311uvy+BNPPFFCGnqsX/yimOatbK+8knz722WnAJrlvPOqUXx76qnkzDPLTkGV/POf7V17+O0cd1x719UGAACgezvuuLITFC68MHn00bJTUEeNRnX28zPOKJZ9ontzLpCaU5KhWxo2bFiXx/7rSZd2qtLF4x//2BSGUAfTpiVnnVV2ihnOOaf82bKojnPPrc7+cN99yZ/+VHYKAAAAuoO//rX4qIqqXHSmXkaNSh5+uOwUhTfeSH70o7JTMK+cC6TmlGTolma2dNPMlmCClrj77mT06LJTzPDii8nPflZ2CmBe3XRT8re/lZ1ihiefTH7727JTUAWTJxezHFVJlcqqAAAAVFeVbkhKkgsuSF57rewU1E3VzpOcc05RlqF7ci6QHkCrgG5p/PjxXR5bYokl2h+EnumSS8pO0NXFF5edAJhXji1U1U03VW+a3MsvL5YcBAAAgFmZNCm57LKyU3T2/PPJtdeWnYI6efHF5Mory07R2T//mdxyS9kpmFtVPBd4xRXOBdJUSjJ0OxMmTMi4ceO6PL7SSiuVkIYeacyYshN0dccdmtnQ3VXx2HL77WUnoAqquG9OmZLceWfZKQAAAKiye+9NJk4sO0VXzrfQTHfcUZ1lcd7Kft59VfFc4OTJzgXSVEoydDs/+clPMmXKlC6P77DDDiWkoceZOjW5666yU3T12mvJgw+WnQKYWy++mDz6aNkpuvrXv5Knnio7BWUbO7bsBDNX1VwAAABUQ1XfN1Y1F91TVfenqubinVX1366queiW+pQdAObExIkT881vfrPL4wsssEC23HLLtmYZM49NynvvvbdJSWirhx6q5t0HSfECYc01y04BzI2ZzJBWGWPHJttvX3YKylTVN6BVzQUAAEA1VPV947hxSaORdHSUnYQ6qOp+XtVcvLOq/ttVNRfdkpIM3cpXv/rVPPnkk10e/+xnP5v+/fu3NcvIkSPbOh4V8cQTZSeYtfHjy04AzC3HFqpq0qTqziZk3wQAAODtVPV944svJhMmJEOGlJ2EOqjqfv7kk8XM/L17l52EOfH6684F0iNYbolu4+abb853vvOdLo8vscQS+b//+78SEtEjvfZa2Qlm7fXXy04AzC3HFqrKvgkAAEB35T0tPUGV96VJk8pOwJyq8v5U5Wx0O0oydAv/+te/svvuu2fatGld/uyss87K4MGDS0hFj9RolJ1g1mby+wF0E1U+tlQ5G61X5X//KmcDAACgfFV+31jlbHQvVd6XqpyNmavyv1mVs9HtKMlQea+++mo++MEP5umnn+7yZwceeGB23nnnElLRYw0aVHaCWRs4sOwEwNxybKGq7JsAAAB0V97T0hNUeV8aMKDsBMypKu9PVc5Gt9On7ADwdqZMmZKPfvSjufPOO7v82fDhw3P66aeXkKowevToefr79957bw488MAmpaFtllmm7ASzNmxY2QmAuVXlY0uVs9F6/fsniy6aPPNM2Um6sm8CAADwdqp6vnTw4GTBBctOQV0MG5b85S9lp+hqySWT3r3LTsGcGjDAuUB6BCUZKmvatGnZa6+98rvf/a7Ln6200kq5+uqr079//xKSFUaMGFHa2JRo1VWLtmoV17MdPrzsBMDcWm+9shPM2vrrl52Asq2/fnLddWWn6MrzHgAAAG9n/fWT888vO0VX662X9LLQA02y/vrJr35VdoqunLfpvpwLpAfwLEwlNRqN7Lvvvrnsssu6/NmwYcNy4403ZvHFFy8hGT1enz7J2muXnaKr/v2T1VYrOwUwt4YMSVZYoewUXS2xRHHXBz1bVYtSVc0FAABANVT1fWNVc9E9VXV/qmou3llV/+2qmotuSUmGSjr44INz0UUXdXl8ySWXzE033ZRll122/aFgug03LDtBV+uvn/TtW3YKYF5U8djyvveVnYAqqOK+2adPtWdgAgAAoHxrrVUsHVI1zrfQTMOHV3NmIvt59+VcID1ABY+a9HSHHXZYzjnnnC6PL7bYYrnpppuy0korlZAK3mLPPctO0FUVMwFz5hOfKDtBV44tJMnWWyeLLFJ2is523rlYwx0AAABmZcCA5CMfKTtFZwsumOy4Y9kpqJMhQ5Iddig7RWdLLJFssUXZKZhbVTwXuMsuzgXSVEoyVMqRRx6Z73//+10eX2SRRXLTTTdllVVWKSEV/I/110/e+96yU8ww//wuZEMdbLttsvzyZaeYYcklk512KjsFVdC/f7LffmWn6OyQQ8pOAAAAQHdQtfePe++dDBpUdgrqpmr7+f77m/m+O6viucCDDy47ATWjJENlHHXUUfnud7/b5fEhQ4bkhhtuyBprrFFCKpiFKr3o3GsvDVqog969k4MOKjvFDN7M8lYHHph0dJSdovCe9ySbb152CgAAALqDDTdM1lmn7BQzVOncD/WxzTbJiiuWnaLQu3dxXpHuzblAak5Jhkr40pe+lG9/+9tdHl9wwQXz+9//PutU6UUsJMkeeyTvfnfZKYq7Do46quwUQLMceGCy+OJlp0gWXjj57GfLTkGVLLdcss8+ZacofPWr1XmTDgAAQLV1dCQnnFB2isLHP56YLZ9W6NUrOf74slMUDjggWXrpslMwr6p0LvCEE5wLpOmUZCjdcccdl1NOOaXL4wsssEB+//vfZ/jw4SWkgnfQv39y4YXlPzF/4xvFixWgHhZcMDnnnLJTJD/8YVGUgbc69dRiGa4y7bxz8rGPlZsBAACA7mWnnZLddy83w2KLJaefXm4G6m3PPZPtty83w7BhxTUL6qEK5wJ32SXZbbdyM1BLSjKU6sQTT8yJJ57Y5fHBgwfnuuuuywYbbFBCKphNI0cmRxxR3vibbJIcemh54wOtsdNOxZvasnz4w954MHMLLZScd1554w8Zkpx9dvkFVQAAALqfH/ygKKqU5ayzkkUWKW986q+jIzn33OImvLKcf36ywALljU9zlX0ucOjQ4tjpXCAtoCRDaU455ZQcd9xxXR6ff/75c+2112bEiBElpII5dNJJSRllrne9K/nxj4tpFIH6+cEPirVW222FFbzx4O1tv31y+OHtH7dXr+Sii6qxHBkAAADdzyKLJJdckvTp0/6xDzww+dCH2j8uPc9SSxVFlTLO7R11VLLVVu0fl9Yq81zghRc6F0jLuLpKKU499dR86Utf6vL4oEGD8tvf/jYbb7xxCalgLgwcmFx7bbL66u0bc8iQ5Pe/t8wS1NlCCyU33JAsu2z7xlxyyeTGG5NFF23fmHRP3/lOstde7R3zRz8qZlkCAACAubXNNsnFF7f3xsOPfrRY1hra5cMfLmbibad99rHMUp05F0gNKcnQdqeffnq++MUvdnl80KBBueaaa7LJJpuUkArmwcILJ7fckgwf3vqxFl88+cMfkrXWav1YQLmWWSb54x/bM6PMCisUYy2/fOvHovubfifHAQe0fqzevYs7/T796daPBQAAQP3tsUdy2WVJ376tH2uvvZKf/rR4bwvtdMAByQUXtKcQdsghxZI8ZqauL+cCqSElGdrqrLPOyuEzmZZr4MCBueqqq7L55pu3PxQ0wyKLFEWZgw9u3Rhbb5385S/Jmmu2bgygWpZZJhk9ujiB0yof/nBy++1FUQZmV+/exV1JP/xhMt98rRljhRWSm29O9tyzNdsHAACgZ/rIR5Jbb03e/e7WbH/gwOS004plg8tY3gmSomRw002tm5F+/vmTc89NzjijvbMzUQ7nAqkZRy3a5oILLsihhx7a5fEBAwbkyiuvzJZbbllCKmii+eZLzjyzWK6kmUukDB5cvNi8/vrigjnQswwdWtx1dMUVyWKLNW+7Cy9c3Dn1q19ZYom509FR3C10zz3JZps1d9uf/Wyx3fe/v7nbBQAAgCTZcMPkrruSI49s7gwYG22U3H13cvjhigOUb7PNivMrzb65d6utkvvuS/bf3wwyPUkrzwV+7nPOBdJWKqy0xS9+8Yvsv//+aTQaXf7s6KOPzuDBg3P77bfP8zjrrrtu+vfvP8/bgXmy5ZbJ/fcn55yTnHVW8uijc7edhRdO9t23eHGw1FLNzQh0P7vuWrz5+OEPi+Lck0/O3XaWXLJ4A/vZzxbHGZhXK6xQ3Jl0xRXF3UN/+MPcbadfv2Kt9sMPb88ShgAAAPRsAwcmp55azFrwve8lP/95MmnS3G1ro42Sz3ymeF9reSWqZPDg4ubeT32q2M8vvzyZMmXutrX55sU5xV12UY7pyd56LvAHPyhm5pobzgVSoo7GzFoL1M748eOz/PLLt2z7jz/+eJZ7mynb9t577/z4xz9u2fizm6NKxowZk5EjR3Z6bPTo0RkxYkRJiWiJadOKmWUuuii57bbkH/94+69fZJFkgw2S3XcvXhwMGNCWmEA388YbyW9/m1x8cbFU0r///fZfv/jixR1Se+6Z7LRTe9bdpue6//6iyDVqVPLAA8Vz4awMHJisu26xX376082dLQkAAADmxHPPJRdemFx5ZTJuXDJx4qy/tlevZJVVitLA/vsna6/dvpwwL556KrngguTqq5M770xef33WX9u7d7LaasWNwQcckKy6avty0n3cd19y3nnOBZKk+1z/NpMMQCv16pVss03xkSTPPpuMHZs89ljxJmvatOJFwVJLJeutlwwbpoENvLM+fZKddy4+kuS//y2OLePHF29sG43i2DJsWLL++sXsMdAuq6+enH568f8TJxbTVz/wQPLKK8nkyUUBdOjQZJ11ihOK1mcHAACgChZeOPnCF4qPqVOThx8uSgTPPVecb+nbN5l//qIosM46xf9Dd/OudyXHHFN8vPFG8uCDxbmbF14o9vN+/Yp9e/XVi/LXoEFlJ6bq1lhjxrnAV18tlpxzLpCKsxcCtNMiiyTbblt2CqBuFl882WGHslNAV4MGJSNHFh8AAADQXUyfQWO11cpOAq3Tp0+y5prFBzTDfPM5F0i30KvsAAAAAAAAAAAA0GpmkukhllhiiYwZM6al2387F110US666KKWjQ8AAAAAAAAA8HaUZHqI/v37Z8MNNyw7BgAAAAAAAABAKSy3BAAAAAAAAABA7SnJAAAAAAAAAABQe0oyAAAAAAAAAADUnpIMAAAAAAAAAAC1pyQDAAAAAAAAAEDtKckAAAAAAAAAAFB7SjIAAAAAAAAAANSekgwAAAAAAAAAALWnJAMAAAAAAAAAQO0pyQAAAAAAAAAAUHtKMgAAAAAAAAAA1J6SDAAAAAAAAAAAtackAwAAAAAAAABA7SnJAAAAAAAAAABQe0oyAAAAAAAAAADUnpIMAAAAAAAAAAC1pyQDAAAAAAAAAEDtKckAAAAAAAAAAFB7SjIAAAAAAAAAANSekgwAAAAAAAAAALWnJAMAAAAAAAAAQO39P/buO0yq8uwD8LO0BekIiKI0KyooYsFCLNhRjCVqxArWGDUaNX5RY4kajSbRmFij2CPBGDuiBrE3ioolNkABsSBV6rI73x9zmbjOALuzszuzZ+/7uvZKfGfOc55BeRjO/OY9QjIAAAAAAAAAACSekAwAAAAAAAAAAIknJAMAAAAAAAAAQOIJyQAAAAAAAAAAkHhCMgAAAAAAAAAAJJ6QDAAAAAAAAAAAiSckAwAAAAAAAABA4gnJAAAAAAAAAACQeEIyAAAAAAAAAAAknpAMAAAAAAAAAACJJyQDAAAAAAAAAEDiCckAAAAAAAAAAJB4QjIAAAAAAAAAACSekAwAAAAAAAAAAIknJAMAAAAAAAAAQOIJyQAAAAAAAAAAkHhCMgAAAAAAAAAAJJ6QDAAAAAAAAAAAiSckAwAAAAAAAABA4gnJAAAAAAAAAACQeEIyAAAAAAAAAAAknpAMAAAAAAAAAACJJyQDAAAAAAAAAEDiCckAAAAAAAAAAJB4QjIAAAAAAAAAACSekAwAAAAAAAAAAIknJAMAAAAAAAAAQOIJyQAAAAAAAAAAkHhCMgAAAAAAAAAAJJ6QDAAAAAAAAAAAiSckAwAAAAAAAABA4gnJAAAAAAAAAACQeEIyAAAAAAAAAAAknpAMAAAAAAAAAACJJyQDAAAAAAAAAEDiCckAAAAAAAAAAJB4QjIAAAAAAAAAACSekAwAAAAAAAAAAIknJAMAAAAAAAAAQOIJyQAAAAAAAAAAkHhCMgAAAAAAAAAAJJ6QDAAAAAAAAAAAiSckAwAAAAAAAABA4gnJAAAAAAAAAACQeEIyAAAAAAAAAAAknpAMAAAAAAAAAACJJyQDAAAAAAAAAEDiCckAAAAAAAAAAJB4QjIAAAAAAAAAACSekAwAAAAAAAAAAIknJAMAAAAAAAAAQOIJyQAAAAAAAAAAkHhCMgAAAAAAAAAAJJ6QDAAAAAAAAAAAiSckAwAAAAAAAABA4gnJAAAAAAAAAACQeEIyAAAAAAAAAAAknpAMAAAAAAAAAACJJyQDAAAAAAAAAEDiCckAAAAAAAAAAJB4QjIAAAAAAAAAACSekAwAAAAAAAAAAIknJAMAAAAAAAAAQOIJyQAAAAAAAAAAkHhCMgAAAAAAAAAAJJ6QDAAAAAAAAAAAiSckAwAAAAAAAABA4gnJAAAAAAAAAACQeEIyAAAAAAAAAAAknpAMAAAAAAAAAACJJyQDAAAAAAAAAEDiCckAAAAAAAAAAJB4QjIAAAAAAAAAACSekAwAAAAAAAAAAIknJAMAAAAAAAAAQOIJyQAAAAAAAAAAkHhCMgAAAAAAAAAAJJ6QDAAAAAAAAAAAiSckAwAAAAAAAABA4gnJAAAAAAAAAACQeEIyAAAAAAAAAAAknpAMAAAAAAAAAACJJyQDAAAAAAAAAEDiCckAAAAAAAAAAJB4TQrdAAAAQJ0rL4/49tuIZcsimjWLaNUqokmC/nq0fHnEokURZWURzZunX18j35GABqmiIj3vli6NaNo0omXL9NwDGp5UKmLx4oglSyJKSiJatIhYY41CdwUAAFCnEnQVGAAAYCWmTo148smI8eMjJkyIePfdiBUr/vd4o0YRG28csfXWEf37R+yxR8Smmxau3+pIpSImTowYOzb92iZMiPj448rPKS2N6Ns3/dq23jpin30i1lmnMP0CtevzzyNGj07Pu/HjIyZPTgcCv2+DDf4373bdNWKrrdIfmAPJsmRJxFNPRbz66v/eI8yZU/k5HTumZ0H//hHbb59+D1RaWph+AQAA6oCQDAAAkEzl5RFPPBFxww3pgMyqVFREvP9++ufuu9NrAwdG/OxnEQcdVJy7LixaFPH3v6df36RJq37usmURb7yR/omIaNw44sc/jjj11IhddvHhONR3qVTEs8+m58FDD6Xn36p8/HH65/770/+81VbpeffTn9pVApLgk08ibrop4vbbM0MxPzR7dsSYMemfiIjOnSOOPz7ipJMiunWr/V4BAADqmP22AQCA5Bk7NqJ374ghQ1YfkFmZF15If2Dcq1fEP/+Z3/5qIpWKuPXW9AdXJ5yw+oBMNuXl6de0227p3SQmTsx/n0DdGD8+vQPEoEHp39erC8hkM3Fi+kPx9daL+Nvf0nMGqH/mzIk49tiIDTeMuOaa1Qdksvnqq4grrojo2TPi5JMjFizIe5sAAACFJCQDAAAkx7ffpndDGDQo4qOP8lNz5syIQw6JOPzw9LetC+mzzyL22ivixBNz++Arm4kTI7bdNuLCCyOWL89PTaD2LVsWcf75EQMG5BaWy2bOnHT4bu+90/MGqD8eeSRis80i7rwzP0G3ioqIm2+O2Hzz9C2bAAAAEkJIBgAASIaPPoro1y/ixhtrp/7IkekPisaPr536q/PUUxF9+kQ8/XT+a5eXR1x2WcQOO0R8+WX+6wP5NWtWxPbbp3d7yGXnmNWpzXkD5FdFRcTpp0cccEDEF1/kv/706emA7v/9n12mAACARBCSAQAA6r933okYODDi449r9zxffpm+RdELL9TueX7owQcj9tuv9m95MGFCxE47pT8QA4rTZ5+l512+do9ZmQULIgYPjnjoodo9D5C78vKIo46KuP762j/XlVdGnHRSOpQDAABQjwnJAAAA9dsnn0TssUfd7YCycGH6g+MJE+rmfGPGpG/1VFZWN+f7+OP0r+fXX9fN+YCq++qr9O/PTz6pm/OVlUUceqgdZaAYpVLp2y/ed1/dnfPWWyPOOsuOMgAAQL0mJAMAANRfy5ZF/PjHtXN7gVVZuDB9W4O5c2v3PJ9+GvGTn9RdQOY7H3wQ8dOf+hAMiklFRTow9+GHdXvesrKIQw5J72ADFI+//CXi9tvr/rzXXRdx5511f14AAIA8EZIBAADqr0svTd9qqRBmzow488zaq59KRRx/fDqQUwj//nfEzTcX5txAphtvjHj22cKce8GC9DwSnIPi8PHHEb/6VeHO/4tfpN8HAQAA1ENCMgAAQP00fnzEVVcVtoc774x4/PHaqX3rrRHPPFM7tavqnHMipk0rbA9AxJQphf1APCJ9y6W//a2wPQDpXaWGDYtYsqRwPcyfH3HCCYJzAABAvSQkAwAA1E9nnRVRXl7oLiLOOCP/fXz7bcR55+W3Zq59/PrXhe4C+PWvIxYtKnQX6blUDH1AQ/bAAxEvvFDoLiJGj4548slCdwEAAFBtQjIAAED98+abxfEBUUTEJ59EjBmT35r33Rcxd25+a+Zq1KiIL74odBfQcH3+efpD8WIwZ07E3/9e6C6gYbv++kJ38D9/+UuhOwAAAKg2IRkAAKD+ufHGQndQ2Q035K9WKhXx17/mr15NrVjhFitQSLfeWhy7Zn3nr391ixUolLffjnjxxUJ38T+jR6dvBwcAAFCPCMkAAAD1y6JFEffcU+guKnviiYjp0/NT64030h+CFZNbbvGhOBRCRUU6JFNM3nwzYsKEQncBDVOxzYNUSpAWAACod4RkAACA+uX11yMWLy50F5WlUhHPPZefWv/+d37q5NP06enbSgF166OPImbOLHQXmcaOLXQH0DAV4++9YuwJAABgFYRkAACA+qVYdzDIV18TJ+anTr4V6687JFmx/r4r1r4gyRYtivjPfwrdRaa33krfmhEAAKCeEJIBAADql2L9cDZffSX99QFVV6y/74q1L0iyN99M34Kt2CxdGvHee4XuAgAAoMqEZAAAgPqlWD+IyUdfS5ZETJ1a8zq14d13C90BNDzFOu8++SRi2bJCdwENS7HOg4ji7g0AAOAHhGQAAID65dtvC91Bdvnoq1hfW0Rx9wZJVcy/7xYtKnQH0LAsXFjoDlaumGcVAADADwjJAAAA9UtZWaE7yG758prXKNbXFpGf1wdUj5kAfMc8AAAAyAshGQAAoH4pLS10B9k1b17zGsX62iLy8/qA6jETgO+YBwAAAHkhJAMAANQva65Z6A6y69Ch5jXatIlo0qTmdWpDsf66Q5IV6++7pk0jWrUqdBfQsHTsWOgOVi4f74EAAADqiJAMAABQv2y5ZaE7yK5fv5rXaNo0YrPNal6nNuTj9QHVU6zzrk+f4g30QVIV6zyI8B4BAACoV4RkAACA+qV//0J3kF2++kr66wOqrlh/3xVrX5Bkm2wS0aJFobvItOaaEd26FboLAACAKhOSAQAA6petty50B9nlq69ifX0+FIe6V6zzoFj7giRr0qQ4d2zZeuuIkpJCdwEAAFBlQjIAAED90rdvxHrrFbqLylq1ith55/zUGjw4olGR/VVtwICITp0K3QU0PGutFbHNNoXuorJGjSL22afQXUDDtP/+he4g05Ahhe4AAACgWorsyisAAMBqNG4ccfLJhe6isqOPjmjdOj+1unVLB2WKySmnFLoDaLh+9rNCd1DZkCHFF1SEhmLYsIhmzQrdxf+0bBlx5JGF7gIAAKBahGQAAID6Z/jwiKZNC93F/+Q7RFJMH4p36BBx6KGF7gIarsMOi2jfvtBd/E8xzSdoaDp3jvjJTwrdxf8cdVREmzaF7gIAAKBahGQAAID6Z6210h/MFIM994zYfPPir5mrU0+NaN680F1Aw9WiRfr3YTHo0ydi0KBCdwEN25lnFrqDtMaNI04/vdBdAAAAVJuQDAAAUD9deWVEp06F7aFFi4i//jX/dRs1irj11vT/FtJGG0X83/8Vtgcg/ftwww0L20OxzCVo6Pr3jzjttEJ3EXHeeRG9exe6CwAAgGpzZQMAAKifOnWKuPHGwvbwu99FbLBB7dQeMCDil7+sndpVUVISMWJEOggEFNYaa0Tcfnv692WhnH12xHbbFe78wP/87ncRvXoV7vybbx5x4YWFOz8AAEANCMkAAAD118EHRxx5ZGHOvdtutf9N7ksuKdxtl371q4gddijMuYFMO+0Ucc45hTl3377peQQUh5YtI+64I33Lo7pWWhpx553p/wUAAKiHhGQAAID67dZb04GVurTllhH//Gft33akRYuI0aMjunev3fP80E9/GnH55XV7TmD1rrgi4rDD6vacPXpEPPFERPPmdXteYNUGDoy466663WGqceOIkSMjttqq7s4JAACQZ0IyAABA/da8ecTDD0fsvnvdnG+rrSKeeiqiXbu6Od+660aMHVt3t1X46U/T3xCv7QAQUH2NG0fcfXfdBWXWXz/i2Wcjunatm/MB1XPEEekdZeriz+ymTSPuvz/igANq/1wAAAC1yFVPAACg/mvVKuKxxyKGDavd8wwZkg6sdOpUu+f5oV69Il58MX27ldpSUpK+xdI996Q/CAOKU9OmEffeG3HuubW7g8TAgem506NH7Z0DqLmjj06HhTt0qL1zrLVWekepQw6pvXMAAADUESEZAAAgGUpLI267LR2WWXvt/NZu1y59S4OHHopo2za/tatq7bUjxo2L+NOf0rdhyqcNN4x44YWIK6+0gwzUB40bR1x1VcTzz0dssEF+a7doEXHttel506VLfmsDtWO//SLeey/iwAPzX/uIIyLefbfuduwDAACoZa5+AgAAyTJ4cPrDnNNOi2jZsma1mjWLOOaYdL2jjqrdXRuqonHjiF/8IuKttyIOOqjmgZb27SPOPz/izTcjdtwxHx0CdWmnndLz4Ne/rvkt4Bo1ijj44Ii334444wyBOahv1lor4p//jBg5MqJ375rX69s3vUPNvfdGrLlmzesBAAAUCVc8AACA5GnfPuLPf46YOTPi+usjNt20esf37JneVWXGjIg77ohYZ51aaTNnG26Y/iBs2rSICy6o/m4PW28dcfvt6V+fyy6LWGONWmkTqANrrBFx+eXp38+3357+/V0da68dceGF6XnywAP535kGqDslJRGHHpoO9z77bMRPflK9WyiWlkYMHRrx0kvpAO2QIbXWKgAAQKGUpFKpVKGbgIbolVdeiR122KHS2ssvvxzbb799gToCAEiwVCris88iJkxI/7z1VsS8eRHLlqV3i2nTJmLzzdMfLvfvH7H++oXfNaY6yssjPvjgf6/vvfcivv02oqwsonnz9DfAt9zyf68v37ejAorLrFkR48en58Gbb0Z8803E0qXpD8tbtUoHB/v3T8+EjTe2awwk2bffpufAdzNh+vSIJUvS73NatIjo3j09D/r3T79XEJwFAAByVF8+/25S6AYAAABqXUlJ+kOg7t3TtylKmsaN0x96b7pp+rZQQMO29toR+++f/gEatlat0rdm22mnQncCAABQFHxVCAAAAAAAAACAxBOSAQAAAAAAAAAg8YRkAAAAAAAAAABIPCEZAAAAAAAAAAAST0gGAAAAAAAAAIDEE5IBAAAAAAAAACDxhGQAAAAAAAAAAEg8IRkAAAAAAAAAABJPSAYAAAAAAAAAgMQTkgEAAAAAAAAAIPGEZAAAAAAAAAAASDwhGQAAAAAAAAAAEk9IBgAAAAAAAACAxBOSAQAAAAAAAAAg8YRkAAAAAAAAAABIPCEZAAAAAAAAAAAST0gGAAAAAAAAAIDEE5IBAAAAAAAAACDxhGQAAAAAAAAAAEg8IRkAAAAAAAAAABJPSAYAAAAAAAAAgMQTkgEAAAAAAAAAIPGEZAAAAAAAAAAASDwhGQAAAAAAAAAAEk9IBgAAAAAAAACAxBOSAQAAAAAAAAAg8YRkAAAAAAAAAABIPCEZAAAAAAAAAAAST0gGAAAAAAAAAIDEE5IBAAAAAAAAACDxhGQAAAAAAAAAAEg8IRkAAAAAAAAAABJPSAYAAAAAAAAAgMQTkgEAAAAAAAAAIPGEZAAAAAAAAAAASDwhGQAAAAAAAAAAEk9IBgAAAAAAAACAxBOSAQAAAAAAAAAg8YRkAAAAAAAAAABIPCEZAAAAAAAAAAAST0gGAAAAAAAAAIDEE5IBAAAAAAAAACDxhGQAAAAAAAAAAEg8IRkAAAAAAAAAABJPSAYAAAAAAAAAgMQTkgEAAAAAAAAAIPGEZAAAAAAAAAAASDwhGQAAAAAAAAAAEk9IBgAAAAAAAACAxBOSAQAAAAAAAAAg8YRkAAAAAAAAAABIPCEZAAAAAAAAAAAST0gGAAAAAAAAAIDEE5IBAAAAAAAAACDxhGQAAAAAAAAAAEg8IRkAAAAAAAAAABJPSAYAAAAAAAAAgMQTkgEAAAAAAAAAIPGEZAAAAAAAAAAASDwhGQAAAAAAAAAAEk9IBgAAAAAAAACAxBOSAQAAAAAAAAAg8YRkAAAAAAAAAABIPCEZAAAAAAAAAAAST0gGAAAAAAAAAIDEE5IBAAAAAAAAACDxhGQAAAAAAAAAAEg8IRkAAAAAAAAAABJPSAYAAAAAAAAAgMQTkgEAAAAAAAAAIPGEZAAAAAAAAAAASDwhGQAAAAAAAAAAEk9IBgAAAAAAAACAxBOSAQAAAAAAAAAg8YRkAAAAAAAAAABIPCEZAAAAAAAAAAAST0gGAAAAAAAAAIDEE5IBAAAAAAAAACDxhGQAAAAAAAAAAEg8IRkAAAAAAAAAABJPSAYAAAAAAAAAgMQTkgEAAAAAAAAAIPGEZAAAAAAAAAAASDwhGQAAAAAAAAAAEk9IBgAAAAAAAACAxBOSAQAAAAAAAAAg8YRkAAAAAAAAAABIPCEZAAAAAAAAAAAST0gGAAAAAAAAAIDEE5IBAAAAAAAAACDxhGQAAAAAAAAAAEg8IRkAAAAAAAAAABJPSAYAAAAAAAAAgMQTkgEAAAAAAAAAIPGEZAAAAAAAAAAASDwhGQAAAAAAAAAAEk9IBgAAAAAAAACAxBOSAQAAAAAAAAAg8YRkAAAAAAAAAABIPCEZAAAAAAAAAAAST0gGAAAAAAAAAIDEE5IBAAAAAAAAACDxhGQAAAAAAAAAAEg8IRkAAAAAAAAAABJPSAYAAAAAAAAAgMQTkgEAAAAAAAAAIPGEZAAAAAAAAAAASDwhGQAAAAAAAAAAEk9IBgAAAAAAAACAxGtS6AYAitqXX0ZMmJD+mTw5Yt68iOXLI5o1i2jbNqJPn4j+/dM/XboUulsAskmlImbM+N88f++9iAULIsrKIkpLIzp0iNhii//N8w4dCt1x4Xz7bcSkSelfp0mT0n8OLl0a0bhxRKtWERtuGLH11ulfp/XXj2gkcw8AAABAHixaFPHmm/+7LjVr1v+uS7Vsmb4u9d31uw03XPl1KdcCgdUQkqGozJgxI956662YOnVqLFiwIBo3bhzt2rWLjTbaKLbaaqto27ZtoVukIfj224j77ou46ab0G7FVeeCB//3/LbaIOPnkiKFDI1q3rt0eAVi9OXMi7rgj4pZbIj74YNXPvf/+//3/HXaIOOWUiEMOiWjevFZbLArl5RFPPhlx443p/y0vr9pxa68dMWxYxIknRnTrVrs9AgAAAJA8FRURTz8dccMNEU88EbFiRdWOW2utiOOOizjppIgePdJrrgUCVVSSSqVShW6CwpgyZUpMmDCh0s/cuXMznvfss8/GLrvsUmt9fPvtt3HbbbfF3/72t3jnnXdW+rwmTZrEzjvvHKecckocdNBBUVJSUms91YVXXnkldthhh0prL7/8cmy//fYF6oiYPz/it7+NuPXWdKo4V61bRwwfHvGb30S0b5+//gComi++iLjwwoh77kl/2yRXHTtGnHpqxK9+FdGiRf76KxYVFRE33xzx+99HTJuWe51GjSKGDIm44oqI3r3z1h4AAAAACVVREXHbbRFXXRXxySe51ykpidhjj/QOyE884VogFFh9+fxbSKaBmDp1aowfP361gZhsajMk8/DDD8epp54aM2fOrNZx2223XYwYMSJ61+MPYurLkGgwxoyJOP749BZ8+bLOOunE8uDB+asJwMqlUumdwE47LaKK73OqZKONIkaMSH+rJCk++ii9C8yLL+avZrNmEZdeGvHLX0Y0sWElAAAAAFlMmZL+ovG4cYXuJLskXguEOlJfPv9eyc3aSJp+/frFoYceGldddVU888wzVQ7I1KZLL700DjzwwGoHZCIiXnvttdhuu+1i9OjRtdAZDcqyZent+PbeO78BmYiIzz+P2G+/9IeQS5bktzYAlc2fH3HwwRFHHpnfgExExIcfRuy0U8R551X9VkTF7Oab07cIzGdAJiJi+fL0r9GOO9ZsZxoAAAAAkun22yP69i3egExE8q4FAhmEZCiIK664Ii666KLItpFRSUlJbLDBBrHrrrvGTjvtFGuttVbWGgsXLowDDzwwxhXzH6QUt2+/TYdYbrmlds8zYkTEvvtGLFxYu+cBaKi++ipil10i/vWv2jtHKpXe/nXo0HQYpD5KpdK3oTr55NoNb77+ejoo8957tXcOAAAAAOqPVCrissvSO8gsWlToblYvCdcCgZUSkqHOPfXUU3HBBRdkrDdq1ChOP/30mDp1anz00UcxduzYeOGFF+KLL76IV155Jfbcc8+MY5YtWxaHHXZYfP7553XROkmydGnEAQdEPPNM3Zxv3Lh0IMeOMgD5NXduxO67R7z5Zt2cb+TI9G419fFbJBddlL4YURc+/zxit93St3UCAAAAoGH73e/SX96qb0aOjDjqqPp5LRBYKSGZBqxbt25x4IEHxuWXXx5PPvlkjB8/vtbPuXjx4jjhhBMydpBp3rx5PPbYY3HddddF9+7dM44bMGBAjBkzJmu45quvvoozzjij1nomgVKp9C2Qxo6t2/M+/3zE0Uenzw9AzZWXRxx4YMTkyXV73lGjIs45p27PWVO33Rbx29/W7Tm//DJizz0j5s2r2/MCAAAAUDzuuSfi/PML3UXu/vGPiHPPLXQXQB41KXQD1I1u3brFBhtsEP3794/+/fvH1ltvHR07dqz0nGnTptV6H3/84x/js88+y1i/5ZZbYp999lnt8b/97W9j5syZMWLEiErrDzzwQLz88suxww475K1XEmzUqIi//70w537ggYh7703vQgBAzVx7bcRzzxXm3H/6U8SQIenbPBW7adMiChUonjYt4swz07ceBAAAAKBhmTEj4tRTC91Fzf3xjxH7718/rgUCq2UnmQbi7bffjgcffDDOP//82HvvvTMCMnVhyZIl8ec//zljfe+9946jjjqqynX+9Kc/RefOnTPWr7zyyhr1RwPx1VeFf0N2+ukRs2YVtgeA+u6DDyKy7DBXp4YNK/57KFdUFP5ez3fcEfHEE4U7PwAAAAB1L5WKOOGEiAULCt1JftSHa4FAlQjJUGf+9a9/xddff52xfvHFF1erTtu2bePMM8/MWH/88cfj888/z7U9Goqzz46YPbuwPcydm/5WPQC5O+mkiKVLC9vD1KkRl1xS2B5W5+676/72gtkUw78vAAAAAOrOyJERTz5Z6C7ypz5cCwSqREiGOvP3LLe36du3b2y33XbVrjVs2LBo3LhxpbWKioq4//77c+6PBmDGjIj77it0F2mjRkV8+mmhuwCon954o3C3Wfqhm26KWLiw0F1kl0pFXH11obtImzEjff9mAAAAAJKvmK5L5VMxXwsEqkxIhjqxfPnyGJvlW8wHH3xwTvU6d+4cAwcOzFgfPXp0TvVoIG69NaK8vNBdpFVURNx8c6G7AKifbryx0B38z8KFEffeW+gusnvhhYh33y10F/9zww2F7gAAAACAuvD66xETJxa6i/wr5muBQJUJyVAnXnvttVi8eHHG+qBBg3Kume3YF198McrKynKuSYKtWBFxyy2F7qKyv/0tYvnyQncBUL/MnRuRZXe6girW8EcxhYkiIl57LZkXRwAAAACorNiuS+VTsV4LBKpMSIY68cYbb2SsNWnSJPr3759zzW233TZjbenSpfFuMX1jmuLxxhsRX3xR6C4q+/rriFdeKXQXAPXLU09FLF1a6C4qmzw5fU/iYlJeHvHoo4XuItNDDxW6AwAAAABqUyoV8fDDhe6i9hTjtUCgWoRkqBNvv/12xtr6668fzZs3z7lm3759s66/9dZbOdckwbIEtYrC+PGF7gCgfjHPq+Y//4lYtKjQXWQqtl8nAAAAAPLrk08i5s0rdBe1yzUuqNeEZKgTn3zyScbaBhtsUKOaXbp0iZYtW2asT5kypUZ1SagJEwrdQXbF2hdAsSrWuVlsfRVbP9+ZMCH9bSIAAAAAkqlYr0vlU0N4jZBgTQrdAA3DtGnTMta6du1a47rrrLNOfPTRR6s9V214pYa3yZk8eXKeOqFK3nyz0B1kN2lSoTsAqF/M86op1l+nr76KmDUrYp11Ct0JAAAAALWhWK9L5VOxXQsEqkVIhjrx9ddfZ6yttdZaNa7bpUuXjJBMtnPVhh122KFOzkOe1NF/F9U2e3ahOwCoP1asKN6tWovtz5li6+f7Zs8WkgEAAABIqmK+LpUvPtuBes3tlqh1ixcvjmXLlmWst23btsa127Rpk7H2zTff1LguCZTlv8GisHRpoTsAqD+KdZZHFN8892sFAAAAQCEU83WpfHF9C+o1IRlq3bfffpt1vVWrVjWu3bJly4y1RYsW1bguCdSkSDfOatq00B0A1B/FOssjim+e+7UCAAAAoBCK+bpUvri+BfWakAy1rqysLOt6kzz8Idk0yx9Cy5cvr3FdEigPoaxaUax9ARSjZs2K9y+gxTbPi62f7yvm3gAAAAComYZw7achvEZIsAYQ5aPQysvLs643bty4xrWz1VixYkWN61bFyy+/XKPjJ0+eHCeddFKeumG1eveOmDKl0F1k2mSTQncAUH+UlKTn5uTJhe4kU+/ehe6gsmLr5zulpRE9ehS6CwAAAABqS7Fel8onn+1AvSYkQ61b2Y4x+QizZKuRbXeZ2rD99tvXyXnIk/79Ix5/vNBdZNp660J3AFC/9O9fnCGZYpvn/fsXuoPsttiieHcDAgAAAKDmivW6VD4V27VAoFrcbolaV1pamnU9H7dFylZjZeejgSvWN2XF2hdAsSrWuVlsffXrl955p9gU268TAAAAAPnVt29EHu4mUdRc44J6TUiGWte6deus6wsXLqxx7Ww12rRpU+O6JNCOO0asZFejgmnUKGKnnQrdBUD9suuuhe4gU9u26R1Siknr1sX5l/Vddil0BwAAAADUphYtIgYMKHQXtacYrwUC1SIkQ61r1qxZtGrVKmN93rx5Na6drcaaa65Z47ok0JprRhx0UKG7qOyAAyLWWqvQXQDUL5ttFlFstzw89tiIZs0K3UWmE04odAeVdeqU/rMPAAAAgGQrtutS+VSs1wKBKhOSoU506dIlY+2LL76ocd1sNbKdCyIi4mc/K3QHlRVbPwD1RbHNz1NOKXQH2R1xREQx7bB3/PERbosJAAAAkHyHHhrRoUOhu6gdxXotEKgyIRnqRM+ePTPWPvvssxrVLC8vj88//7xK54KIiPjRjyL69Cl0F2mbbBKx226F7gKgfjrkkIjOnQvdRdoee0RsvHGhu8iuVauI444rdBdpjRtHnHhiobsAAAAAoC60aJH+wlTSFPO1QKDKhGSoExtuuGHG2ocfflijmtOmTYuysrIqnQsiIqKkJOLaawvdRdqf/hTRyAgGyEnz5hG//32hu4ho0iTi6qsL3cWqnX9++jZHhXbWWRE9ehS6CwAAAADqynnnRay9dqG7yJ/6cC0QqBKf0FIn+vXrl7E2Y8aMmDNnTs41J02alHV9yy23zLkmDcBuu0WcfHJhexg+PGLvvQvbA0B9d/TREYMHF7aHCy+M2GKLwvawOp06RdxwQ2F72GSTiEsvLWwPAAAAANSt9u0jbr650F3kT324FghUiZAMdWK77bbLuv7yyy/nXPOVV17JWOvYsWP06tUr55o0EL//feG+zb7uuhF/+ENhzg2QJCUlEbfcEtGuXWHOv+WWEf/3f4U5d3Udckj6PtCF0KhRxIgR6d1/AAAAAGhY9t8/4qijCt1FzfXrV3+uBQKrJSRDndh8881jrbXWylgfM2ZMzjWzHTto0KAoKSnJuSYNROvWEQ8/XPcfrLZpkz5v27Z1e16ApFpnnYgHHoho1qzuz/vggxFNm9bteWvillvSf5mvazfcEDFgQN2fFwAAAIDicMMNESv5Mn29sM46Ef/8Z/26FgiskpAMdaKkpCT222+/jPUHHnggysvLq13vnXfeiXfffTdjfciQITn1RwPUt2/EE0+kgyt1oVWriMcei9hqq7o5H0BDMWhQxKhRdReU6dIl4umnI3r2rJvz5UvbthFjxkT06VN357zmmoiTTqq78wEAAABQfFq1Sn8eU4gvcNVUfb0WCKySkAx15sgjj8xY++KLL2LUqFHVrvWXv/wlY61Vq1ZxwAEH5NQbDdT220c8+2z6TU5t6tw5YuzYiIEDa/c8AA3VkCHpIGJtBx/XXz/ihRciNt20ds9TWzp1ihg3LmLHHWv3PE2apO83/ctf1u55AAAAAKgfOnRIfx6zyy6F7qTq6vu1QGClhGSoMzvvvHNsvvnmGeu/+c1vYvny5VWu88EHH8Ttt9+esX7cccdFy5Yta9QjDdBWW0VMnhxx+OG1U//gg9P1t9mmduoDkLbHHul5u8cetVP/5JMjJk2K2GCD2qlfV767IHHZZbWzRWyfPhGvvRZx4on5rw0AAABA/dW2bXpXlquuiigtLXQ3q5aUa4FAVkIy1JmSkpK44IILMtY/+uijOOuss6pUY/HixTF06NAoKyurtN68efM4++yz89InDVDHjhF//3v6npJrr52fmmutFTFyZMQDD6R3kgGg9nXrlr6l0M03R7Rrl5+avXpFPPNMxI03RrRunZ+ahda0acT550dMnBix7bb5qVlaGnHhhRHjx7u1IAAAAADZNWkSce656QDKDjvkp2bjxvkL3STxWiCQQUiGOnXYYYfFzjvvnLH+17/+NX75y1/GihUrVnrs7NmzY/DgwTFhwoSMx371q19Ft27d8torDdBBB0VMnRpxzz3pWzHlYrvtIu66K2LatIhDD81rewBUQUlJeheTzz5L/2W2T5/c6gwaFPHggxEffJD+/0m0+eYRr76a3lnmJz9JX6Sorm7dIq64Iv3rfemlEc2a5b9PAAAAAJKld++IF1+MeP759E7/uex4vO66Eb/9bcSMGRFff12za4G77578a4HAf5WkUqlUoZug9k2bNi169uxZa/WnTp0aPXr0qHIv/fr1i3nz5mU8tummm8aZZ54ZgwYNinXXXTfKysrio48+iocffjiuu+66mDNnTsYx2223XbzwwgvRtDZuGVCLXnnlldjhBynZl19+ObbPNZxB/r39dsSTT0ZMmJD++eSTzOf06hXRv3/6Z6+9Irbcss7bBGAVUql0EOTf//7fPJ8+vfJzSkoiNtooYuut0/N88OD0Pzc0n38e8eijEW+8kf51euediB8GmDt2TP8abb11xMCB6QsIjRsXpl8AAAAAkuGLLypfl5o8OeIHd5WINdf83+cxAwemb7v+wy99VfVa4MYb/69WQ70WCLWgvnz+LSTTQBRTSCYiYuzYsTF48OBYunRpjc7bq1eveP7556Nr1641qlMI9WVI8D2LFkXMnx+xbFl66742bSJatSp0VwBU14IFEQsXRixfHtG8efp+yGusUeiuis/y5RFz5kQsWZK+4NCyZUT79ukLCQAAAABQW767LrV0afoLWjW5LuVaINSZ+vL5dw57qkPN7bbbbjF69Oj4yU9+ErNnz86pxlZbbRUPPfRQvQzIUE+1bJn+AaB+a9Mm/cOqNWsW0aVLobsAAAAAoKHJ53Up1wKBH2hU6AZouHbZZZd4880349BDD42SaiQ/mzdvHhdccEG89NJLsd5669VihwAAAAAAAABAUthJpoFYe+2145VXXqnV+rno2rVrjBw5Mi6++OK47bbb4sknn4z3338/KioqKj2vtLQ0ttlmmxgyZEgcd9xx0bFjx3y0DQAAAAAAAAA0EEIyDURpaWkMGDCg0G2sVO/eveOaa66Ja665JpYuXRqfffZZLFy4MBo3bhzt2rWL9dZbLxo3blzoNgEAAAAAAACAekpIhqLTvHnz2GijjQrdBgAAAAAAAACQII0K3QAAAAAAAAAAANQ2IRkAAAAAAAAAABJPSAYAAAAAAAAAgMQTkgEAAAAAAAAAIPGEZAAAAAAAAAAASDwhGQAAAAAAAAAAEk9IBgAAAAAAAACAxBOSAQAAAAAAAAAg8YRkAAAAAAAAAABIPCEZAAAAAAAAAAAST0gGAAAAAAAAAIDEE5IBAAAAAAAAACDxhGQAAAAAAAAAAEg8IRkAAAAAAAAAABJPSAYAAAAAAAAAgMQTkgEAAAAAAAAAIPGEZAAAAAAAAAAASDwhGQAAAAAAAAAAEk9IBgAAAAAAAACAxBOSAQAAAAAAAAAg8YRkAAAAAAAAAABIPCEZAAAAAAAAAAAST0gGAAAAAAAAAIDEE5IBAAAAAAAAACDxhGQAAAAAAAAAAEg8IRkAAAAAAAAAABJPSAYAAAAAAAAAgMQTkgEAAAAAAAAAIPGEZAAAAAAAAAAASDwhGQAAAAAAAAAAEk9IBgAAAAAAAACAxBOSAQAAAAAAAAAg8YRkAAAAAAAAAABIPCEZAAAAAAAAAAAST0gGAAAAAAAAAIDEE5IBAAAAAAAAACDxhGQAAAAAAAAAAEg8IRkAAAAAAAAAABJPSAYAAAAAAAAAgMRrUugGoKFatGhRxtrkyZML0AkAAAAAAAAA5C7bZ93ZPhMvNCEZKJApU6ZkrJ100kkF6AQAAAAAAAAA8ivbZ+KF5nZLAAAAAAAAAAAknpAMAAAAAAAAAACJJyQDAAAAAAAAAEDilaRSqVShm4CG6PPPP4/HHnus0lqvXr2iZcuWBeoIqIrJkyfHSSedVGnt5ptvjj59+hSoIwByYZ4D1H9mOUAymOcAyWCeA4sWLYopU6ZUWttvv/1inXXWKVBH2TUpdAPQUK2zzjpx4oknFroNIA/69OkT22+/faHbAKCGzHOA+s8sB0gG8xwgGcxzoBi53RIAAAAAAAAAAIknJAMAAAAAAAAAQOIJyQAAAAAAAAAAkHhCMgAAAAAAAAAAJJ6QDAAAAAAAAAAAiSckAwAAAAAAAABA4gnJAAAAAAAAAACQeEIyAAAAAAAAAAAknpAMAAAAAAAAAACJJyQDAAAAAAAAAEDiCckAAAAAAAAAAJB4QjIAAAAAAAAAACSekAwAAAAAAAAAAIknJAMAAAAAAAAAQOIJyQAAAAAAAAAAkHglqVQqVegmAAAAAAAAAACgNtlJBgAAAAAAAACAxBOSAQAAAAAAAAAg8YRkAAAAAAAAAABIPCEZAAAAAAAAAAAST0gGAAAAAAAAAIDEE5IBAAAAAAAAACDxhGQAAAAAAAAAAEg8IRkAAAAAAAAAABJPSAYAAAAAAAAAgMQTkgEAAAAAAAAAIPGEZAAAAAAAAAAASDwhGQAAAAAAAAAAEk9IBgAAAAAAAACAxBOSAQAAAAAAAAAg8YRkAAAAAAAAAABIPCEZAAAAAAAAAAAST0gGAAAAAAAAAIDEE5IBAAAAAAAAACDxhGQAAAAAAAAAAEg8IRkAAAAAAAAAABJPSAYAAAAAAAAAgMRrUugGAKA+qaioiPfffz/+85//xMyZM+Pbb7+NkpKSaNWqVXTu3DnWX3/92HjjjaN169a11sPixYtj4sSJ8cEHH8ScOXNi+fLl0apVq+jevXv07ds3evXqVWvnBqjPlixZEpMmTYqpU6fGvHnzYv78+dG0adNo165ddOjQIfr06RMbbrhhlJSU1Ek/8+fPj4kTJ8aHH34Y8+bNi/Ly8mjTpk307Nkzttxyy+jatWud9AGwOkuWLIn33nsvPvroo5gzZ85/52f79u2jffv2semmm8bGG29cZ/MzIuLrr7+OSZMmxccffxzz58+PiIi2bdvGBhtsEP369YtOnTrVWS/enwP1QbHM8oqKipg6dWq899578eWXX8a8efNi+fLl0a5du2jfvn2st9560b9//2jRokWt9vFDZWVlMXHixPjPf/4TX3/9dSxdujRatWoV66yzTvTp0yd69+5dp/0ArEyxzPNiZZ4DVSEkA0DRmTJlSkyYMKHSz9y5czOe9+yzz8Yuu+xS6/2kUql45plnYsSIETFmzJiYM2fOKp/fqFGj6N27d+y0006x7777xqBBg6Jly5Y17uOZZ56J66+/Pp566qlYunTpSp+3/vrrxzHHHBOnnHJKdOzYscbnBchVMczzefPmxd133x133313TJo0KVasWLHK57dt2zYGDRoUxx9/fOy1117RqFF+N99MpVLx4IMPxg033BDPP//8Kvvp06dPDB8+PIYPHx6tWrXKax8Aq/LVV1/Fs88+G2PHjo3nnnsuPvroo6ioqFjlMe3bt4+BAwfG8ccfH4MHD877/IyIWL58edx7771x8803x+uvvx6pVCrr80pKSmK77baLE088MY488sho2rRp3nuJ8P4cKG7FMsvLysri5Zdf/m8vEyZMiMWLF6/ymCZNmsQWW2wRhx12WAwbNizWXHPNGvexMq+//npcd9118eijj8bChQtX+rx11lknhg4dGqeddlqst956tdYPwA8Vyzyvrttuuy2OP/74rI917949pk2bltfzmedAdZSkVnZFAQDqwNSpU2P8+PGr/QA1m7oIyTz33HPxy1/+MiZMmJBzjYsuuiguvvjinI+fMWNGnHDCCfHkk09W67j27dvH1VdfHcOHD8/53ABVVWzzvLy8PK699tr4zW9+s9qL8CvTu3fv+Nvf/hY77LBDXnp677334rjjjovXX3+9Wsd17do1brzxxth///3z0gdANl9++WX885//jFGjRsXzzz+/2gvvq9KjR4/485//nNe59dJLL8Xw4cPjgw8+qNZxm2yySdx22215m+UR3p8DxatYZnlZWVk8/fTTMWrUqHjooYdi3rx5OffRvHnzOPXUU+Oyyy6L5s2b51znh+bNmxennXZa3HPPPdU6rkWLFnHhhRfGeeed12B3aQBqX7HM81zNmjUrNt1005XO/3yGZMxzIBdCMgAUVLt27f67PXp11WZIZsWKFXHuuefGtddeu9JvqFZVTUIy48ePj/322y++/PLLnM9/4oknxo033liQbwwADUcxzfN58+bFfvvtFy+99FKNazVq1CguvfTSOP/882tU54knnojDDjssvv3225yOLykpiUsuuSQuvPDCGvUBsDLHH3983HbbbXmteeyxx8ZNN90UpaWlNapz++23x8knnxxlZWU5Hd+0adO4+eab47jjjqtRHxHenwPFrVhm+YsvvhgDBw7Max8bb7xx/OMf/4i+ffvWuNaUKVNir732io8//jjnGvvtt1+MGjUqr8EdgO8UyzzP1cEHHxwPPvjgSh/PV0jGPAdy5XZLAPADixYtikMOOWSV3wxt2bJldOnSJdZaa61o1qxZzJ07N2bOnBmzZ8/OWx/vvvtu7LnnnivdiaFDhw7Ru3fvKC0tjVmzZsUHH3yQ9VsFt9xyS5SUlMRNN92Ut94AitXChQtjr732WuVuLS1atIiNNtooOnToEGVlZfHVV1/Fxx9/nHWGVlRUxAUXXBARkXNQ5tlnn42DDjooli1blvXxLl26xIYbbhhNmjSJzz77LD755JOM56RSqfjNb34TTZs2jfPOOy+nPgBqqn379tG5c+fo3LlzRER8/fXX8eGHH670m6133HFHfPPNN/HPf/4z51se3XPPPXH88cevNLjevXv36NGjR6RSqZg6dWpMnz494zllZWUxfPjwKC0tjSOOOCKnPiK8PweSoRCzPJvS0tLo0qVLdO7cOVq3bh1z586NTz75JBYsWJD1+R988EEMGjQoxo0bF5tttlnO5501a1bstttu8emnn2Z9vHXr1rHppptGq1at4uuvv473338/a0jzsccei4MPPjgeeeSRaNy4cc79AOSqWOb5D/3zn/9cZUAmX8xzoEZSAFBAbdu2TUVETj/PPvts3vspKytL7b333lnP17Jly9QvfvGL1Lhx41IrVqzIevz06dNTDzzwQOrYY49NderUKRURqYsuuqjafSxcuDC18cYbZ+1j2223TT3zzDOpioqKSsfMmjUr9Zvf/CZVWlqa9bhbb701l18SgCoplnl+yimnrPQ8++67b+rf//53avny5RnHzZ8/PzVixIiVzt6SkpLUSy+9VO1+Zs6c+d8/D374s/fee6dee+21jGOmTp2a+vnPf55q1KhRxjGNGjVKjRkzJqdfG4BVGT58eMbMadWqVeroo49OjRgxIvXJJ59kPW7+/Pmp++67L9WvX7+Vzt8TTjghp57efvvtVIsWLbLWHDp0aOq9997LOOadd95J/fSnP816TIsWLVJvv/12Tr14fw7UB8Uyy1944YWsNQYOHJi68sorUy+//HLW9+QrVqxIvfbaa6mjjz461bhx46w1unTpkvrmm29y+vVZsWJF6kc/+lHWuhtvvHHqwQcfTJWVlVU6Zu7cuak//vGPK/37zvnnn59TLwCrUizzvLrmzp2b6tKlS8Z1jB/20L179xqdxzwHakpIBoCCyvamtFu3bqkDDzwwdfnll6eefPLJ1Pjx42v9Q9XvnHbaaVnPdcghh6SmT59erVrLli1L3XfffalRo0ZVu49f/vKXWfsYPnx4xhv8H3r99ddT7du3zzi2devWqVmzZlW7F4CqKIZ5/tZbb600WHLLLbdUqcaSJUtSRx55ZNY+t9xyy2r3dPDBB2etVZUA5WOPPZb