311 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			311 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import numpy as np
 | 
						||
import torch
 | 
						||
import torch.nn as nn
 | 
						||
import torch.optim as optim
 | 
						||
from torch.utils.data import DataLoader, TensorDataset
 | 
						||
from matplotlib import pyplot as plt
 | 
						||
 | 
						||
 | 
						||
def run1():
 | 
						||
    def compute_error_for_line_given_points(b, w, points):
 | 
						||
        totalError = 0
 | 
						||
        N = float(len(points))
 | 
						||
        for i in range(len(points)):
 | 
						||
            x = points[i][0]
 | 
						||
            y = points[i][1]
 | 
						||
            totalError += (y - (w * x + b)) ** 2
 | 
						||
        return totalError / N
 | 
						||
 | 
						||
    def step_gradient(b_current, w_current, points, learningRate):
 | 
						||
        b_gradient = torch.tensor(0.0, device=points.device, dtype=torch.float32)
 | 
						||
        w_gradient = torch.tensor(0.0, device=points.device, dtype=torch.float32)
 | 
						||
        N = float(len(points))
 | 
						||
        for i in range(len(points)):
 | 
						||
            x = points[i][0]
 | 
						||
            y = points[i][1]
 | 
						||
            b_gradient += -(2 / N) * (y - (w_current * x + b_current))
 | 
						||
            w_gradient += -(2 / N) * x * (y - (w_current * x + b_current))
 | 
						||
        new_b = b_current - (learningRate * b_gradient)
 | 
						||
        new_w = w_current - (learningRate * w_gradient)
 | 
						||
        return [new_b, new_w]
 | 
						||
 | 
						||
    def gradient_descent_runner(points, starting_b, starting_w, learningRate, num_iterations):
 | 
						||
        b = torch.tensor(starting_b, device=points.device, dtype=torch.float32)
 | 
						||
        w = torch.tensor(starting_w, device=points.device, dtype=torch.float32)
 | 
						||
        for i in range(num_iterations):
 | 
						||
            b, w = step_gradient(b, w, points, learningRate)
 | 
						||
        return [b, w]
 | 
						||
 | 
						||
    def run():
 | 
						||
        # 修改为生成数据的文件路径
 | 
						||
        points_np = np.genfromtxt("data1.csv", delimiter=',').astype(np.float32)
 | 
						||
        points = torch.tensor(points_np, device='mps')
 | 
						||
        learning_rate = 0.0001  # 使用较小的学习率
 | 
						||
        initial_b = 0.0
 | 
						||
        initial_w = 0.0
 | 
						||
        num_iterations = 1000
 | 
						||
        print("Starting gradient descent at b={0},w={1},error={2}".format(initial_b, initial_w,
 | 
						||
                                                                          compute_error_for_line_given_points(initial_b,
 | 
						||
                                                                                                              initial_w,
 | 
						||
                                                                                                              points)))
 | 
						||
        print("running...")
 | 
						||
        [b, w] = gradient_descent_runner(points, initial_b, initial_w, learning_rate, num_iterations)
 | 
						||
        print("After gradient descent at b={0},w={1},error={2}".format(b.item(), w.item(),
 | 
						||
                                                                       compute_error_for_line_given_points(b, w,
 | 
						||
                                                                                                           points)))
 | 
						||
 | 
						||
    run()
 | 
						||
 | 
						||
def run1_cuda():
 | 
						||
    def compute_error_for_line_given_points(b, w, points):
 | 
						||
        totalError = 0
 | 
						||
        N = float(len(points))
 | 
						||
        for i in range(len(points)):
 | 
						||
            x = points[i][0]
 | 
						||
            y = points[i][1]
