From 6361618c8ee2f11c0482dcaed9a8fec28fd7a2b9 Mon Sep 17 00:00:00 2001 From: Wolves Date: Sat, 28 Dec 2024 12:50:41 +0800 Subject: [PATCH] routine --- lab/1_liner-regression-single.ipynb | 209 + linear regression/1.py | 310 - linear regression/data1.csv | 100 - linear regression/liner regression.ipynb | 5234 ----------------- linear regression/m1.pth | Bin 1402 -> 0 bytes linear regression/np_genPoints.py | 30 - linear regression/plt_print.py | 23 - linear regression/print1.png | Bin 34941 -> 0 bytes test/outputtest.py | 17 + ...1_W1_Lab02_Model_Representation_Soln.ipynb | 126 +- .../lab_utils_common.cpython-37.pyc | Bin 0 -> 3192 bytes .../lab_utils_multi.cpython-37.pyc | Bin 0 -> 18028 bytes .../__pycache__/lab_utils_uni.cpython-37.pyc | Bin 0 -> 25040 bytes 13 files changed, 289 insertions(+), 5760 deletions(-) create mode 100644 lab/1_liner-regression-single.ipynb delete mode 100644 linear regression/1.py delete mode 100644 linear regression/data1.csv delete mode 100644 linear regression/liner regression.ipynb delete mode 100644 linear regression/m1.pth delete mode 100644 linear regression/np_genPoints.py delete mode 100644 linear regression/plt_print.py delete mode 100644 linear regression/print1.png create mode 100644 test/outputtest.py create mode 100644 week2/__pycache__/lab_utils_common.cpython-37.pyc create mode 100644 week2/__pycache__/lab_utils_multi.cpython-37.pyc create mode 100644 week2/__pycache__/lab_utils_uni.cpython-37.pyc diff --git a/lab/1_liner-regression-single.ipynb b/lab/1_liner-regression-single.ipynb new file mode 100644 index 0000000..a0815a2 --- /dev/null +++ b/lab/1_liner-regression-single.ipynb @@ -0,0 +1,209 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# 引入库\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import os" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/Users/wolves/Downloads/project/python/pt/lab\n" + ] + } + ], + "source": [ + "# 检查os位置\n", + "print(os.getcwd())" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + " # 生成数据\n", + " def generate_data():\n", + " w = 1.35\n", + " b = 2.89\n", + " x_min = 0\n", + " x_max = 10\n", + " x = np.linspace(x_min, x_max, 100)\n", + " y = w * x + b\n", + " y += np.random.normal(scale=0.5, size=y.shape)\n", + " data = np.column_stack((x, y))\n", + " return data\n", + "\n", + " # 保存数据\n", + " def save_data(filename, data):\n", + " np.savetxt(filename, data, delimiter=',')\n", + " print(f\"{filename} 已成功创建并写入数据。