1g9Xu3bunFi9eXO1eAFbl+xfit99++9SIESNS3377bZWPLy8vT11yySVZZ14uQcPy8vLUNttsk3Wm/+1vf1vt8bfcckuqpKQka6Dlh2GWqvD+HKgPimWWfz8k07lz59Svf/3r1EcffVSt1/Liiy+munbtmrWXE088sVq1vnP99ddnrbfvvvumFi1atMpjP/7441T37t0zjm3cuHHqrbfeyqkfgJUplnleXccdd1ylc6299tqpH//4x3kPyZjnQE0JyQBQUH369EkdeOCBqcsuuyw1evTo1Ndff53xnKlTp9ZJSObxxx/Pep5f/OIXeT3P6kyZMiXVtGnTjD722GOPVHl5eZVqjB07NusHxbX5TQGgYSuGeX722Wdnrf/b3/62WnVWrFiR2nXXXbPWqs4OBCv7Bu2wYcOqXOPOO+/MWuPyyy+v1msCWJ3hw4endtxxx9TTTz9dozpXXnll1rm1yy67VKvO3XffnbXOpZdeWuUaK/tg4N57761WL96fA/VFsczyF154IdWpU6fU1VdfvdoPK1flvffeyxoybNSo0Up3UViZBQsWZK21+eabVzmA/t5776XWWGONrH8eAORTsczz6njmmWcyzjNq1KjUMccck9eQjHkO5IOQDABFry5CMkuWLEn17Nkz4xxHH3103s5RVaeeempGH82bN09NnTq1WnVOOumkjDrNmjVLff7557XTOMBq1PY832ijjTJqd+nSJbV06dJq15o4cWKNwymDBw/OOL5z586p+fPnV6uXvfbaK2udJUuWVPdlAazUjBkz8lZr++23z/qB5pdfflnlGptvvnnWC98ru+1pNmVlZanNNtsso06fPn2q9Xq8Pwfqi2KZ5XPnzq3WjgerctNNN2V9X37NNddUq87VV1+dtc4rr7xSrTq/+93vstYZP358teoArEqxzPOqWrRoUapXr16VzrHffvulUqlU3kMy5jmQD40CAIgbb7wxpk6dWmmtU6dO8ac//alO+1i6dGncfffdGevHHnts9OjRo1q1zj///GjSpEmlteXLl8edd95ZkxYBilJFRUVMmTIlY32//faL0tLSatfr169frL/++hnrn3zySZWOnzFjRowePTpj/ayzzoo2bdpUq5eLL744Y+2rr76Khx56qFp1AFala9eueat1zjnnZKxVVFTEmDFjqnT8yy+/HO+8807G+gUXXBCNGzeuch9NmjSJCy64IGN98uTJ8eqrr1aphvfnQH1SLLO8Xbt20bJly7z0cfzxx0eHDh0y1p944olq1bn11lsz1vbee+8YMGBAteqcfvrpWfvJVh8gV8Uyz6vqggsuqHRNpmXLlvHXv/41b/W/zzwH8kFIBoAGb8WKFVnDMJdeemnWN8q16fHHH48FCxZkrJ944onVrrXeeuvF3nvvnbF+33335dQbQDH75ptvYsWKFRnrm266ac41e/funbE2a9asKh07cuTIqKioqLTWpEmTGDZsWLX7GDBgQGy++eYZ6+Y5UKz22GOPKCkpyVj/9NNPq3T83//+94y1NddcMw466KBq93LwwQdnfU9f1Rnq/TnQUNV0ludL48aNY7fddqtRHxMmTIgPP/wwYz2XWb7GGmvEEUcckbE+atSorH8fASi02p7nr7/+elx33XWV1n77299Gt27d8lL/+8xzIF+EZABo8EaPHh3Tp0+vtNa8efOsb5Lropcf6tmzZ/Tr1y+neoccckjG2uTJk2PmzJk51QMoVqlUKut6q1atcq6ZbceXqu5gkG2eDxw4MDp16pRTL9nm+dixY2P58uU51QOoTa1atYr27dtnrH/xxRdVOj7bDB0yZEg0bdq02r00bdo0hgwZUqVzVLUX78+BhqCmszyfsn3QWp0+ss3yFi1axD777JNTP9lm+Zw5c+K1117LqR5AbarNeV5WVhbHH398pS8J9e/fP04//fQa187GPAfyRUgGgAbv/vvvz1jbf//9q307jHx49tlnM9YGDRqUc72VHTt27NicawIUow4dOmTcwiIivcNMrmbPnp2x1qVLl9Uet3z58njppZcy1vM9zxctWuTCDVC0sgVaGjVa/WWo6dOnZ721Xb5n6Mcff5wRlM/G+3OgIct1lhdbH9lm+Y477hjNmzfPqZ/tt98+WrRokbFulgPFqrbm+e9+97uYPHnyf/+5cePGccstt1TrFqnVYZ4D+SIkA0CDlkqlst5/dc8996zzXubMmVPp3q3f2W677XKuue6668baa6+dsT5hwoScawIUoyZNmsRWW22Vsf7666/nVK+ioiLGjx+fsV6Ve1y/8847sXTp0oz1mszzrbbaKutFJvMcKEaLFi2Kr7/+OmM92/vSH3rjjTeyrtdkhm677bZZ11c3Q70/BxqymszyfJs2bVrOfaRSqawztiazvFmzZrHllltmrJvlQDGqrXn+3nvvxeWXX15p7Ywzzsh6bSYfzHMgn4RkAGjQJk+enHWXgb59+670mBkzZsSbb74Zb7/9dsyaNSvKysry0svbb7+ddX3zzTevUd1sr+Wtt96qUU2AYnTwwQdnrI0ZMyanLYQfeuihmDNnTqW10tLS2H///Vd7bG3M8zXWWCM22GCDjHXzHChGzz33XKUt17+TbY79ULYZ2qJFi1h//fVz7mfDDTfM+u3S1c1Q78+BhqwmszyfKioqYty4cTn38emnn8b8+fMz1s1yoKGojXleUVERxx9/fKVbQHfv3j0uvfTSnGuujnkO5JOQDAAN2sSJEzPWGjVqVOnNdUVFRfzrX/+Kgw46KNq2bRvrrbde9OvXL7bYYotYZ511olmzZtGnT58488wzs275WFXZtpWPqPkFqGwfKGT7RixAfXfCCSdk3Gd78eLFceqpp0Yqlapyna+++irOPvvsjPXjjz8+OnfuvNrjs83zVq1aVelWTatingP1xYgRIzLWmjZtWqXdGrPN0F69ekVJSUnO/ZSUlESvXr0y1lc3Q70/BxqymszyfBo9enR8+eWXGeuDBw+u0vF1OcunT58eK1asqFFdgHyrjXn+l7/8JV555ZVKa3/961+jZcuWOddcHfMcyCchGQAatHfffTdjrXPnzrHGGmtERMSLL74YW2yxRRx00EHxr3/9KxYsWJC1zjvvvBPXXntt7LbbbrHTTjvFc889V+1esm0fXFpaGh07dqx2re/r2rVrxtqMGTO80QcSp3379nHDDTdkrD/44INxxBFHrHSGf9+7774bu+22W0ydOrXS+gYbbBC/+93vqtRHtnm+zjrrVOnYVck2z7OdC6CQ3nrrrXjwwQcz1nfddddo27btao/PNteyzb/qymWGen8ONFQ1neX5kkql4pJLLslYb9y4cQwZMqRKNVY262v6Z0u248vLy2P69Ok1qguQT7Uxzz/99NM4//zzK60deuihVQ4v5so8B/JJSAaABu2zzz7LWGvdunVERFx//fWxyy67xDvvvFOtmi+99FLsuuuuGfdkXZ1s94atyo4Fq5Nt54KKioqM24gAJMHhhx8eV199dcb6/fffH+uvv36cd955MXbs2Pjyyy9j+fLlsXjx4vj000/jwQcfjKFDh0a/fv0yApS9evWKZ5555r9/PqxOtnm+1lpr5faCvifbPM92LoBCKS8vj5NPPjnrdu7nnHNOlWoU0wz1/hxoiPIxy/PlxhtvjDfeeCNj/fDDD4911123SjWyzfKSkpIaz/OV7RLp/TlQLGprnp900knx7bff/vef27VrF9ddd13O9arKPAfyqUmhGwCAQpo1a1bGWuvWreOGG26I008/Pee6qVQqLrjggpgyZUrcdtttVTom20XxfHxDq02bNlnXv/nmm7xc5AcoNmeffXb07t07TjjhhEpzfvbs2XHVVVfFVVddVaU6JSUlMXTo0Lj++uujXbt2VT5/Xc7zJUuWxJIlS6JFixY1rg9QU5dffnm8+uqrGeuDBw+O3XffvUo16nKGfvPNN0XTy3f9eH8OFFo+Znk+vP/++3HuuedmrK+xxhpxxRVXVLlOtlnesmXLaNy4cY36W9UsBygGtTHP77rrrhgzZkyltSuvvLLGt5euCvMcyCc7yQDQoM2dOzdjbcaMGXHGGWdUWltjjTXitNNOi2eeeSZmzpwZy5Yti6+++ipeeeWVuPDCC1d6Mfv222+P66+/vkq9fD+B/51WrVpV6dhVWdm9YBctWlTj2gDFavDgwTFlypT4y1/+Ettvv300alT1v/p06dIlfv7zn8fkyZPj7rvvrlZAJsI8BxqmMWPGZL0lRtu2bbPeCm9l6nKGrm5+mudAQ5OvWV5TCxcujIMOOijrXLziiiuiW7duVa5llgMNUW3M86+++irOPPPMSms77rhjnHjiiTnVqy7zHMgnIRkAGrRly5ZlrH311VexYsWK//7zj370o/jPf/4Tf/7zn2PQoEGxzjrrRLNmzaJTp04xYMCAuPTSS+PDDz+Mo446Kus5fvnLX1bplk1lZWUZa02a1HzTt6ZNm2ZdX758eY1rAxS70tLSaNu2bbXm6Zw5c+Ljjz+OSZMmVfrzoKrMc6Chee+99+Kwww7LupX7TTfdVK0PM+tyhq5ufprnQEOSz1leE+Xl5XHYYYfFf/7zn4zH9t5772rv+muWAw1Nbc3z008/vdJuLk2bNo2bb745SkpKcu61OsxzIJ+EZABo0Fb34eeuu+4aY8aMifXWW2+Vz2vbtm3ceeedccIJJ2Q8VlZWVqWtgMvLyzPWarpd5Kpq5PLBL0B9MWLEiOjZs2eccMIJ8eSTT1br4sby5cvjySefjKOOOio22mijeOqpp6p1bvMcaEhmzpwZ++67b8yfPz/jsdNOOy0OP/zwatWryxm6uvlpngMNRb5neU2ccsopMXr06Iz1Hj16xL333lvtD2PNcqAhqa15/uijj8bIkSMrrZ177rmx2Wab5VQvF+Y5kE9CMgA0aCtLikdEtG/fPu6+++5o3rx5lWqVlJTEn//859h0000zHvvHP/4RU6dOXeXx2ZLv+XgzvrIaq3rtAPVVWVlZ/PSnP41hw4bFF198UemxkpKSGDRoUFx++eXx4IMPxrhx4+Lpp5+O+++/P84555zo06dPRr2pU6fG3nvvHZdeemmVezDPgYbi66+/jj333DM+/fTTjMcOOOCA+NOf/lTtmnU5Q1c3P81zoCGojVmeq3PPPTduvfXWjPWOHTvG6NGjo0OHDtWuaZYDDUVtzfMFCxbEKaecUmltww03jAsuuCCnerkyz4F8qvk+VABQjzVr1mylj5166qnRtWvXatVr3rx5XHTRRXHYYYdVWi8vL49HH310ldsCl5aWZqzlY1vHldXIdj6A+m7o0KExatSojPXddtst/vKXv0Tv3r2zHnfYYYfF73//+xgzZkycfPLJMW3atP8+lkql4qKLLorS0tL41a9+tdoezHOgIZg7d27sueee8d5772U8tueee8bIkSNz+mZnaWlpxlbqtTVDVzc/zXMg6Wprlufi4osvjquvvjpjvV27dvHUU0/FJptsklNdsxxoCGpznp977rkxc+bMSms33XRTlb9Ymi/mOZBPdpIBoEFr167dSh87/vjjc6p50EEHRceOHTPWn3vuuVUe17p164y1hQsX5tRDVWq0adOmxrUBismNN96YNSBzwgknxNNPP73SgMz37bXXXjFx4sTo379/xmMXXHBBvPHGG6utUdfzPNv5AGrTggULYq+99oo333wz47Gdd945HnrooZwvKtflDF3d+2Hvz4Ekq81ZXl2/+93v4pJLLslYb926dTz55JPRr1+/nGub5UDS1eY8f+655+KWW26ptHbMMcfEbrvtllO9mjDPgXwSkgGgQcsWZomI6N69e3Tv3j2nmk2aNIntt98+Y/3VV19d5XFrrrlmxtq8efNy6qEqNbKdD6C+WrRoUZx//vkZ6zvuuGPceOON0ahR1f/q0759+3jkkUcygpQrVqyIc889d7XH1+U8b9OmjS2AgTr17bffxj777JM1NLjDDjvEY489Fi1atMi5fl3O0NW9H/b+HEiq2p7l1fHHP/4xfv3rX2est2zZMp544onYbrvtalQ/22xdunRpLFu2rEZ1zXKgGNTmPF+6dGmccMIJkUql/rvWsWPHuOaaa3LutybMcyCfhGQAaNBWdjulLbfcskZ1sx3/9ddfr/KYLl26ZD2moqKiRr188cUXGWulpaWr3EUHoL659957Y+7cuRnrV111VU5bCq+zzjpx9tlnZ6yPGzcu3n333VUem22eZ5vF1ZWtRrZzAdSWRYsWxb777hsvv/xyxmPbbrttjB49Olq1alWjcxTTDPX+HEiiupjlVfXnP/85fvnLX2ast2jRIh599NHYaaedanyOlc36mv7ZsrLjvT8H6kptz/OLL744Pvroo0prf/jDH1b6pdPaZp4D+dSk0A0AQCH16tUr63qHDh1qVDdb0rysrCwWLFiw0q0ae/bsmbFWXl4eM2fOjPXWWy/nXj777LOMtR49ekRJSUnONQGKzZgxYzLWevToETvuuGPONY844oi44IILMtaffvrp2GyzzVZ6XLZ5PnPmzCgvL8/5HuAR2ed5tnMB1IbFixfHfvvtFy+88ELGY1tttVWMGTMmL1uSZ5tr2eZfdeUyQ70/B5KmrmZ5Vdxwww1xxhlnZKyXlpbGQw89FLvuumtezrOyWf/ZZ5/lvIPwd8f/UPPmzX2oCtSJupjnI0eOrPTPG2+8cWy00Uar3S39h7J9cXTZsmVZ63Tq1CnWX3/9rHXMcyCfhGQAaNB69+6ddX2NNdaoUd2WLVtmXf/2229X+heUDTfcMOv6hx9+WKOL8D9M/K/qXAD11cSJEzPWavrN0549e0bXrl1j5syZldaz3ef7+7LN2LKyspg2bdpKL/ZUhXkOFMqSJUtiyJAhMW7cuIzH+vbtG08//XTedkHJNtc+/fTTWL58eTRr1iynmsuWLct68Xt1M9T7cyBJ6nKWr87NN98cP//5zzPWmzVrFg8++GDsueeeeTvXqmb5wIEDc66bbZZvsMEGAo9Arauref792yxFRHzwwQex/fbb17huRHr3lmy1jjnmmLjjjjuyHmOeA/nkdksANGhbb7111vUFCxbUqO78+fOzrq9qh5o+ffpEkyaZ+dW33nor5z5SqVTW42t6OymAYpPtm0lrrbVWjetmqzF79uxVHtOvX7+s6zWZ57Nnz44ZM2ZkrJvnQG1bunRpHHDAAfHvf/8747HNN988/v3vf9d4F8bvyzZDy8vL45133sm55uTJk6O8vDxjfXUz1PtzICnqepavym233RannHJKxoevTZs2jVGjRsW+++6b1/N16tQp6622azLLIyImTZqUsWaWA7WtmOZ5XTPPgXwSkgGgQevUqVPWFPpXX31Vo7rZjm/ZsmU0b958pcc0b948+vbtm7Ge7b6yVfXOO+/EwoULM9a32267nGsCFKMVK1ZkrDVt2rTGdbPVqKioWOUx66+/ftbb7tVknr/yyitZ181zoDYtW7YsDjrooHj66aczHuvdu3f8+9//jo4dO+b1nFtvvXU0apR5uSrfM7Rx48bRv3//VR7n/TmQBIWY5Stz5513xoknnpgRkGnSpEmMHDkyhgwZUivnzTZjazLL582bF++//36VzgOQL8U0zwvFPAfyRUgGgAZvr732ylibMGFCjWq+8cYbGWs9evRY7XG77757xtrYsWOzfvhbFWPGjMlYa9q0aey888451QMoVtkuBGXbXaa6stXo1KnTKo8pKSmJQYMGZaxnm8lVle3YLl26xOabb55zTYBVWb58eRxyyCExevTojMc23njjGDt2bHTu3Dnv523Xrl3W3R7zPUO33nrrKm1D7/05UJ8VapZnc++998awYcMyAudNmjSJv//973HggQfW2rmzzfJJkybl/PeFZ555JmtwPtt5APKhmOZ5IZnnQL4IyQDQ4B1yyCEZa7Nnz46JEyfmVG/BggXx2muvZazvuuuuqz12//33z1ibO3duPPXUUzn1cv/992es7bLLLtG6deuc6gEUq2wXg2oaeJw9e3ZMmzYtY311IZmI7PP8nXfeiffee6/afaxYsSIeeOCBKp0DIB9WrFgRhx12WDz22GMZj2200Ubx7LPPRpcuXWrt/Nnm21NPPRVz586tdq05c+Zk/bZtVXcr8P4cqK8KPcu/b+TIkXHMMcdkfBDZuHHjuOeee7Jel8mnwYMHR0lJSaW1ioqKGDVqVE71ss3yDTfcMDbZZJOc6gGsSqHm+bRp0yKVStX455hjjsmo3b1796zPveOOO1bZk3kO5IuQDAAN3o9+9KNYf/31M9ZvuOGGnOqNGDEiFi9enLGebVeBH9pxxx2z