 | 
						||
            totalError += (y - (w * x + b)) ** 2
 | 
						||
        return totalError / N
 | 
						||
 | 
						||
    def step_gradient(b_current, w_current, points, learningRate):
 | 
						||
        b_gradient = torch.tensor(0.0, device=points.device)
 | 
						||
        w_gradient = torch.tensor(0.0, device=points.device)
 | 
						||
        N = float(len(points))
 | 
						||
        for i in range(len(points)):
 | 
						||
            x = points[i][0]
 | 
						||
            y = points[i][1]
 | 
						||
            b_gradient += -(2 / N) * (y - (w_current * x + b_current))
 | 
						||
            w_gradient += -(2 / N) * x * (y - (w_current * x + b_current))
 | 
						||
        new_b = b_current - (learningRate * b_gradient)
 | 
						||
        new_w = w_current - (learningRate * w_gradient)
 | 
						||
        return [new_b, new_w]
 | 
						||
 | 
						||
    def gradient_descent_runner(points, starting_b, starting_w, learningRate, num_iterations):
 | 
						||
        b = torch.tensor(starting_b, device=points.device)
 | 
						||
        w = torch.tensor(starting_w, device=points.device)
 | 
						||
        for i in range(num_iterations):
 | 
						||
            b, w = step_gradient(b, w, points, learningRate)
 | 
						||
            print("round:", i)
 | 
						||
        return [b, w]
 | 
						||
 | 
						||
    def run():
 | 
						||
        points_np = np.genfromtxt("data1.csv", delimiter=',').astype(np.float32)
 | 
						||
        points = torch.tensor(points_np, device='cuda')
 | 
						||
        learning_rate = 0.0001
 | 
						||
        initial_b = 0.0
 | 
						||
        initial_w = 0.0
 | 
						||
        num_iterations = 100000
 | 
						||
        [b, w] = gradient_descent_runner(points, initial_b, initial_w, learning_rate, num_iterations)
 | 
						||
        print("After gradient descent at b={0}, w={1}, error={2}".format(b.item(), w.item(),
 | 
						||
                                                                         compute_error_for_line_given_points(b, w,
 | 
						||
                                                                                                             points)))
 | 
						||
        return b.item(), w.item()
 | 
						||
 | 
						||
    # 运行线性回归
 | 
						||
    final_b, final_w = run()
 | 
						||
 | 
						||
    # 绘制图像
 | 
						||
    points_np = np.genfromtxt("data1.csv", delimiter=',').astype(np.float32)
 | 
						||
    x = points_np[:, 0]
 | 
						||
    y = points_np[:, 1]
 | 
						||
 | 
						||
    x_range = np.linspace(min(x), max(x), 100)
 | 
						||
    y_pred = final_w * x_range + final_b
 | 
						||
 | 
						||
    plt.figure(figsize=(8, 6))
 | 
						||
    plt.scatter(x, y, color='blue', label='Original data')
 | 
						||
    plt.plot(x_range, y_pred, color='red', label='Fitted line')
 | 
						||
    plt.xlabel('X')
 | 
						||
    plt.ylabel('Y')
 | 
						||
    plt.title('Fitting a line to random data')
 | 
						||
    plt.legend()
 | 
						||
    plt.grid(True)
 | 
						||
    plt.savefig('print1.png')
 | 
						||
    plt.show()
 | 
						||
 | 
						||
def run1x():
 | 
						||
    # 线性回归训练代码
 | 
						||
    def compute_error_for_line_given_points(b, w, points):
 | 
						||
        totalError = 0
 | 
						||
        N = float(len(points))
 | 
						||
        for i in range(len(points)):
 | 
						||
            x = points[i][0]
 | 
						||
            y = points[i][1]
 | 
						||
            totalError += (y - (w * x + b)) ** 2
 | 
						||
        return totalError / N
 | 
						||
 | 
						||
    def step_gradient(b_current, w_current, points, learningRate):
 | 
						||
        b_gradient = torch.tensor(0.0, device=points.device, dtype=torch.float32)
 | 
						||
        w_gradient = torch.tensor(0.0, device=points.device, dtype=torch.float32)
 | 
						||
