routine
This commit is contained in:
		
							
								
								
									
										14
									
								
								README.md
									
									
									
									
									
								
							
							
						
						
									
										14
									
								
								README.md
									
									
									
									
									
								
							@@ -15,7 +15,7 @@ conda install pytorch::pytorch torchvision torchaudio -c pytorch -y
 | 
				
			|||||||
pip install -r requirements.txt
 | 
					pip install -r requirements.txt
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## MAC
 | 
					## WIN
 | 
				
			||||||
```shell
 | 
					```shell
 | 
				
			||||||
# 安装 pytorch v1.12版本已经正式支持了用于mac m1芯片gpu加速的mps后端
 | 
					# 安装 pytorch v1.12版本已经正式支持了用于mac m1芯片gpu加速的mps后端
 | 
				
			||||||
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
 | 
					conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
 | 
				
			||||||
@@ -23,7 +23,15 @@ conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvi
 | 
				
			|||||||
pip install -r requirements.txt
 | 
					pip install -r requirements.txt
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## gpt4free
 | 
					## Linux
 | 
				
			||||||
 | 
					```shell
 | 
				
			||||||
 | 
					# 安装 pytorch v1.12版本已经正式支持了用于mac m1芯片gpu加速的mps后端
 | 
				
			||||||
 | 
					conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					pip install -r requirements.txt
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
pip install -U g4f[all]
 | 
					
 | 
				
			||||||
 | 
					## Proxy
 | 
				
			||||||
 | 
					```shell
 | 
				
			||||||
 | 
					-i https://pypi.tuna.tsinghua.edu.cn/simple
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
@@ -2,6 +2,7 @@ import matplotlib.pyplot as plt
 | 
				
			|||||||
import numpy as np
 | 
					import numpy as np
 | 
				
			||||||
import torch
 | 
					import torch
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# 线性回归训练代码
 | 
					# 线性回归训练代码
 | 
				
			||||||
def compute_error_for_line_given_points(b, w, points):
 | 
					def compute_error_for_line_given_points(b, w, points):
 | 
				
			||||||
    totalError = 0
 | 
					    totalError = 0
 | 
				
			||||||
@@ -12,6 +13,7 @@ def compute_error_for_line_given_points(b, w, points):
 | 
				
			|||||||
        totalError += (y - (w * x + b)) ** 2
 | 
					        totalError += (y - (w * x + b)) ** 2
 | 
				
			||||||
    return totalError / N
 | 
					    return totalError / N
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def step_gradient(b_current, w_current, points, learningRate):
 | 
					def step_gradient(b_current, w_current, points, learningRate):
 | 
				
			||||||
    b_gradient = torch.tensor(0.0, device=points.device)
 | 
					    b_gradient = torch.tensor(0.0, device=points.device)
 | 
				
			||||||
    w_gradient = torch.tensor(0.0, device=points.device)
 | 
					    w_gradient = torch.tensor(0.0, device=points.device)
 | 
				
			||||||
@@ -25,25 +27,29 @@ def step_gradient(b_current, w_current, points, learningRate):
 | 
				
			|||||||
    new_w = w_current - (learningRate * w_gradient)
 | 
					    new_w = w_current - (learningRate * w_gradient)
 | 
				
			||||||
    return [new_b, new_w]
 | 
					    return [new_b, new_w]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def gradient_descent_runner(points, starting_b, starting_w, learningRate, num_iterations):
 | 
					def gradient_descent_runner(points, starting_b, starting_w, learningRate, num_iterations):
 | 
				
			||||||
    b = torch.tensor(starting_b, device=points.device)
 | 
					    b = torch.tensor(starting_b, device=points.device)
 | 
				
			||||||
    w = torch.tensor(starting_w, device=points.device)
 | 
					    w = torch.tensor(starting_w, device=points.device)
 | 
				
			||||||
    for i in range(num_iterations):
 | 
					    for i in range(num_iterations):
 | 
				
			||||||
        b, w = step_gradient(b, w, points, learningRate)
 | 
					        b, w = step_gradient(b, w, points, learningRate)