7jjz5z//udp9vPrqq1k/ID7yyCOrXQug2GW7ZcZbb70VU6dOzbnmQw89lPUbRdtuu+1qjz3wwAOjZcuWGeu5zPMHHnggvvzyy4x18xyoDeXl5fHTn/40HnrooYzHNthggxg7dmysvfbatdrD0KFDMy5+L1++PG6++eZq17rlllti+fLlldZKSkriiCOOqNLx3p8D9VExzPLvPPjgg3HkkUdGeXl5pfXGjRvHXXfdFYcddlit99CtW7f40Y9+lLH+l7/8JePWT6szffr0ePjhhzPWzXKgNhTTPC8G5jmQL0IyADR4JSUlcdZZZ2Ws33nnnTF+/Phq1friiy/isssuy1hfd911Y5999qlSL6eeemrG+pgxY+LZZ5+tch+pVCp+9atfZax37tw5Dj300CrXAagv9t5774y1VCoVF198cU71li5dGpdffnnGeqNGjaq07W7Lli3j2GOPzVi//fbb48MPP6xyH8uWLYsLL7wwY71v375ZLwwB1ERFRUUcffTRWXev6tWrVzz77LPRtWvXWu+jZ8+ese+++2asX3311fHNN99Uuc7s2bPj97//fcb6fvvtV6VboUZ4fw7UP8UyyyMiHnnkkTj88MMzblHXqFGjuOOOO6ocWMyHn//85xlr77///mp3Lfih888/P+P1lJaWxgknnFCT9gAyFNM8LybmOZAPQjIAEBHDhw/P2E3mu60sP/vssyrVWLhwYRx66KExe/bsjMfOO++8KC0trVKdk046KeutPI477ristbP5/e9/H88//3zG+tlnnx3NmzevUg2A+mTPPfeMDh06ZKzfddddcdttt1WrVkVFRRxzzDFZb7W01157ZT1PNuecc07G7C8rK4uhQ4fGkiVLqlTjzDPPjI8//jhj/YILLqjS8QBVlUqlYvjw4XHfffdlPNazZ8949tlnY911162zfrLNuTlz5sRxxx2XdZevHyovL4/jjjsu4xZNJSUlcf7551erF+/PgfqimGb5k08+GT/5yU+irKys0nqjRo1ixIgRdf5N/YMOOig222yzjPWVvd/OZuTIkXH33XdnrA8fPrxB7eQA1L5imufFxjwH8qEkVd39pwCgjk2bNi169uyZsf7ss8/GLrvskrfzPP3007HXXntlbM247rrrxi233LLKnWAmTpwYJ5xwQkycODHjsS233DJeffXVKodkItK3bBo2bFjGet++fePhhx9e5Tdfr7nmmjj33HMzXseGG24Y77zzTjRr1qzKfQDkU23P8z/84Q9x9tlnZ6w3atQo/u///i9+85vfrHYGfvHFF3HsscfGmDFjMh4rKSmJiRMnxpZbblnlni666KK49NJLM9Z32223GDlyZHTs2DHrcStWrIizzz47rrvuuozHdt555xg3blyVewCoip///Ofx17/+NWN9jTXWiNtvvz26d+9e43OUlpZGv379qvz8Y445Ju66666M9cMPPzxuu+22WGONNbIet2jRohg2bFj84x//yFqzut8yjfD+HKgfimWWv/jii7HHHnvE0qVLMx476aSTsu64mItNN9002rRpU+Xnjx07NuutsLt16xaPPPJIbLHFFis99t57741hw4Zl3MKvQ4cO8eGHH8aaa65Z9cYBVqNY5nk+HHvssXHnnXdWWuvevXvWLyZVlXkO1JSQDAAFtbIPTPNl6tSpVd5KPSL9jdVst9eIiNh2223jgAMOiE033TTWXHPNmD9/fkyZMiUef/zxeOaZZ7J+o7Vjx44xfvz4nP7icuCBB2a932zLli3j1FNPjUMOOSQ23XTTKC0tjVmzZsXzzz8f119/fbz22msZxzRr1ixeeuml2HrrravdB0BVFMM8X7ZsWeywww5ZA4sREWuvvXYcf/zxsdtuu8Umm2wSHTp0iLKyspg9e3ZMmDAhRo8eHffcc0/Wi/kREaeffnrW0MqqLF++PAYOHBivv/56xmNrrrlm/OIXv4ghQ4bEhhtuGE2aNInp06fHM888E9dee228//77Gce0b98+Jk2alJcLYgDf16NHj/j0009r9RzVvRg+b9686NevX9ZjunXrFmeeeWbss88+//3zYcqUKfHkk0/GH//4x5gxY0bGMT179oyJEydGu3btcurf+3Og2BXLLL/44ovjkksuqdU+InIL25955plx7bXXZqw3bdo0hg0bFkOHDo2+fftGq1at4uuvv45XXnklbr755qwh+oiIhx9+OIYMGZJD9wArVyzzPB9qIyQTYZ4DNSMkA0BBFcOHqt+XSqXipJNOiltvvbXG5+7cuXM8/PDDMWDAgJyOX7BgQQwaNCjGjx9foz4aNWoUd999d53e6xtoeIplnn/11Vex4447VnmL3ao66KCDYtSoUdGoUfXvWDtz5swYOHBgTJ06tUY9tGjRIh5//PHYdddda1QHIJtivRA/efLk2GWXXWLOnDk1Oveaa64Z48aNi8033zznGt6fA8WuWGZ5MYdkysrK4sADD4zHH3+8xuf/3e9+F+edd16N6wD8ULHM83yorZCMeQ7URPWv8AJAgpWUlMTNN98cV155ZTRp0iTnOv369Ys33ngj54BMRESbNm3iqaeeit133z3nGi1btoz777/fBXigwejcuXM8//zzsffee+elXqNGjeLss8+Ov//97zkFZCIiunbtGs8991yNtjHu1KlTjB49WkAGaHD69OkT48aNq1EQs1evXjUOyER4fw6QBE2bNo1//vOfMXTo0JxrNGnSJK677jofqAIUkHkO1ISQDAD8QElJSfzqV7+KSZMmxeDBg6OkpKTKx66//voxYsSIeOONN6Jbt2417qV9+/bx5JNPxp/+9Kdo27ZttY7dfffdY8KECfGTn/ykxn0A1Cdrr712jB49Om6//fbYdNNNc6pRUlISgwYNiueeey6uvvrqaNasWY16Wm+99eLll1+O888/P5o3b16tPg499NB48803Y+edd65RDwD1VZ8+fWLChAlx8sknR+PGjat8XOPGjeOUU06JCRMm1Dgg8x3vzwHqv9LS0rjnnnvirrvuirXXXrtax/bv3z9eeumlOP3002upOwCqyjwHcuV2SwAU1LJly2LSpEm1Vr9fv35RWlpaoxqffPJJPPTQQ/Hcc8/F+++/H1988UUsWbIk2rRpEx07doyuXbvGwIEDY4899ojtt9++RjvQrMrChQvjrrvuioceeiheeeWVWLRoUaXHS0pKolevXrHXXnvFMcccE9tuu22t9AGQTTHP83HjxsUjjzwSr7/+ekyaNCkWL16c9XkdO3aMbbbZJgYMGBCHH354bLTRRjVpeaW+/vrrGDFiRDzyyCMxfvz4WLZsWaXHGzVqFL1794599tknhg0bFr17966VPgDqo88++yxuu+22ePzxx+Ott96KFStWVHq8SZMmscUWW8TgwYNj+PDheQmur4z35wD137Jly2LkyJHxwAMPxAsvvBDz5s3LeM66664bu+++ewwdOrRGu4kBNEQPPfRQvPnmm5XW2rVrF7/4xS/yeh7zHKgOIRkAqIdSqVTMmDEj5syZE2VlZdGqVatYb731omXLloVuDaCoVVRUxNy5c2PevHkxf/78aNy4cbRr1y7atWtX7R0B8qG8vDymT58e8+bNi/Ly8mjTpk2st9561dptBqChKisri88++yzmz58fERFt27aNbt26RdOmTeu8F+/PAZJh1qxZMXv27Fi6dGm0bNkyunbtWpC/JwBQM+Y5sCpCMgAAAAAAAAAAJF6jQjcAAAAAAAAAAAC1TUgGAAAAAAAAAIDEE5IBAAAAAAAAACDxhGQAAAAAAAAAAEg8IRkAAAAAAAAAABJPSAYAAAAAAAAAgMQTkgEAAAAAAAAAIPGEZAAAAAAAAAAASDwhGQAAAAAAAAAAEk9IBgAAAAAAAACAxBOSAQAAAAAAAAAg8YRkAAAAAAAAAABIPCEZAAAAAAAAAAAST0gGAAAAAAAAAIDEE5IBAAAAAAAAACDxhGQAAAAAAAAAAEg8IRkAAAAAAAAAABJPSAYAAAAAAAAAgMQTkgEAAAAAAAAAIPGEZAAAAAAAAAAASDwhGQAAAAAAAAAAEk9IBgAAAAAAAACAxBOSAQAAAAAAAAAg8YRkAAAAAAAAAABIPCEZAAAAAAAAAAAST0gGAAAAAAAAAIDEE5IBAAAAAAAAACDxhGQAAAAAAAAAAEg8IRkAAAAAAAAAABJPSAYAAAAAAAAAgMQTkgEAAAAAAAAAIPGEZAAAAAAAAAAASDwhGQAAAAAAAAAAEk9IBgAAAKiyadOmRUlJSVH8TJs2rdC/HAAAAADUI00K3QAAAAAAUPeefPLJjLW99967AJ0AAABA3RCSAQAAAIAGaJ999slYS6VSBegEAAAA6obbLQEAAAAAAAAAkHh2kgEAAACqbO21145XXnklp2N/9rOfxaRJkyqt9evXL2644YacewEAAACAqhKSAQAAAKqstLQ0BgwYkNOxbdq0ybqWaz0AAAAAqA63WwIAAAAAAAAAIPGEZAAAAAAAAAAASDwhGQAAAAAAAAAAEq9JoRsAAAAAqKn58+fHpEmTYsqUKTFnzpxYtmxZdOjQITp37hw9evSIfv36RaNGdftdoXfffTfefvvtmDVrVixevDjatGkTPXr0iAEDBkTnzp2rVWvJkiUxadKkeO+992LOnDkREbHWWmvFBhtsEAMGDIjGjRvXxkvIkEql4u2334533nknvvzyy1i8eHG0bNkyevToEdtuu2107dq11ntYvnx5vPnmm/Hxxx/HF198EUuWLIlWrVrFWmutFeuss05su+220bx581rv4/tmz5793//+5s2bF2VlZdG6devYfPPNY9CgQdWq85///Oe/dRYuXBjNmzePDh06RIcOHaJPnz7Rq1evWnwlDdvnn38eb731VkydOjUWLFgQ5eXl0bZt29hmm21iu+22q1atr7/+Ot58882YNm1azJ07N1asWBEdO3aMzp07x4YbbhibbbZZLb0KAAAAVkVIBgAAAKiX5s+fH7fffnvcf//9MX78+KioqFjpczt16hT77LNP/PznP49tttkmp/ONGzcudt1110prO++8c4wbN+6//zxnzpy47rrr4rbbbouZM2dmrdO4cePYa6+94tJLL43+/fuv8pzvvvtuXHnllfHQQw/Ft99+m/U5a665Zhx99NFx0UUXRdu2bav3oqJqr+vLL7+MP/7xj3HXXXfFF198sdJa22yzTZx++ukxdOjQKCkpqXYvK1NeXh4PPPBA3H333fHvf/87li5dutLntmjRInbbbbc45phj4ic/+UnO58zWfyqV+u//Lysri7vuuituvfXWeOONN7L+97fzzjuvMiTzxRdfxKOPPhrjxo2LcePGxeeff77avtZZZ50YNGhQnHnmmdGvX78qvpq0Y489Nu68885VPqeq/95GjBgRxx57bMb6xRdfHJdcckmltYsuuiguvvjiqrZZybRp06Jnz56V1rp37x7Tpk3Ly7GLFi2KW2+9NW677bZ45513stY55phjqhSS+fLLL+OWW26Jf/zjHyut9Z311lsv9t133zjrrLNio402Wm1tAAAA8sPtlgAAAIB6ZcWKFXHNNddEt27d4qyzzorXX399lQGZiPSuDnfddVdst912MXTo0CqFEarrkUceiU022SQuvfTSlQZkItKBjyeeeCK23XbbuOyyy7I+p6ysLM4555zo27dv3HPPPSsNyEREfPPNN/GnP/0pNtlkk3j11Vdr/Dp+6L777otNNtkkfv/7368yIBMR8cYbb8RRRx0V22+/fXzyySd5Of+jjz4aG2+8cRx++OHx+OOPrzIgE5Hedefxxx+PQw89NLbffvt4/fXX89LH902YMCG22GKLOP744+O1115b7X9/P/Tcc8/FoEGDomvXrnHiiSfGfffdV+X/Jj///PO4++67Y6uttorBgwfXyn/LDcVTTz0Vm2yySZx55pmrDbWsyuLFi+P//u//okePHvGb3/ymSrWmT58eN998c2y22WZx2mmnxfz583M+PwAAAFUnJAMAAADUG7NmzYqdd945zjnnnFiwYEG1j0+lUnHffffFgAED4v33389bXzfddFMceOCB8fXXX1f5mIqKirjwwgvjwgsvrLS+ZMmSGDx4cFxzzTXVCl988cUXsddee8X48eOrfMzq/OEPf4ihQ4fGvHnzqnXca6+9Fttuu22NAirLly+Pk08+OYYMGZJz4ObVV1+NH/3oR/HPf/4z5z5+aPTo0TFw4MAa/ffz9NNPx9ixY6sdrvmhJ554IrbeeutaCUcl3W233Rb77rtvzJgxo0Z1Pvjgg9h6663jyiuvXG2AK5sVK1bEX/7ylxg4cKDAEwAAQB1wuyUAAACgXvjss89i1113jSlTpqz0OV26dIl11lkn2rVrF/PmzYtp06bFnDlzMp43ffr02GmnneLZZ5+Nvn371qivhx9+OE499dSMwEOvXr2iS5cu0aRJk5g5c+ZKgx6XXXZZ7LTTTrHXXntFRUVF/OQnP4mnn3660nNatGgRvXr1ik6dOsXixYvj448/zvq6FixYEEOHDo233347SktLa/S6HnzwwTjnnHMy1jt16hTdunWLVq1axaxZs2Lq1KlRVlaW8bw5c+bE3nvvHS+//HJssskm1Tr3smXL4qCDDoonnnhipc9p06ZNdO/ePTp27BhLliyJmTNnxvTp07PWOvTQQ2PEiBFx9NFHV6uPH3rzzTfjkEMOiSVLllRab9WqVXTv3j06deoUCxYsiJkzZ8aXX36Z0zk6d+4ca621VrRt2zZKS0tj/vz58fnnn680QDFr1qzYZ599YtKkSdGjR4+cztnQjB49Ok466aQoLy+vtN6+fftYb731Ys0114w5c+bEjBkz4ptvvllpnTfffDN23333VT5nvfXWiy5dukTr1q3jm2++iSlTpsTChQsznjd58uTYYYcd4qWXXoquXbvm/uIAAABYJSEZAAAAoOgtW7YsfvzjH2cNyHTp0iXOOOOMOPjgg2PDDTes9FhFRUW8/vrrcc0112TsJjJnzpw4/PDDY8KECdGiRYuc+vryyy9j2LBh/w3IdOjQIX7961/H4YcfnvFB99SpU+Oyyy6L22+/PaPOGWecEe+9915cfvnl8fjjj/93fcCAAXH++efHoEGDKvVYXl4e//73v+Oss86Kd999t1KtDz/8MK655po4//zzc3pNERGzZ8+OE088MVKp1H/XjjjiiDjttNNiwIABlZ47d+7cGDVqVFx88cUxa9asjMeOOOKIeOONN6Jx48ZVPv+ZZ56ZNSDTvHnzGDZsWBx33HHRr1+/jJofffRR3HbbbXHddddV2tWjoqIiTj755Nh2222rHdj5viOPPDIWL178338+4IAD4owzzoiddtopmjZtWum5kydPjjfeeGO1NTfddNMYMmRI7L777tG3b9/o1KlT1ud99dVX8fDDD8cNN9wQb775ZqXH5s2bF4cffni8+OKL0aTJyi/3XXjhhXHyySf/95+33377jOe88sorq+05ImL99dev0vOKzbfffhvHHXfcfwMyjRo1imOOOSZOPPHE2HbbbaNRo8obb7/88stZb582Z86cGDJkSNaAzPrrrx9nnXVWDBkyJNZdd91Kj5WVlcXzzz8fV1xxRYwdO7bSY59++mkcffTR8cwzz0RJSUlNXyoAAADZpAAAAADqwM4775yKiEo/O++8c5WOPfXUUzOOjYjUMccck1q0aFGVavzrX/9KtWjRIqPGaaedVqXjn3322aw9fPezww47pGbPnr3aOldffXXW46+88spUs2bNUhGRKikpSV155ZWrrbVgwYLUNttsk1FrvfXWS5WXl+fldZWWlqYefPDB1db55ptvUnvuuWfWGldddVWVekmlUqlRo0ZlrbHNNtukpk6dWqUa77//fqpHjx4ZNfr165dasWJFlWqs6tekRYsWqUceeaTKr+mHLr300tQxxxyTeuutt6p9bHl5eer3v/99qqSkJKOvkSNHVqtWttdWUxdddFFGzYsuuijnelOnTs2o171795yP/f5Px44dU6+++mpOfe2///4Z9UpKSlK/+tWvUmVlZVWqccMNN6QaN26cUecPf/hDTj0BAACwepW/GgEAAABQZF588cX461//mrF+zjnnxB133BFrrLFGler8+Mc/jgcffDBjh4abbropYweU6urXr18888wzseaaa672uWeffXb86Ec/ylg/77zzYvny5RERcdVVV8WvfvWr1dZq3bp13HnnnRm7h0yfPj1jl4pclJSUxL333hsHHnjgap/boUOH+Ne//pWx00xExCWXXJL19lA/tHDhwjjxxBMz1nfaaad44YUXqnw7