        N = float(len(points))
 | 
						||
        for i in range(len(points)):
 | 
						||
            x = points[i][0]
 | 
						||
            y = points[i][1]
 | 
						||
            b_gradient += -(2 / N) * (y - (w_current * x + b_current))
 | 
						||
            w_gradient += -(2 / N) * x * (y - (w_current * x + b_current))
 | 
						||
        new_b = b_current - (learningRate * b_gradient)
 | 
						||
        new_w = w_current - (learningRate * w_gradient)
 | 
						||
        return [new_b, new_w]
 | 
						||
 | 
						||
    def gradient_descent_runner(points, starting_b, starting_w, learningRate, num_iterations):
 | 
						||
        b = torch.tensor(starting_b, device=points.device, dtype=torch.float32)
 | 
						||
        w = torch.tensor(starting_w, device=points.device, dtype=torch.float32)
 | 
						||
        for i in range(num_iterations):
 | 
						||
            b, w = step_gradient(b, w, points, learningRate)
 | 
						||
        return [b, w]
 | 
						||
 | 
						||
    def run():
 | 
						||
        points_np = np.genfromtxt("data1.csv", delimiter=',').astype(np.float32)
 | 
						||
        points = torch.tensor(points_np, device='mps')
 | 
						||
        learning_rate = 0.0001
 | 
						||
        initial_b = 0.0
 | 
						||
        initial_w = 0.0
 | 
						||
        num_iterations = 5000
 | 
						||
        [b, w] = gradient_descent_runner(points, initial_b, initial_w, learning_rate, num_iterations)
 | 
						||
        print("After gradient descent at b={0},w={1},error={2}".format(b.item(), w.item(),
 | 
						||
                                                                       compute_error_for_line_given_points(b, w,
 | 
						||
                                                                                                           points)))
 | 
						||
        return b.item(), w.item()
 | 
						||
 | 
						||
    # 运行线性回归
 | 
						||
    final_b, final_w = run()
 | 
						||
 | 
						||
    # 绘制图像
 | 
						||
    points_np = np.genfromtxt("data1.csv", delimiter=',').astype(np.float32)
 | 
						||
    x = points_np[:, 0]
 | 
						||
    y = points_np[:, 1]
 | 
						||
 | 
						||
    x_range = np.linspace(min(x), max(x), 100)
 | 
						||
    y_pred = final_w * x_range + final_b
 | 
						||
 | 
						||
    plt.figure(figsize=(8, 6))
 | 
						||
    plt.scatter(x, y, color='blue', label='Original data')
 | 
						||
    plt.plot(x_range, y_pred, color='red', label='Fitted line')
 | 
						||
    plt.xlabel('X')
 | 
						||
    plt.ylabel('Y')
 | 
						||
    plt.title('Fitting a line to random data')
 | 
						||
    plt.legend()
 | 
						||
    plt.grid(True)
 | 
						||
    plt.savefig('print1.png')
 | 
						||
    plt.show()
 | 
						||
 | 
						||
def run_m1():
 | 
						||
    # 检查是否支持MPS(Apple Metal Performance Shaders)
 | 
						||
    device = torch.device("mps" if torch.backends.mps.is_available() else "cpu")
 | 
						||
    print(f"使用设备: {device}")
 | 
						||
 | 
						||
    # 生成示例数据
 | 
						||
    # y = 3x + 2 + 噪声
 | 
						||
    torch.manual_seed(0)
 | 
						||
    X = torch.linspace(-10, 10, steps=100).reshape(-1, 1)
 | 
						||
    y = 3 * X + 2 + torch.randn(X.size()) * 2
 | 
						||
 | 
						||
    # 创建数据集和数据加载器
 | 
						||
    dataset = TensorDataset(X, y)
 | 
						||
    dataloader = DataLoader(dataset, batch_size=10, shuffle=True)
 | 
						||
 | 
						||
    # 定义线性回归模型
 | 
						||
    class LinearRegressionModel(nn.Module):
 | 
						||
        def __init__(self):
 | 
						||
            super(LinearRegressionModel, self).__init__()
 | 
						||
            self.linear = nn.Linear(1, 1)  # 输入和输出都是1维
 | 
						||
 | 
						||
        def forward(self, x):
 | 
						||
            return self.linear(x)
 | 
						||
 | 
						||
    # 实例化模型并移动到设备
 | 
						||
    model = LinearRegressionModel().to(device)
 | 
