routine
This commit is contained in:
14
README.md
14
README.md
@@ -15,7 +15,7 @@ conda install pytorch::pytorch torchvision torchaudio -c pytorch -y
|
|||||||
pip install -r requirements.txt
|
pip install -r requirements.txt
|
||||||
```
|
```
|
||||||
|
|
||||||
## MAC
|
## WIN
|
||||||
```shell
|
```shell
|
||||||
# 安装 pytorch v1.12版本已经正式支持了用于mac m1芯片gpu加速的mps后端
|
# 安装 pytorch v1.12版本已经正式支持了用于mac m1芯片gpu加速的mps后端
|
||||||
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
|
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
|
||||||
@@ -23,7 +23,15 @@ conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvi
|
|||||||
pip install -r requirements.txt
|
pip install -r requirements.txt
|
||||||
```
|
```
|
||||||
|
|
||||||
## gpt4free
|
## Linux
|
||||||
|
```shell
|
||||||
|
# 安装 pytorch v1.12版本已经正式支持了用于mac m1芯片gpu加速的mps后端
|
||||||
|
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
|
||||||
|
|
||||||
|
pip install -r requirements.txt
|
||||||
```
|
```
|
||||||
pip install -U g4f[all]
|
|
||||||
|
## Proxy
|
||||||
|
```shell
|
||||||
|
-i https://pypi.tuna.tsinghua.edu.cn/simple
|
||||||
```
|
```
|
||||||
@@ -2,6 +2,7 @@ import matplotlib.pyplot as plt
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
|
|
||||||
# 线性回归训练代码
|
# 线性回归训练代码
|
||||||
def compute_error_for_line_given_points(b, w, points):
|
def compute_error_for_line_given_points(b, w, points):
|
||||||
totalError = 0
|
totalError = 0
|
||||||
@@ -12,6 +13,7 @@ def compute_error_for_line_given_points(b, w, points):
|
|||||||
totalError += (y - (w * x + b)) ** 2
|
totalError += (y - (w * x + b)) ** 2
|
||||||
return totalError / N
|
return totalError / N
|
||||||
|
|
||||||
|
|
||||||
def step_gradient(b_current, w_current, points, learningRate):
|
def step_gradient(b_current, w_current, points, learningRate):
|
||||||
b_gradient = torch.tensor(0.0, device=points.device)
|
b_gradient = torch.tensor(0.0, device=points.device)
|
||||||
w_gradient = torch.tensor(0.0, device=points.device)
|
w_gradient = torch.tensor(0.0, device=points.device)
|
||||||
@@ -25,25 +27,29 @@ def step_gradient(b_current, w_current, points, learningRate):
|
|||||||
new_w = w_current - (learningRate * w_gradient)
|
new_w = w_current - (learningRate * w_gradient)
|
||||||
return [new_b, new_w]
|
return [new_b, new_w]
|
||||||
|
|
||||||
|
|
||||||
def gradient_descent_runner(points, starting_b, starting_w, learningRate, num_iterations):
|
def gradient_descent_runner(points, starting_b, starting_w, learningRate, num_iterations):
|
||||||
b = torch.tensor(starting_b, device=points.device)
|
b = torch.tensor(starting_b, device=points.device)
|
||||||
w = torch.tensor(starting_w, device=points.device)
|
w = torch.tensor(starting_w, device=points.device)
|
||||||
for i in range(num_iterations):
|
for i in range(num_iterations):
|
||||||
b, w = step_gradient(b, w, points, learningRate)
|
b, w = step_gradient(b, w, points, learningRate)
|
||||||
|
print("round:", i)
|
||||||
return [b, w]
|
return [b, w]
|
||||||
|
|
||||||
|
|
||||||
def run():
|
def run():
|
||||||
points_np = np.genfromtxt("data1.csv", delimiter=',').astype(np.float32)
|
points_np = np.genfromtxt("data1.csv", delimiter=',').astype(np.float32)
|
||||||
points = torch.tensor(points_np, device='cuda')
|
points = torch.tensor(points_np, device='cuda:5')
|
||||||
learning_rate = 0.0001
|
learning_rate = 0.0001
|
||||||
initial_b = 0.0
|
initial_b = 0.0
|
||||||
initial_w = 0.0
|
initial_w = 0.0
|
||||||
num_iterations = 100000
|
num_iterations = 100000
|
||||||
[b, w] = gradient_descent_runner(points, initial_b, initial_w, learning_rate, num_iterations)
|
[b, w] = gradient_descent_runner(points, initial_b, initial_w, learning_rate, num_iterations)
|
||||||
print("After gradient descent at b={0}, w={1}, error={2}".format(b.item(), w.item(),
|
print("After gradient descent at b={0}, w={1}, error={2}".format(b.item(), w.item(),
|
||||||
compute_error_for_line_given_points(b, w, points)))
|
compute_error_for_line_given_points(b, w, points)))
|
||||||
return b.item(), w.item()
|
return b.item(), w.item()
|
||||||
|
|
||||||
|
|
||||||
# 运行线性回归
|
# 运行线性回归
|
||||||
final_b, final_w = run()
|
final_b, final_w = run()
|
||||||
|
|
||||||
|
|||||||
Binary file not shown.
|
Before Width: | Height: | Size: 35 KiB After Width: | Height: | Size: 34 KiB |
43
mnist/README.md
Normal file
43
mnist/README.md
Normal file
@@ -0,0 +1,43 @@
|
|||||||
|
# No deep learning,just function mapping
|
||||||
|
|
||||||
|
$$
|
||||||
|
X = [v_1,v_2,.....,v_{784}]\\
|
||||||
|
X:[1,dx]
|
||||||
|
$$
|
||||||
|
|
||||||
|
$$
|
||||||
|
H_1 = XW_{1} + b_{1} \\
|
||||||
|
W_1:[d_1,dx] \\
|
||||||
|
b_1:[d_1]
|
||||||
|
$$
|
||||||
|
|
||||||
|
$$
|
||||||
|
H_2 = H_1W_2 + b_2 \\
|
||||||
|
W_1:[d_2,d_1] \\
|
||||||
|
b_1:[d_2]
|
||||||
|
$$
|
||||||
|
|
||||||
|
$$
|
||||||
|
H_3=H_2W_3 + b_3 \\
|
||||||
|
W_3:[10,d_2]\\
|
||||||
|
b_3:[10]
|
||||||
|
$$
|
||||||
|
|
||||||
|
## Loss
|
||||||
|
|
||||||
|
$$
|
||||||
|
H_3:[1,d_3] \\
|
||||||
|
Y:[0/1/2/.../9] \\
|
||||||
|
eg.:1\geq[0,1,0,0,0,0,0,0,0,0,0] \\
|
||||||
|
eg.:3\geq[0,0,0,1,0,0,0,0,0,0,0] \\
|
||||||
|
Euclidean\ Distance:H_3\ vs\ Y
|
||||||
|
$$
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
## In a nutshell
|
||||||
|
|
||||||
|
$$
|
||||||
|
pred = W_3 \times \{W_2\cdot[W_1X+b_1]+b_2\}+b_3
|
||||||
|
$$
|
||||||
|
|
||||||
Reference in New Issue
Block a user