oU022SReeOGF6NixY6X1SZMmxb/+9a8q1ViZRo0axWOPPRb7779/zjUuuOCCuOOOO3K61VejRo3inHPOiT/+8Y8Zj1133XU599TQtGzZMp577rnYbrvtqn3svffeG48++mjG+vXXXx9XXnnlKnfz+b5TTjklbrjhhoz13/3ud5V2QgIAACB/hGQAAACAovb73/8+Y22PPfaIq666qtq19t577zj99NMrrZWVlWX9oLqqmjZtGvfdd1+1btl05plnrvSxXXfdNc4+++wq1+rdu3fss88+GesvvPBClWuszDHHHBMHH3xwlZ+/xhprxJ133plx66HFixfHXXfdtdrjb7311pg7d26ltc6dO8dDDz0UpaWlVe4jImLdddeNW2+9NWO9pkGSM844I3bbbbca1cjHrXTOOOOM2HrrrSutvfzyyzFt2rQa124Irrjiith0001zOjbbTBo+fHiceuqp1a514oknxgEHHFBpbfbs2XHvvffm1BsAAACrJiQDAAAAFK3//Oc/8dhjj1Vaa9y4cfzxj3/MOWhw3nnnRbNmzSqt3X777Tn3eOihh8Ymm2xSrWP23nvvjCDJdy688MJqv7YffsgeETFx4sRq1fih0tLSuPLKK6t93EYbbRSnnHJKxvott9yyyuNWrFgR1157bcb6JZdcUqUderL58Y9/nLFby4svvhgfffRRTvVKS0vj/PPPz+nYfCspKYmjjjoqY/2VV14pQDf1S5cuXeJnP/tZTseOGTMm3n777UprrVu3jiuuuCLnfn7zm99krNVkJgEAALByQjIAAABA0Ro5cmSkUqlKa7vttltsvvnmOdfs0qVL7L777pXWPv/885gyZUpO9YYNG1btY5o3bx4bbbRRxnr37t1j1113rXa9bLft+fDDD6td5/v222+/WGuttXI6dvjw4Rlr77///ip/jV966aWYPn16pbXWrVvHsccem1MP3znyyCMz1nLdZeeAAw7IObBTG7bZZpuMtVdffbUAndQvRx99dJVvifRD999/f8ba4YcfHp07d865n6222ipjV5vx48e75RIAAEAtEJIBAAAAitbzzz+fsVad2/+szMCBAzPWXn755WrXadKkSQwYMCCnHrp3756xtuOOO+ZUq0ePHhlr8+fPz6nWdw499NCcj+3bt2/W3XVef/31lR6T7d/14MGDo3nz5jn3EZG/f9cRkVOAqTZlC2Z88sknBeikfqnJv8e6mknLly+P8ePH17guAAAAlQnJAAAAAEWprKws664YW2+9dY1rZwuV/PAWKlXRvXv3WGONNXLqoXXr1hlrvXv3zlutmoZksu1SUtPjqxuSKaZ/1xER/fv3r2E3K/fWW2/FtddeG8OHD4/tttsuevbsGR07doxmzZpFSUlJ1p8NNtggo868efNqrcekyPXf48yZM7PuhlRs/50CAACwcrntKwoAAABQy6ZMmRKLFy/OWJ87d26Nbynz5ZdfZqzNmTOn2nU6dOiQcw/ZdkjJtV62WjW5VUubNm2iZ8+eOR8fEbHFFlvE3XffXWltVbdbeueddzLWysvLa/zvuqysLGMtl3/XERHrrrtujXr5obKysrjhhhvi1ltvjXfffTcvNYVkVq1Zs2bRqVOnnI7N9t9oq1at4qOPPoqPPvqoRn1l+/eW63+nAAAArJyQDAAA8P/t3X1slfXZB/CLFiyF0lIo3bKJ4IBoazIHDl2lrjpGlqnMl8nmZCCoM25xuixb5kicf8yEGRece5GRKBPNSLZlKK8jiINuvDiEujFeFExURovyVksLrtDS54/necy6cyrlnAOtN5/Pn9e5f9d9nXPfOUlPv7l/AL3SoUOH0tYnTZp0Rs6XyT+kM32KzNnql6mPfOQjWff46Ec/mlL7oABHus//Bz/4QdZzdPdc3VFSUpKzGf72t7/FHXfcETt27MhZz4iIo0eP5rRf0mRzDdN9J7W0tERVVVU2I3VJSAYAACD3hGQAAACAXuls/4M42+2JkqS4uPiM9GhsbEx7bEtLSxw/fjzrc3ZXptc6VyGm2trauO66685IoKWjoyPnPZMkm2voOwkAAODDT0gGAAAA6JXO9rYx7e3tZ/V8vVlhYeEZ6ZFu+6yIs3+tT548eVbP95/q6+tj8uTJXQZkRo4cGRMmTIiLLroozj///CgvL4+CgoIoLCyM/Pz8Tsfu27cvbr755rMxNuE7CQAAIAmEZAAAAIBeqW9fP1v0lJaWlqx7NDc3p9S62urmXLrW3//+99N+NjfeeGM8+OCDMW7cuG73ev3113M5GqdwLt2nAAAASeUvOwAAAKBX6mrLn2PHjuXkSSd07ciRI2ekx+DBg9Me29W1XrFiRXzxi1/Mepbe4sCBA/G73/0upf7AAw/E7NmzT7tfV9tXJcmJEyd6eoT3pbtPy8vL45133umBaQAAAMhEXk8PAAAAAJDO8OHD09YPHTp0lic59+zduzfrcMIbb7yRUhsyZEjaYwcMGJD2taRd62XLlqVs9VRZWRkPP/xwRv0OHjyYi7FyKt3TVtra2jLu15vugXTfSYcPH+6BSQAAAMiUkAwAAADQK40ZMybtP9zfeuutHpjm3HL8+PHYuXNnVj3+8Y9/pNQuueSSLo+vrKxMqSXtWm/ZsiWldtttt0V+fn5G/erq6rIdKecGDRqUUstm+676+vpsxsmpdPdoW1tbr5oRAACADyYkAwAAAPRK/fv3j7Fjx6bU16xZ0wPTnHv++te/Zry2vb09Nm7cmFK//PLLu1xTVVWVUkvatU63LU9FRUXG/bK5RmdKSUlJSu3tt9/OuN/69euzGSenRo0aFcOGDUupJ+0+BQAASDIhGQAAAKDXuv7661Nqzz33XA9Mcu5ZuHBhxmtXr16dEgjp06fPB4Zk0l3rdevWxf79+zOeo7dpampKqRUVFWXUa8+ePbF69eqs5ikoKEipZbvN1sc+9rGU2tatWzPq1dHREcuWLctqnlxLd58uWrSoByYBAAAgE0IyAAAAQK81derUyMvr/PNFXV1dLF26tIcmOnds2LAh7fZA3fGLX/wipfb5z38+hg4d2uWa6urquPDCCzvVWltb45FHHsloht4o3VNWGhoaMuo1Z86caG9vz2qedFsjHT16NKue48aNS6m9+uqr8a9//eu0ey1ZsiR2796d1Ty5Nm3atJTa888/n3EQCAAAgLNLSAYAAADotUaNGhU33HBDSv3ee+/NagsXuue+++6Ljo6O01qzcuXKWL58eUr97rvv/sB1eXl58Z3vfCel/stf/jJqa2tPa4beKt1TVv70pz+ddp9169alDSKdrtLS0pTam2++mVXPsrKyGDFiRKdaR0dHPPXUU6fVp7GxMe67776sZjkTrrnmmpQgUEdHR8yYMSPrgBEAAABnnpAMAAAA0Ks98sgjKdvC7NmzJ6677rqor6/Puv8rr7xiu5QubNiwIb73ve91+/jdu3fH7bffnlIfMWJE2rDTf/vmN78ZF110Uafa8ePH46abbor169d3e46uNDQ0xNy5c7Puk6mrrroqpfbHP/4x6urqut1j+/bt8ZWvfCVOnjyZ9TyVlZUptY0bN2bd95ZbbkmpPfroo7Fr165urT9y5Eh8+ctfjj179mQ9y5kwZ86c6NOnT6faK6+8EjfffHO8++67Wfevra3NeistAAAA0hOSAQAAAHq1MWPGpN1yp66uLi699NJYsGBBnDhx4rR6Hj58OJ555pmoqamJcePGxapVq3I1biL8ZwBgzpw58a1vfeuUT8mora2NiRMnxv79+1Nee+KJJ6Jfv36nPG+/fv3i2WefTTm2sbExampq4sEHH4zGxsZuvov/1draGitWrIipU6fGyJEj4/HHHz+t9bk0adKkGDhwYKdae3t7XH/99d3a2ur3v/991NTUxL59+yIiIj8/P6t5LrvsspTa448/Hk1NTVn1vfPOO1Nqx44di4kTJ8bmzZs/cG1tbW1MmDAh1qxZExERAwYMyGqWM6Gmpibuv//+lPqqVaviU5/6VCxZsuS0n8DU0NAQv/71r2PcuHFx9dVXn/JzAgAAIDN9e3oAAAAAgFO5//77Y9u2bfHkk092qh86dChmzJgRs2bNiq9+9atRXV0dn/zkJ2PIkCFRUlIS7733XjQ1NcXBgwdj+/bt8c9//jM2btwY69ati/b29h56N73flVdeGUePHo2///3vERExd+7cWL58edx5550xefLkuOCCC6KoqCj27dsXdXV18dvf/jaee+65tMGA2267La699tpun3v8+PHx1FNPxe23396pX3t7ezz88MMxZ86cmDJlStTU1MT48eOjvLw8Bg8eHO3t7dHU1BTvvvtu7Nq1K7Zu3RpbtmyJ1atXR0tLS9afSS6UlJTEt7/97fjJT37Sqb5v376oqqqKqVOnxq233hpjx46N0tLSaGlpiYaGhvjzn/8cCxcujJdeeqnTulmzZsWPf/zjjOe55ZZb4kc/+lGn2muvvRaXXHJJTJs2LS677LIoKyuL/v37p6wdNWpUDBs2LG3fioqKmD59ejzzzDOd6nv37o0rrrgiJk+eHNdee22MHDkyCgoK4sCBA7Fjx45Yvnx5bNq06f3j8/Ly4uc//3ncddddGb/HM+XRRx+NV199NVauXNmp/tZbb8UNN9wQo0ePjilTpsSECROisrIyhgwZEkVFRXH06NFoamqK/fv3x7Zt22Lr1q2xbt26ePnll087WAMAAMDpE5IBAAAAPhTmzZsX/fr1S7tdTkNDQzz22GPx2GOP9cBkydO3b99YuHBhVFVVvf9UkT179sRDDz0UDz30ULf7jB07NubNm3fa5582bVp0dHTEXXfdlfKUoGPHjsWCBQtiwYIFp923N5g1a1YsWbIkduzY0al+4sSJePrpp+Ppp5/uVp9vfOMbcccdd2QVkqmoqIhJkybFCy+80KleX1+fEuT5b7/5zW9ixowZXb7+s5/9LF588cWULdFOnjwZixcvjsWLF59yvl/96lcxceLEUx7XE/r27RuLFi2Kr33ta2nfy+uvvx6zZ8/ugckAAAD4ILZbAgAAAD4U8vLy4oknnoj58+fHoEGDctq7O1sBnWsqKipi2bJlMXjw4IzWV1VVxerVq6OoqCij9dOnT4+//OUvMXr06IzWd6Wnr/WgQYNi6dKlMWLEiIx73H333WnDYpmYP39+l0+EyUZpaWmsXbs2o/d53nnnxfz58+Oee+7J+Vy5VFhYGIsWLYrZs2fHeeedl9PePX2fAgAAJJWQDAAAAPChMnPmzNi9e3fce++9MXDgwIz7FBYWxpQpU2Lp0qWeQNOF6urq2LRpU1RXV3d7TUFBQfzwhz+M2traGDJkSFbn/8xnPhPbtm2Ln/70p/Hxj3884z55eXnx2c9+Np588slYv359VjPlwic+8YnYsmVLfOlLXzqtdeXl5fHss8/GvHnzIj8/PyeznH/++VFXVxdf+MIXctLvP40ePTpeeumlmDFjRuTlde9nyKuuuio2b94cM2fOzPk8Z0JeXl488MADsXPnzvj617+eVVimpKQkZs6cGWvWrInvfve7OZwSAACA/9enw2a3AAAAwFmwY8eOOHLkSKdacXFxVFZWZtyzqakpFi9eHCtWrIhNmzbFm2++Gel+6ujTp09ccMEFcfHFF8enP/3pmDhxYlx55ZVRUFCQ8bmTYu3atXHNNdd0qtXU1MTatWs71V544YVYsGBBrF69Ot55551Or/Xp0ycqKirixhtvjHvuuSeGDx+e8znb2tpi1apVsWTJktiwYUPs3Lkz2tra0h47bNiwuPjii+PSSy+Nz33uc3H11VdHaWlpzmfKhZdffjnmzp0bL774YuzZsyfl9dLS0qiuro6bbropbr311igsLHz/tebm5pRtp4qLi2P69OkZzbJr1674wx/+EHV1dbF9+/Y4fPhwNDc3x7///e+UY0+13dJ/e+211+L555+PVatWxRtvvBEHDhyI1tbWKCkpiTFjxsSECRNiypQpcfnll2c0e2+xf//+WLRoUaxcuTI2b96cst3U/8vPz48LL7wwKioq4oorroiJEyfG+PHjcxZ+AgAAID0hGQAAACAxWltbY+/evdHc3BxtbW0xcODAGDRoUJSVlUX//v17erxeqbshmf908ODBePvtt+O9996LgQMHxogRI7J6qk8m2tvbo6GhIRobG6O1tTX69+8fxcXFUVpaGsXFxWd1llw5dOhQHDx4MJqbm6OwsDCGDRsW5eXlPT0WWTh27FjU19dHS0tLtLe3R1FRURQXF0dZWVnOt2gCAADg1Pr29AAAAAAAuVJQUBCjRo3q6TESr6ysLMrKynp0hvz8/Bg+fPgZeWpNTxk6dGgMHTq0p8cghwYMGBBjxozp6TEAAAD4P93bDBgAAAAAAAAAAD7EhGQAAAAAAAAAAEg8IRkAAAAAAAAAABJPSAYAAAAAAAAAgMQTkgEAAAAAAAAAIPGEZAAAAAAAAAAASDwhGQAAAAAAAAAAEk9IBgAAAAAAAACAxBOSAQAAAAAAAAAg8fp0dHR09PQQAAAAAAAAAABwJnmSDAAAAAAAAAAAiSckAwAAAAAAAABA4gnJAAAAAAAAAACQeEIyAAAAAAAAAAAknpAMAAAAAAAAAACJJyQDAAAAAAAAAEDiCckAAAAAAAAAAJB4QjIAAAAAAAAAACSekAwAAAAAAAAAAIknJAMAAAAAAAAAQOIJyQAAAAAAAAAAkHhCMgAAAAAAAAAAJJ6QDAAAAAAAAAAAiSckAwAAAAAAAABA4gnJAAAAAAAAAACQeEIyAAAAAAAAAAAknpAMAAAAAAAAAACJJyQDAAAAAAAAAEDiCckAAAAAAAAAAJB4QjIAAAAAAAAAACSekAwAAAAAAAAAAIknJAMAAAAAAAAAQOIJyQAAAAAAAAAAkHhCMgAAAAAAAAAAJJ6QDAAAAAAAAAAAiSckAwAAAAAAAABA4gnJAAAAAAAAAACQeEIyAAAAAAAAAAAknpAMAAAAAAAAAACJJyQDAAAAAAAAAEDiCckAAAAAAAAAAJB4QjIAAAAAAAAAACSekAwAAAAAAAAAAIknJAMAAAAAAAAAQOIJyQAAAAAAAAAAkHhCMgAAAAAAAAAAJJ6QDAAAAAAAAAAAiSckAwAAAAAAAABA4v0PKIlJw3CiXS8AAAAASUVORK5CYII=",
 | 
						||
      "text/plain": [
 | 
						||
       "<Figure size 2560x1920 with 1 Axes>"
 | 
						||
      ]
 | 
						||
     },
 | 
						||
     "metadata": {},
 | 
						||
     "output_type": "display_data"
 | 
						||
    }
 | 
						||
   ],
 | 
						||
   "source": [
 | 
						||
    "# 生成烤咖啡豆的数据集\n",
 | 
						||
    "# 温度和时间作为特征,结果为好坏\n",
 | 
						||
    "# X[:, 0] 表示温度,X[:, 1] 表示时间,y 表示结果(好坏)\n",
 | 
						||
    "def generate_data():\n",
 | 
						||
    "    # 生成符合条件的数据集,温度在150到200度之间,时间在10到20分钟之间\n",
 | 
						||
    "    np.random.seed(38)\n",
 | 
						||
    "    X = np.zeros((60, 2),dtype=int)\n",
 | 
						||
    "    y = np.zeros(60, dtype=int)\n",
 | 
						||
    "    X[:, 0] = np.random.randint(150, 250, size=60)\n",
 | 
						||
    "    X[:, 1] = np.random.randint(10, 20, size=60)\n",
 | 
						||
    "    \n",
 | 
						||
    "    # 将中间的点标记为好,周围的点标记为坏\n",
 | 
						||
    "    # 调整条件以确保至少5个点被标记为好\n",
 | 
						||
    "    for i in range(60):\n",
 | 
						||
    "        if 180 < X[i, 0] < 220 and 13 < X[i, 1] < 17:\n",
 | 
						||
    "            y[i] = 1  # 好的部分在190到210度之间,时间在13到16分钟之间\n",
 | 
						||