 | 
				
			||||||
 | 
					        print("round:", i)
 | 
				
			||||||
    return [b, w]
 | 
					    return [b, w]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def run():
 | 
					def run():
 | 
				
			||||||
    points_np = np.genfromtxt("data1.csv", delimiter=',').astype(np.float32)
 | 
					    points_np = np.genfromtxt("data1.csv", delimiter=',').astype(np.float32)
 | 
				
			||||||
    points = torch.tensor(points_np, device='cuda')
 | 
					    points = torch.tensor(points_np, device='cuda:5')
 | 
				
			||||||
    learning_rate = 0.0001
 | 
					    learning_rate = 0.0001
 | 
				
			||||||
    initial_b = 0.0
 | 
					    initial_b = 0.0
 | 
				
			||||||
    initial_w = 0.0
 | 
					    initial_w = 0.0
 | 
				
			||||||
    num_iterations = 100000
 | 
					    num_iterations = 100000
 | 
				
			||||||
    [b, w] = gradient_descent_runner(points, initial_b, initial_w, learning_rate, num_iterations)
 | 
					    [b, w] = gradient_descent_runner(points, initial_b, initial_w, learning_rate, num_iterations)
 | 
				
			||||||
    print("After gradient descent at b={0}, w={1}, error={2}".format(b.item(), w.item(),
 | 
					    print("After gradient descent at b={0}, w={1}, error={2}".format(b.item(), w.item(),
 | 
				
			||||||
                                                                   compute_error_for_line_given_points(b, w, points)))
 | 
					                                                                     compute_error_for_line_given_points(b, w, points)))
 | 
				
			||||||
    return b.item(), w.item()
 | 
					    return b.item(), w.item()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# 运行线性回归
 | 
					# 运行线性回归
 | 
				
			||||||
final_b, final_w = run()
 | 
					final_b, final_w = run()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 
 | 
				
			|||||||
										
											Binary file not shown.
										
									
								
							| 
		 Before Width: | Height: | Size: 35 KiB After Width: | Height: | Size: 34 KiB  | 
							
								
								
									
										43
									
								
								mnist/README.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										43
									
								
								mnist/README.md
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,43 @@
 | 
				
			|||||||
 | 
					# No deep learning,just function mapping
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					$$
 | 
				
			||||||
 | 
					X = [v_1,v_2,.....,v_{784}]\\
 | 
				
			||||||
 | 
					X:[1,dx]
 | 
				
			||||||
 | 
					$$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					$$
 | 
				
			||||||
 | 
					H_1 = XW_{1} + b_{1} \\
 | 
				
			||||||
 | 
					W_1:[d_1,dx] \\
 | 
				
			||||||
 | 
					b_1:[d_1]
 | 
				
			||||||
 | 
					$$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					$$
 | 
				
			||||||
 | 
					H_2 = H_1W_2 + b_2 \\
 | 
				
			||||||
 | 
					W_1:[d_2,d_1] \\
 | 
				
			||||||
 | 
					b_1:[d_2]
 | 
				
			||||||
 | 
					$$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					$$
 | 
				
			||||||
 | 
					H_3=H_2W_3 + b_3 \\
 | 
				
			||||||
 | 
					W_3:[10,d_2]\\
 | 
				
			||||||
 | 
					b_3:[10]
 | 
				
			||||||
 | 
					$$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## Loss
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					$$
 | 
				
			||||||
 | 
					H_3:[1,d_3] \\
 | 
				
			||||||
 | 
					Y:[0/1/2/.../9] \\
 | 
				
			||||||
 | 
					eg.:1\geq[0,1,0,0,0,0,0,0,0,0,0] \\
 | 
				
			||||||
 | 
					eg.:3\geq[0,0,0,1,0,0,0,0,0,0,0] \\
 | 
				
			||||||
 | 
					Euclidean\ Distance:H_3\ vs\ Y
 | 
				
			||||||
 | 
					$$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					## In a nutshell
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					$$
 | 
				
			||||||
 | 
					pred = W_3 \times \{W_2\cdot[W_1X+b_1]+b_2\}+b_3
 | 
				
			||||||
 | 
					$$
 | 
				
			||||||
 | 
					
 | 
				
			||||||
		Reference in New Issue
	
	Block a user