import torch import torch.nn as nn import matplotlib.pyplot as plt # 定义线性回归模型结构 class LinearRegressionModel(nn.Module): def __init__(self): super(LinearRegressionModel, self).__init__() self.linear = nn.Linear(1, 1) # 输入和输出都是1维 def forward(self, x): return self.linear(x) def main(): # 检查是否支持MPS(Apple Metal Performance Shaders) device = torch.device("mps" if torch.backends.mps.is_available() else "cpu") print(f"使用设备: {device}") # 实例化模型并加载保存的模型参数 model = LinearRegressionModel().to(device) model.load_state_dict(torch.load('m1.pth')) with open('m1.pth', 'rb') as f: f.seek(0, 2) size = f.tell() print(f"模型文件大小: {size} 字节") model.eval() # 输出模型大小 model_size = sum(p.numel() for p in model.parameters()) print(f"模型大小: {model_size} 个参数") print("模型参数已加载") # 生成测试数据 X_test = torch.linspace(-10, 10, steps=100).reshape(-1, 1).to(device) # 使用加载的模型进行预测 with torch.no_grad(): y_pred = model(X_test).cpu() # 将测试数据移至CPU并转换为NumPy数组 X_test_numpy = X_test.cpu().numpy() y_pred_numpy = y_pred.numpy() # 可视化预测结果 plt.scatter(X_test_numpy, 3 * X_test_numpy + 2, label='真实线性关系', color='blue') plt.plot(X_test_numpy, y_pred_numpy, color='red', label='模型预测线') plt.legend() plt.xlabel('X') plt.ylabel('y') plt.title('加载模型后的线性回归预测结果') plt.show() if __name__ == "__main__": main()