    "    \n",
 | 
						||
    "    plt.figure(dpi=400)\n",
 | 
						||
    "    cmap = ListedColormap(['red', 'blue'])\n",
 | 
						||
    "    plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap)\n",
 | 
						||
    "    plt.title('Coast Coffee Beans')\n",
 | 
						||
    "    plt.xlabel('Temperature')\n",
 | 
						||
    "    plt.ylabel('Time')\n",
 | 
						||
    "    # 添加图例,表示颜色所代表的含义\n",
 | 
						||
    "    legend_elements = [\n",
 | 
						||
    "        Line2D([0], [0], marker='o', color='w', label='Good',\n",
 | 
						||
    "               markerfacecolor='blue', markersize=10),\n",
 | 
						||
    "        Line2D([0], [0], marker='o', color='w', label='Bad',\n",
 | 
						||
    "               markerfacecolor='red', markersize=10)\n",
 | 
						||
    "    ]\n",
 | 
						||
    "    plt.legend(handles=legend_elements, title=\"Quality\", loc='upper left')\n",
 | 
						||
    "    plt.show()\n",
 | 
						||
    "    return X, y\n",
 | 
						||
    "\n",
 | 
						||
    "x, y = generate_data()"
 | 
						||
   ]
 | 
						||
  },
 | 
						||
  {
 | 
						||
   "cell_type": "code",
 | 
						||
   "execution_count": 5,
 | 
						||
   "metadata": {},
 | 
						||
   "outputs": [
 | 
						||
    {
 | 
						||
     "name": "stdout",
 | 
						||
     "output_type": "stream",
 | 
						||
     "text": [
 | 
						||
      "Epoch 1/100\n"
 | 
						||
     ]
 | 
						||
    },
 | 
						||
    {
 | 
						||
     "name": "stderr",
 | 
						||
     "output_type": "stream",
 | 
						||
     "text": [
 | 
						||
      "'+ptx85' is not a recognized feature for this target (ignoring feature)\n",
 | 
						||
      "'+ptx85' is not a recognized feature for this target (ignoring feature)\n",
 | 
						||
      "'+ptx85' is not a recognized feature for this target (ignoring feature)\n",
 | 
						||
      "'+ptx85' is not a recognized feature for this target (ignoring feature)\n",
 | 
						||
      "'+ptx85' is not a recognized feature for this target (ignoring feature)\n",
 | 
						||
      "'+ptx85' is not a recognized feature for this target (ignoring feature)\n",
 | 
						||
      "'+ptx85' is not a recognized feature for this target (ignoring feature)\n",
 | 
						||
      "'+ptx85' is not a recognized feature for this target (ignoring feature)\n",
 | 
						||
      "'+ptx85' is not a recognized feature for this target (ignoring feature)\n",
 | 
						||
      "'+ptx85' is not a recognized feature for this target (ignoring feature)\n",
 | 
						||
      "'+ptx85' is not a recognized feature for this target (ignoring feature)\n",
 | 
						||
      "'+ptx85' is not a recognized feature for this target (ignoring feature)\n",
 | 
						||
      "'+ptx85' is not a recognized feature for this target (ignoring feature)\n",
 | 
						||
      "'+ptx85' is not a recognized feature for this target (ignoring feature)\n",
 | 
						||
      "'+ptx85' is not a recognized feature for this target (ignoring feature)\n",
 | 
						||
      "'+ptx85' is not a recognized feature for this target (ignoring feature)\n",
 | 
						||
      "'+ptx85' is not a recognized feature for this target (ignoring feature)\n",
 | 
						||
      "'+ptx85' is not a recognized feature for this target (ignoring feature)\n",
 | 
						||
      "WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n",
 | 
						||
      "I0000 00:00:1736497931.531534   21216 service.cc:146] XLA service 0x7f49f4954650 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:\n",
 | 
						||
      "I0000 00:00:1736497931.531557   21216 service.cc:154]   StreamExecutor device (0): NVIDIA A800 80GB PCIe, Compute Capability 8.0\n",
 | 
						||
      "2025-01-10 08:32:11.540274: I tensorflow/compiler/mlir/tensorflow/utils/dump_mlir_util.cc:268] disabling MLIR crash reproducer, set env var `MLIR_CRASH_REPRODUCER_DIRECTORY` to enable.\n",
 | 
						||
      "2025-01-10 08:32:11.571961: I external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:531] Loaded cuDNN version 90600\n",
 | 
						||
      "'+ptx85' is not a recognized feature for this target (ignoring feature)\n",
 | 
						||
      "'+ptx85' is not a recognized feature for this target (ignoring feature)\n",
 | 
						||
      "'+ptx85' is not a recognized feature for this target (ignoring feature)\n",
 | 
						||
      "I0000 00:00:1736497931.646086   21216 device_compiler.h:188] Compiled cluster using XLA!  This line is logged at most once for the lifetime of the process.\n",
 | 
						||
      "'+ptx85' is not a recognized feature for this target (ignoring feature)\n",
 | 
						||
      "'+ptx85' is not a recognized feature for this target (ignoring feature)\n",
 | 
						||
      "'+ptx85' is not a recognized feature for this target (ignoring feature)\n"
 | 
						||
     ]
 | 
						||
    },
 | 
						||
    {
 | 
						||
     "name": "stdout",
 | 
						||
     "output_type": "stream",
 | 
						||
     "text": [
 | 
						||
      "2/2 [==============================] - 2s 10ms/step - loss: 0.7364\n",
 | 
						||
      "Epoch 2/100\n",
 | 
						||
      "2/2 [==============================] - 0s 5ms/step - loss: 0.7210\n",
 | 
						||
      "Epoch 3/100\n",
 | 
						||
      "2/2 [==============================] - 0s 6ms/step - loss: 0.7066\n",
 | 
						||
      "Epoch 4/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.6929\n",
 | 
						||
      "Epoch 5/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.6786\n",
 | 
						||
      "Epoch 6/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.6668\n",
 | 
						||
      "Epoch 7/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.6531\n",
 | 
						||
      "Epoch 8/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.6411\n",
 | 
						||
      "Epoch 9/100\n"
 | 
						||
     ]
 | 
						||
    },
 | 
						||
    {
 | 
						||
     "name": "stderr",
 | 
						||
     "output_type": "stream",
 | 
						||
     "text": [
 | 
						||
      "'+ptx85' is not a recognized feature for this target (ignoring feature)\n",
 | 
						||
      "'+ptx85' is not a recognized feature for this target (ignoring feature)\n",
 | 
						||
      "'+ptx85' is not a recognized feature for this target (ignoring feature)\n",
 | 
						||
      "'+ptx85' is not a recognized feature for this target (ignoring feature)\n",
 | 
						||
      "'+ptx85' is not a recognized feature for this target (ignoring feature)\n",
 | 
						||
      "'+ptx85' is not a recognized feature for this target (ignoring feature)\n"
 | 
						||
     ]
 | 
						||
    },
 | 
						||
    {
 | 
						||
     "name": "stdout",
 | 
						||
     "output_type": "stream",
 | 
						||
     "text": [
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.6245\n",
 | 
						||
      "Epoch 10/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.6015\n",
 | 
						||
      "Epoch 11/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.5786\n",
 | 
						||
      "Epoch 12/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.5240\n",
 | 
						||
      "Epoch 13/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.5058\n",
 | 
						||
      "Epoch 14/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4971\n",
 | 
						||
      "Epoch 15/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4868\n",
 | 
						||
      "Epoch 16/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4798\n",
 | 
						||
      "Epoch 17/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4722\n",
 | 
						||
      "Epoch 18/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4654\n",
 | 
						||
      "Epoch 19/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4600\n",
 | 
						||
      "Epoch 20/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4560\n",
 | 
						||
      "Epoch 21/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4506\n",
 | 
						||
      "Epoch 22/100\n",
 | 
						||
      "2/2 [==============================] - 0s 6ms/step - loss: 0.4460\n",
 | 
						||
      "Epoch 23/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4432\n",
 | 
						||
      "Epoch 24/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4404\n",
 | 
						||
      "Epoch 25/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4380\n",
 | 
						||
      "Epoch 26/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4349\n",
 | 