						||
 | 
						||
    # 定义损失函数和优化器
 | 
						||
    criterion = nn.MSELoss()
 | 
						||
    optimizer = optim.SGD(model.parameters(), lr=0.01)
 | 
						||
 | 
						||
    # 训练模型
 | 
						||
    num_epochs = 100
 | 
						||
    for epoch in range(num_epochs):
 | 
						||
        for batch_X, batch_y in dataloader:
 | 
						||
            batch_X = batch_X.to(device)
 | 
						||
            batch_y = batch_y.to(device)
 | 
						||
 | 
						||
            # 前向传播
 | 
						||
            outputs = model(batch_X)
 | 
						||
            loss = criterion(outputs, batch_y)
 | 
						||
 | 
						||
            # 反向传播和优化
 | 
						||
            optimizer.zero_grad()
 | 
						||
            loss.backward()
 | 
						||
            optimizer.step()
 | 
						||
 | 
						||
        if (epoch + 1) % 10 == 0:
 | 
						||
            print(f"Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}")
 | 
						||
 | 
						||
    # 保存整个模型
 | 
						||
    torch.save(model.state_dict(), 'm1.pth')
 | 
						||
    print("整个模型已保存为 m1.pth")
 | 
						||
 | 
						||
    # 评估模型
 | 
						||
    model.eval()
 | 
						||
    with torch.no_grad():
 | 
						||
        X_test = torch.linspace(-10, 10, steps=100).reshape(-1, 1).to(device)
 | 
						||
        y_pred = model(X_test).cpu()
 | 
						||
 | 
						||
    plt.scatter(X.numpy(), y.numpy(), label='真实数据')
 | 
						||
    plt.plot(X_test.cpu().numpy(), y_pred.numpy(), color='red', label='预测线')
 | 
						||
    plt.legend()
 | 
						||
    plt.xlabel('X')
 | 
						||
    plt.ylabel('y')
 | 
						||
    plt.title('线性回归结果')
 | 
						||
    plt.show()
 | 
						||
 | 
						||
def run_m1_test():
 | 
						||
    # 定义线性回归模型结构
 | 
						||
    class LinearRegressionModel(nn.Module):
 | 
						||
        def __init__(self):
 | 
						||
            super(LinearRegressionModel, self).__init__()
 | 
						||
            self.linear = nn.Linear(1, 1)  # 输入和输出都是1维
 | 
						||
 | 
						||
        def forward(self, x):
 | 
						||
            return self.linear(x)
 | 
						||
 | 
						||
    def main():
 | 
						||
        # 检查是否支持MPS(Apple Metal Performance Shaders)
 | 
						||
        device = torch.device("mps" if torch.backends.mps.is_available() else "cpu")
 | 
						||
        print(f"使用设备: {device}")
 | 
						||
 | 
						||
        # 实例化模型并加载保存的模型参数
 | 
						||
        model = LinearRegressionModel().to(device)
 | 
						||
        model.load_state_dict(torch.load('m1.pth'))
 | 
						||
        with open('m1.pth', 'rb') as f:
 | 
						||
            f.seek(0, 2)
 | 
						||
            size = f.tell()
 | 
						||
        print(f"模型文件大小: {size} 字节")
 | 
						||
        model.eval()
 | 
						||
        # 输出模型大小
 | 
						||
        model_size = sum(p.numel() for p in model.parameters())
 | 
						||
        print(f"模型大小: {model_size} 个参数")
 | 
						||
        print("模型参数已加载")
 | 
						||
 | 
						||
        # 生成测试数据
 | 
						||
        X_test = torch.linspace(-10, 10, steps=100).reshape(-1, 1).to(device)
 | 
						||
 | 
						||
        # 使用加载的模型进行预测
 | 
						||
        with torch.no_grad():
 | 
						||
            y_pred = model(X_test).cpu()
 | 
						||
 | 
						||
        # 将测试数据移至CPU并转换为NumPy数组
 | 
						||
        X_test_numpy = X_test.cpu().numpy()
 | 
						||
        y_pred_numpy = y_pred.numpy()
 | 
						||
 | 
						||
        # 可视化预测结果
 | 
						||
        plt.scatter(X_test_numpy, 3 * X_test_numpy + 2, label='真实线性关系', color='blue')
 | 
						||
        plt.plot(X_test_numpy, y_pred_numpy, color='red', label='模型预测线')
 | 
						||
        plt.legend()
 | 
						||
        plt.xlabel('X')
 | 
						||
        plt.ylabel('y')
 | 
						||
        plt.title('加载模型后的线性回归预测结果')
 | 
						||
        plt.show()
 | 
						||
 | 
						||
    main()
 | 
						||
 | 
						||
if __name__ == '__main__':
 | 
						||
    print("start")
 |