77 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			77 lines
		
	
	
		
			2.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import torch
 | 
						||
import torch.nn as nn
 | 
						||
import torch.optim as optim
 | 
						||
from torch.utils.data import DataLoader, TensorDataset
 | 
						||
import matplotlib.pyplot as plt
 | 
						||
 | 
						||
 | 
						||
# 检查是否支持MPS(Apple Metal Performance Shaders)
 | 
						||
device = torch.device("mps" if torch.backends.mps.is_available() else "cpu")
 | 
						||
print(f"使用设备: {device}")
 | 
						||
 | 
						||
# 生成示例数据
 | 
						||
# y = 3x + 2 + 噪声
 | 
						||
torch.manual_seed(0)
 | 
						||
X = torch.linspace(-10, 10, steps=100).reshape(-1, 1)
 | 
						||
y = 3 * X + 2 + torch.randn(X.size()) * 2
 | 
						||
 | 
						||
# 创建数据集和数据加载器
 | 
						||
dataset = TensorDataset(X, y)
 | 
						||
dataloader = DataLoader(dataset, batch_size=10, shuffle=True)
 | 
						||
 | 
						||
 | 
						||
# 定义线性回归模型
 | 
						||
class LinearRegressionModel(nn.Module):
 | 
						||
    def __init__(self):
 | 
						||
        super(LinearRegressionModel, self).__init__()
 | 
						||
        self.linear = nn.Linear(1, 1)  # 输入和输出都是1维
 | 
						||
 | 
						||
    def forward(self, x):
 | 
						||
        return self.linear(x)
 | 
						||
 | 
						||
 | 
						||
# 实例化模型并移动到设备
 | 
						||
model = LinearRegressionModel().to(device)
 | 
						||
 | 
						||
# 定义损失函数和优化器
 | 
						||
criterion = nn.MSELoss()
 | 
						||
optimizer = optim.SGD(model.parameters(), lr=0.01)
 | 
						||
 | 
						||
# 训练模型
 | 
						||
num_epochs = 100
 | 
						||
for epoch in range(num_epochs):
 | 
						||
    for batch_X, batch_y in dataloader:
 | 
						||
        batch_X = batch_X.to(device)
 | 
						||
        batch_y = batch_y.to(device)
 | 
						||
 | 
						||
        # 前向传播
 | 
						||
        outputs = model(batch_X)
 | 
						||
        loss = criterion(outputs, batch_y)
 | 
						||
 | 
						||
        # 反向传播和优化
 | 
						||
        optimizer.zero_grad()
 | 
						||
        loss.backward()
 | 
						||
        optimizer.step()
 | 
						||
 | 
						||
    if (epoch + 1) % 10 == 0:
 | 
						||
        print(f"Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}")
 | 
						||
 | 
						||
# 保存整个模型
 | 
						||
torch.save(model.state_dict(), 'm1.pth')
 | 
						||
print("整个模型已保存为 m1.pth")
 | 
						||
 | 
						||
# 评估模型
 | 
						||
model.eval()
 | 
						||
with torch.no_grad():
 | 
						||
    X_test = torch.linspace(-10, 10, steps=100).reshape(-1, 1).to(device)
 | 
						||
    y_pred = model(X_test).cpu()
 | 
						||
 | 
						||
 | 
						||
plt.scatter(X.numpy(), y.numpy(), label='真实数据')
 | 
						||
plt.plot(X_test.cpu().numpy(), y_pred.numpy(), color='red', label='预测线')
 | 
						||
plt.legend()
 | 
						||
plt.xlabel('X')
 | 
						||
plt.ylabel('y')
 | 
						||
plt.title('线性回归结果')
 | 
						||
plt.show()
 |