						||
      "Epoch 27/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4335\n",
 | 
						||
      "Epoch 28/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4313\n",
 | 
						||
      "Epoch 29/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4301\n",
 | 
						||
      "Epoch 30/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4293\n",
 | 
						||
      "Epoch 31/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4278\n",
 | 
						||
      "Epoch 32/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4270\n",
 | 
						||
      "Epoch 33/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4259\n",
 | 
						||
      "Epoch 34/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4257\n",
 | 
						||
      "Epoch 35/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4249\n",
 | 
						||
      "Epoch 36/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4245\n",
 | 
						||
      "Epoch 37/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4247\n",
 | 
						||
      "Epoch 38/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4239\n",
 | 
						||
      "Epoch 39/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4238\n",
 | 
						||
      "Epoch 40/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4238\n",
 | 
						||
      "Epoch 41/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4232\n",
 | 
						||
      "Epoch 42/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4232\n",
 | 
						||
      "Epoch 43/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4232\n",
 | 
						||
      "Epoch 44/100\n",
 | 
						||
      "2/2 [==============================] - 0s 8ms/step - loss: 0.4229\n",
 | 
						||
      "Epoch 45/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4229\n",
 | 
						||
      "Epoch 46/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4230\n",
 | 
						||
      "Epoch 47/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4229\n",
 | 
						||
      "Epoch 48/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4228\n",
 | 
						||
      "Epoch 49/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4228\n",
 | 
						||
      "Epoch 50/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4228\n",
 | 
						||
      "Epoch 51/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4228\n",
 | 
						||
      "Epoch 52/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4228\n",
 | 
						||
      "Epoch 53/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4227\n",
 | 
						||
      "Epoch 54/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4227\n",
 | 
						||
      "Epoch 55/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4227\n",
 | 
						||
      "Epoch 56/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4227\n",
 | 
						||
      "Epoch 57/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4228\n",
 | 
						||
      "Epoch 58/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4227\n",
 | 
						||
      "Epoch 59/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4228\n",
 | 
						||
      "Epoch 60/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4228\n",
 | 
						||
      "Epoch 61/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4227\n",
 | 
						||
      "Epoch 62/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4227\n",
 | 
						||
      "Epoch 63/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4227\n",
 | 
						||
      "Epoch 64/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4227\n",
 | 
						||
      "Epoch 65/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4227\n",
 | 
						||
      "Epoch 66/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4228\n",
 | 
						||
      "Epoch 67/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4227\n",
 | 
						||
      "Epoch 68/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4227\n",
 | 
						||
      "Epoch 69/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4227\n",
 | 
						||
      "Epoch 70/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4227\n",
 | 
						||
      "Epoch 71/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4227\n",
 | 
						||
      "Epoch 72/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4228\n",
 | 
						||
      "Epoch 73/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4227\n",
 | 
						||
      "Epoch 74/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4227\n",
 | 
						||
      "Epoch 75/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4228\n",
 | 
						||
      "Epoch 76/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4227\n",
 | 
						||
      "Epoch 77/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4227\n",
 | 
						||
      "Epoch 78/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4227\n",
 | 
						||
      "Epoch 79/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4227\n",
 | 
						||
      "Epoch 80/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4227\n",
 | 
						||
      "Epoch 81/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4228\n",
 | 
						||
      "Epoch 82/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4227\n",
 | 
						||
      "Epoch 83/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4227\n",
 | 
						||
      "Epoch 84/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4228\n",
 | 
						||
      "Epoch 85/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4227\n",
 | 
						||
      "Epoch 86/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4227\n",
 | 
						||
      "Epoch 87/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4227\n",
 | 
						||
      "Epoch 88/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4228\n",
 | 
						||
      "Epoch 89/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4227\n",
 | 
						||
      "Epoch 90/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4227\n",
 | 
						||
      "Epoch 91/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4227\n",
 | 
						||
      "Epoch 92/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4227\n",
 | 
						||
      "Epoch 93/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4227\n",
 | 
						||
      "Epoch 94/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4228\n",
 | 
						||
      "Epoch 95/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4227\n",
 | 
						||
      "Epoch 96/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4227\n",
 | 
						||
      "Epoch 97/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4228\n",
 | 
						||
      "Epoch 98/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4227\n",
 | 
						||
      "Epoch 99/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4227\n",
 | 
						||
      "Epoch 100/100\n",
 | 
						||
      "2/2 [==============================] - 0s 7ms/step - loss: 0.4227\n",
 | 
						||
      "2/2 [==============================] - 0s 2ms/step\n",
 | 
						||
      "模型的精准度: 0.85\n"
 | 
						||
     ]
 | 
						||
    }
 | 
						||
   ],
 | 
						||
   "source": [
 | 
						||
    "\n",
 | 
						||
    "\n",
 | 
						||
    "model = tf.keras.Sequential()\n",
 | 
						||
    "layer_1 = Dense(units=3,activation='sigmoid')\n",
 | 
						||
    "layer_2 = Dense(units=1,activation='sigmoid')\n",
 | 
						||
    "model.add(layer_1)\n",
 | 
						||
    "model.add(layer_2)\n",
 | 
						||
    "model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=0.01),loss='binary_crossentropy')\n",
 | 
						||
    "model.fit(x,y,epochs=100)\n",
 | 
						||
    "a = model.predict(x)\n",
 | 
						||
    "\n",
 | 
						||
    "# 计算并输出模型的精准度\n",
 | 
						||
    "from sklearn.metrics import accuracy_score\n",
 | 
						||
    "\n",
 | 
						||
    "# 将预测结果转换为二进制标签\n",
 | 
						||
    "predicted_labels = (a > 0.5).astype(int)\n",
 | 
						||
    "\n",
 | 
						||
    "# 计算精准度\n",
 | 
						||
    "accuracy = accuracy_score(y, predicted_labels)\n",
 | 
						||
    "print(f\"模型的精准度: {accuracy:.2f}\")\n",
 | 
						||
    "\n",
 | 
						||
    "\n"
 | 
						||
   ]
 | 
						||
  }
 | 
						||
 ],
 | 
						||
 "metadata": {
 | 
						||
  "kernelspec": {
 | 
						||
   "display_name": "Python 3 (ipykernel)",
 | 
						||
   "language": "python",
 | 
						||
   "name": "python3"
 | 
						||
  }
 | 
						||
 },
 | 
						||
 "nbformat": 4,
 | 
						||
 "nbformat_minor": 4
 | 
						||
}
 |