\")\n", + "\n", + " # 生成并保存数据\n", + " data = generate_data()\n", + " #save_data('./1_data.txt', data)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# 读取数据\n", + "#points = np.genfromtxt(\"./1_data.txt\", delimiter=',')\n", + "\n", + "points = data\n", + " \n", + "x = points[:, 0]\n", + "y = points[:, 1]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "损失函数: \n", + "$$J(w,b) = \\frac{1}{2m} \\sum_{i=1}^{m} (y_{w,b}(x^{(i)}) - y^{(i)})^2$$\n", + "\n", + "梯度下降:\n", + "\n", + "分别对w和b求偏导数,然后更新w和b\n", + "$$\n", + "w = w - \\alpha\\cdot\\frac{\\partial J(w,b)}{\\partial w}\n", + "$$\n", + "\n", + "$$\n", + "b = b - \\alpha\\cdot\\frac{\\partial J(w,b)}{\\partial b}\n", + "$$" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "# 定义损失函数\n", + "def compute_loss(w,b):\n", + " return np.sum((y-w*x-b)**2)/(2*len(x))\n", + "\n", + "# 等效\n", + "def compute_loss_equivalent(w,b):\n", + " sum = 0\n", + " for i in range(len(x)):\n", + " sum += (y[i] - (w*x[i]+b))**2\n", + " return sum/(2*len(x))\n", + "\n", + "# 定义梯度下降\n", + "def gradient_descent(w,b,alpha,num_iter):\n", + " m = len(x)\n", + " for _ in range(num_iter):\n", + " # 计算梯度\n", + " dw = -np.sum(x*(y-w*x-b))/m\n", + " db = -np.sum(y-w*x-b)/m\n", + " # 更新w和b\n", + " w = w - alpha*dw\n", + " b = b - alpha*db\n", + " return w,b" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "w: 1.368169058216238\n", + "b: 2.770596744047831\n", + "loss: 0.1375443007342851\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAADS4AAAqdCAYAAACkA1ilAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy80BEi2AAAACXBIWXMAAFxGAABcRgEUlENBAAEAAElEQVR4nOzdd5jU5bk/4GfpLF1pIh0UEAURCwI2sCv2qFEDqIklmtjbSTTxxHjsGjXWRNCIsZuIhoiogAoBCzaKSlWQKn2BBXbn9we/mMTAzuzulGX3vq9rr+ucnWfe53nH78zOhvnsm5dIJBIBAAAAAAAAAAAAAAAAkEbVcj0AAAAAAAAAAAAAAAAAUPkILgEAAAAAAAAAAAAAAABpJ7gEAAAAAAAAAAAAAAAApJ3gEgAAAAAAAAAAAAAAAJB2gksAAAAAAAAAAAAAAABA2gkuAQAAAAAAAAAAAAAAAGknuAQAAAAAAAAAAAAAAACkneASAAAAAAAAAAAAAAAAkHaCSwAAAAAAAAAAAAAAAEDaCS4BAAAAAAAAAAAAAAAAaSe4BAAAAAAAAAAAAAAAAKSd4BIAAAAAAAAAAAAAAACQdoJLAAAAAAAAAAAAAAAAQNoJLgEAAAAAAAAAAAAAAABpJ7gEAAAAAAAAAAAAAAAApJ3gEgAAAAAAAAAAAAAAAJB2gksAAAAAAAAAAAAAAABA2gkuAQAAAAAAAAAAAAAAAGknuAQAAAAAAAAAAAAAAACkneASAAAAAAAAAAAAAAAAkHaCSwAAAAAAAAAAAAAAAEDaCS4BAAAAAAAAAAAAAAAAaSe4BAAAAAAAAAAAAAAAAKSd4BIAAAAAAAAAAAAAAACQdoJLAAAAAAAAAAAAAAAAQNoJLgEAAAAAAAAAAAAAAABpJ7gEAAAAAAAAAAAAAAAApJ3gEgAAAAAAAAAAAAAAAJB2gksAAAAAAAAAAAAAAABA2gkuAQAAAAAAAAAAAAAAAGknuAQAAAAAAAAAAAAAAACkneASAAAAAAAAAAAAAAAAkHaCSwAAAAAAAAAAAAAAAEDaCS4BAAAAAAAAAAAAAAAAaSe4BAAAAAAAAAAAAAAAAKSd4BIAAAAAAAAAAAAAAACQdoJLAAAAAAAAAAAAAAAAQNoJLgEAAAAAAAAAAAAAAABpJ7gEAAAAAAAAAAAAAAAApJ3gEgAAAAAAAAAAAAAAAJB2gksAAAAAAAAAAAAAAABA2gkuAQAAAAAAAAAAAAAAAGknuAQAAAAAAAAAAAAAAACkneASAAAAAAAAAAAAAAAAkHaCSwAAAAAAAAAAAAAAAEDaCS4BAAAAAAAAAAAAAAAAaSe4BAAAAAAAAAAAAAAAAKSd4BIAAAAAAAAAAAAAAACQdoJLAAAAAAAAAAAAAAAAQNoJLgEAAAAAAAAAAAAAAABpJ7gEAAAAAAAAAAAAAAAApJ3gEgAAAAAAAAAAAAAAAJB2gksAAAAAAAAAAAAAAABA2gkuAQAAAAAAAAAAAAAAAGknuAQAAAAAAAAAAAAAAACkneASAAAAAAAAAAAAAAAAkHaCSwAAAAAAAAAAAAAAAEDaCS4BAAAAAAAAAAAAAAAAaSe4BAAAAAAAAAAAAAAAAKSd4BIAAAAAQBU3dOjQyMvLK/Fr+PDhaevXvn37pP3mzp2btn4AAGy/hg8fnvS949ChQ3M9JgAAAACwDYJLAAAAAAAAAAAAAAAAQNoJLgEAAAAAAAAAAAAAAABpJ7gEAAAAAAAAAAAAAAAApJ3gEgAAAAAAAAAAAAAAAJB2gksAAAAAAAAAAAAAAABA2gkuAQAAAAAAAAAAAAAAAGknuAQAAAAAAAAAAAAAAACkneASAAAAAAAAAAAAAAAAkHaCSwAAAAAAAAAAAAAAAEDaCS4BAAAAAAAAAAAAAAAAaVcj1wMAAAAAAFC1zJ07N9cjAACwnRg6dGgMHTo012MAAAAAAGXkxCUAAAAAAAAAAAAAAAAg7QSXAAAAAAAAAAAAAAAAgLQTXAIAAAAAAAAAAAAAAADSTnAJAAAAAAAAAAAAAAAASDvBJQAAAAAAAAAAAAAAACDtBJcAAAAAAAAAAAAAAACAtBNcAgAAAAAAAAAAAAAAANKuRq4HAAAAAAAAKqZEIhEzZ86MWbNmxZw5c+Kbb76JgoKCWLduXRQVFUV+fn7Uq1cvWrVqFR06dIhdd901dtlll1yPXWorVqyIGTNmxJdffhkrVqyI1atXx+rVq2PNmjVRVFQUdevWjbp160bTpk1j5513jrZt28Yee+wRjRo1yvXoEBERRUVF8fnnn8fs2bNjzpw5sXjx4igoKIiCgoKIiKhXr17Uq1cvWrduHR06dIiuXbtGu3btcjw1lVVlvx4XL1783f4WL14cS5cujfXr10dhYWFUq1Yt6tatG/n5+d99tWzZMtq3bx/t2rWLVq1aRbVqFetvi1a2/eRaQUFBTJ069bvrf+XKlVFQUBDr16+POnXqRL169aJRo0bRoUOH6NixY+y2227RsGHDXI8NAAAAABkluAQAAAAAACnatGlTjBs3Lt5999347LPPYvr06bF8+fJYvXp1bNiwIerWrRsNGjSINm3aRMeOHWPvvfeO/v37xz777LPdfLD3q6++iueeey7eeuutmDBhQqxYsaJU92/atGn0798/jj/++DjxxBMrXLhn1apVMX78+Bg7dmy8//77MWPGjFiyZEmZ1urYsWP0798/jjnmmDjiiCMq3F7LKpFIxEcffRTjxo2LGTNmxOeffx5ff/11rFmzJtauXRuFhYWRn58fjRo1ip122in22muveOihh3I9dlZVhMdoxowZ8fzzz8fYsWNj0qRJsXbt2lLdf+edd44DDjggTjrppDjmmGMiPz8/rfOl29q1a2PcuHExbty4mD59enzxxRexfPnyWLNmTRQXF0eDBg2iYcOGsfPOO0f37t1j9913j8MOOyy6du2a69EzzvWYWUuWLImXX345XnvttXj33Xdj4cKFZV6rZs2a0aFDh9hvv/2iT58+0adPn+jRo0fUqJG9f7avbPupCCZPnhzPPfdcjBs3LqZMmRKbN29O+b7VqlWLHj16xEEHHRSnnHJK9OvXL/Ly8jI4bXYsWbIkRo0aFVOmTInPPvss5syZE6tWrYo1a9ZERER+fn7ssMMO0b59+9h1112jb9++cdBBB0Xbtm1zPDkAAAAAmZCXSCQSuR4CAAAAAIDcGTp0aDz++OMl1gwbNiyGDh2aln7t27ePefPmlVgzZ86caN++fbl7DR8+PM4+++wSa4YMGRLDhw8vsebDDz+Me+65J15++eVYtWpVqedo1apVnH766XHppZdGmzZtSn3/TCsqKopnn3027r///pg4cWKk658OatWqFaeffnpce+210a1bt7SsWVqJRCImTpwYL730Urz55pvx0UcfRXFxcdr71K1bN0477bT42c9+FnvttVfa1y/J3Llzo0OHDiXWtGvXLubOnVtizZQpU+L3v/99jBw5slRhrlTWzrXK8hht2LAhhg8fHg8++GB88skn5V7vn+rVqxfnnHNOXHnllRXqQ+OJRCLGjBkTDz/8cIwcOTI2btxY6jV22WWXOOOMM+Liiy+Opk2bbrNu7Nixcf/995e41iGHHBIXXXRRqWf4PtdjySrK9fjWW2/FvffeGyNHjoyioqKM9alfv34cd9xxceqpp8aRRx4ZtWvXzkif7Xk/6Xo/l07r16+PRx99NO67776YOXNm2tZt27Zt/PSnP42f/vSn0aBBg7Stm8zBBx8c48aNK7HmrbfeioMPPnibt2/atCn+/Oc/xyOPPBITJ04s0/utPn36xLnnnhuDBw+OWrVqlfr+AAAAAFRM28efdwQAAAAAgByYNm1aHH744dG7d+/405/+VKbQUkTEN998E3fddVd06tQpLrnkku/+2nxF8Kc//Sl23XXXOOOMM2LChAlpCy1FRGzcuDGeeOKJ6N69ewwdOjSWLl2atrWTmTJlSlx99dXRvn376NevX9xxxx3x4YcfZiS0FLHlA8zDhw+P3r17x6mnnhqzZ8/OSJ9MmDx5chxwwAGx1157xR//+Mcyn0BVmeX6Mdq8eXPcc8890aFDh7jwwgvTGhKJiCgoKIj77rsvOnfuHFdccUWpT8vJhPHjx8d+++0Xhx9+eLzwwgtlCi1FRHz55Zdx4403Rrt27eKKK66IgoKCrdbNnTs3XnjhhRK/3nvvvfJsKW1cj5k1bdq0OOyww2LAgAHxl7/8JaMhn4gtp4k99dRTccIJJ0Tz5s3jpZdeSuv6lW0/uZZIJOLhhx+ODh06xCWXXJLW0FLElpMvr7322mjfvn3cddddGf/vlS7Dhg2LTp06xZAhQ+Ldd98t8/utf/zjH/GTn/wkOnXqFM8++2yapwQAAAAgVwSXAAAAAADgezZv3hy//vWvo1evXvH666+nbd1NmzbFvffeG927d8/5B+BnzJgRBx98cAwePDjjIZtEIhGPP/54dO3aNV544YWM9oqIuPzyy2OvvfaK22+/Pb766quM9/u+5557Lnr06BF//OMfs967NAoKCuKCCy6I/fffP955551cj1MhVYTHaNKkSdG7d++47LLLYtGiRRnttWnTprjrrruiW7duMX78+Iz22pZ169bFeeedFwcddFBaXyfXrVsXd911V+y+++7x5ptvpm3dbHI9Zt7vfve72GuvvWLMmDFZ6fd9q1evTnoqZWlUtv3k2syZM+PAAw+MCy64IBYvXpzRXsuXL48rrrgi9ttvv/jss88y2qs85s6dGwMHDoxzzjknvv7667StO3/+/DjttNPiBz/4wTYDpwAAAABsPwSXAAAAAADg36xcuTKOPvrouPHGG8t8wkcyX3/9dRx00EHx8ssvZ2T9ZJ5++unYe++9Y9y4cVntu3z58jjllFPiuuuuS+vJTt+3evXqjK2dqoKCgvjxj38c5513XsZOeSqPr7/+Ovr37x8PP/xwhZyvIqgIj9Hdd98d/fv3T/uJNsnMnz8/Bg4cGPfdd19W+86ePTt69+4djz76aMZ6zJ07Nw4//PCM9sgE12Nmr8dEIhEXXnhhXHrppVFYWJixPtlS2fZTEYwePTr22WefrIcGP/jgg+jTp0+8+OKLWe2bivHjx8fee++d0TDo888/H/369Ytly5ZlrAcAAAAAmSe4BAAAAAAA/9+iRYuib9++aT1laVvWr18fp556arzxxhsZ7/Xvrr322vjhD3+Y079ef8stt8SPf/zjKhGYefTRR+OHP/xhhdrrl19+Gfvuu2989NFHuR6lwsr1Y7R58+Y466yz4vLLL4/NmzfnbIaf//znceONN2al30cffRT9+vWLGTNmZLxXUVFRnHfeeXHrrbdmvFc6uB4zfz1eeuml8dBDD2Vk7VyobPvJtccffzyOPvroWLlyZU76FxQUxCmnnBK/+93vctJ/a5577rk47LDD4ttvv814r48//jiOOOKIChFMBwAAAKBsBJcAAAAAACC2nLR0xBFHxPTp07PWs7CwME477bRYsGBBVvr97Gc/qzAf1H/sscfi/PPPz/UYWfHss8/GNddck+sxIiJi8eLFceSRR8aiRYtyPUqFlevHaNOmTXHqqafGiBEjctL/+37961/Hb3/724z2+OKLL+Kwww7L+mN+3XXXxdNPP53VnqXlevxPmbgeR4wYEffee29a18ylyrafXHvqqafinHPOiaKiopzOkUgk4tJLL40HHnggp3NERLz22mtx5plnZuxk0q358MMP47zzzstaPwAAAADSq0auBwAAAAAAgFzbvHlzHHfccfHJJ58kra1du3Z06tQp2rVrFw0aNIjq1avH0qVLY8mSJTFr1qxSn2T07bffxtChQzN+ytOVV14Z999/f6nuU6NGjejbt28ccsghsddee0XHjh2jVatWUa9evahRo0YUFBTEwoUL48svv4x33303Ro4cGVOnTk15/T/84Q+x2267xWWXXVba7ZRbzZo1o2fPntG7d+/o2rVrdOnSJVq2bBktW7aM+vXrR506dSKRSMSKFSti5cqVsXz58vjoo4/ivffei3/84x+lDrjdcccdsf/++8dJJ52UoR0lV1RUFCeeeGLMnj07aW1eXl60adMmOnbsGDvssEPk5+fHhg0bYvXq1TFz5syYM2dOJBKJLEydXbl+jBKJRJxxxhnx0ksvlep+derUiYMPPjgOOOCA6NWrV7Rv3z522mmnyM/Pj2rVqsXatWtjwYIFMWPGjHj33XfjL3/5S8yZMyfl9a+//vro1q1bRq7fZcuWxVFHHRXLli0r9X2rVasW7dq1i86dO0fjxo2jdu3asXbt2li0aFF8/vnnsWLFihLvn0gk4uyzz44uXbqUdfyMcj1uXTqvx2+//TYuvvjiUt2nTp06ceCBB8aBBx4Yu+yyS+yyyy7RrFmzqFevXtSrVy8iIlatWhWrV6+OVatWxbJly+Kzzz6LTz/9ND755JOYNm1abNiwodyzb01l20+uvf322zFkyJBSn5rYpUuXGDRoUBx44IHRrVu3aN68edSrVy/Wr18fy5YtixkzZsQ777wTI0eOTOm957+7+OKLo02bNjFo0KBS3S9dpkyZEieddFJs2rQpae2OO+4YnTp1+u694/r162PJkiWxePHimDlzZqlfk5555pk49thj46yzzirr+AAAAADkiOASAAAAAABV3i9/+ct4++23t3l7q1at4owzzogTTjgh9tlnn6hVq9ZW6woLC2Ps2LHx4osvxrBhw1L6UGdExJgxY+Kll16KE088sUzzJzNs2LC48847U65v3bp1XHrppTF06NDYcccdt1nXsGHDaNiwYXTp0iWOPfbY+L//+794//334ze/+U28/PLLKfW66qqrYr/99ou+ffumPF9ZderUKQYNGhTHHHNM9OvXL+rWrZv0Pi1atIgWLVpERMT+++8fF154YUREvP/++/Hwww/Hn//855TDahdddFEccsgh0aRJk7JvohxuvfXWmDhx4jZvr1WrVhx33HFx+umnx0EHHRRNmzbdZu2aNWvi73//ezz11FPx8ccfZ2LcnMj1Y/SrX/0qnn/++ZTn7dq1a1x66aVx5plnRv369bdZ17hx42jcuHF07949Tj755LjrrrvijTfeiBtvvLHE175/SiQSMWTIkOjZs2d06tQp5flSMXTo0JSCOf9UrVq1OPLII2PIkCFx6KGHxg477LDN2qlTp8bIkSPjj3/8Y8ycOXOrNRs2bIhzzjknLrroolLPnmmux61L5/V46623xsqVK1Oq7datW1x77bXxgx/8IOnPj2bNmkWzZs2++/8PP/zw7/7vjRs3xtixY2PkyJExcuTImDdvXplm35rKtp9cWrhwYZx66qmxefPmlO/Tr1+/+M1vfhOHHHLIVm+vX79+1K9fP9q3bx9HHnlk3HTTTfGPf/wjrr/++hgzZkxKPRKJRAwePDjef//9tL8eJ7NmzZo477zzYt26ddus6devX5xxxhlx+OGHR+fOnbdZt3Dhwnj11VfjscceK/F17vuuueaaOPHEE78L1QEAAACwnUgAAAAAAFClDRkyJBERJX4NGzYsbf3atWuXtN+cOXPS0mvYsGFJe+2yyy6JvLy8rd624447Jh588MFEYWFhqXtPnz49ceihhybt/8+v3XbbLS17/r4PPvggUatWrZRmqF27duKmm25KrF+/vtx9X3311UTz5s1T6tu1a9fEhg0b0rDbLc4999zv1q5Xr17iggsuSEyYMCFt6/+7r776KnH44Yen/N/58ssvT/sMc+bMSdq3Xr1627wO8vLyEj/5yU8SX3/9dZn6z507N807Sr/t4TEaOXLkNl+Lvv/VsGHDxEMPPZTYvHlzmeb5d8OHD0/Uq1cvpb4DBgwod79/d99996X83ImIxKGHHpr49NNPS92nqKgoMWzYsESLFi22uXb37t2T9h8yZEha9u163LZsXo/r169PNGnSJGmfvLy8xA033JAoKioq9/625sMPP0ycc845idq1ayciInH33XeXaZ3Ktp9/l8r7uXQ9P//pmGOOSfm1qU6dOomHH364XP2efPLJRP369VPuuf/++yeKi4vTtNtE4qCDDkrac9ddd93mbf3790/84x//KPPeS3p9/v7XrbfemrZ9AwAAAJAd1QIAAAAAAKqwL7/8MhKJxH99/8gjj4wZM2bEBRdcsM0TlkrStWvX+Pvf/x5nnHFGSvXTpk2L0aNHl7pPSTZt2hRnn312bNy4MWlt+/btY/LkyfGLX/wi6tSpU+7eRx99dHzwwQfRrVu3pLUzZsyI22+/vdw9/12zZs3illtuifnz58eDDz4Y+++/f1rX/6c2bdrEa6+9Fvfff39Uq5b8n10eeuihWLp0aUZmKUlBQcFWr4NmzZrFG2+8EY888ki0bt26TGu3a9euvONVCLl8jFauXBnnnXfeVl+Lvm/PPfeMTz75JM4///yoXr16meb5d0OGDIl//OMfsdNOOyWtffPNN+PJJ58sd8+IiMWLF8cvfvGLlGqrVasWt99+e4wePTp23333UveqVq1aDB06ND7++OMYMGDAVmumTp1a6nUzyfWY+evxtddeixUrViSt+/3vfx833nhjSq/xZdGrV6/44x//GF9//XXceOON0bx58zKtU9n2k0svvPBCvPrqqynV7rjjjvH222/HeeedV66eZ555ZkycOPG7Ux6TmThxYjz66KPl6llaX3zxxX99r2bNmnHPPffE+PHjY7/99ivTumeeeWa88847sfPOO6dUf//995fqJCwAAAAAck9wCQAAAAAAvuf888+PV199NZo2bVqudapXrx5PPPFEHHfccSnVP/bYY+Xq93233XZbfPLJJ0nrOnXqFJMmTYoePXqktX/r1q1j3LhxKQVb7rzzzli5cmVa+p5zzjkxe/bsuOaaa6Jx48ZpWTOZiy66KIYNG5a0bt26dfHII49kYaLk2rVrF5MmTYpDDjkk16NUWNl6jK666qpYuHBh0ro+ffrEO++8k/aw2O677x5jx46NRo0aJa298cYb0/KB8V/84hexevXqpHXVq1ePp556Kq688srIy8srV88WLVrEqFGj4oQTTijXOrnievxv5bke33rrraQ1xx9/fFx44YVlWr+0mjVrFjfccEPKgefvq2z7yZVNmzbFFVdckVJtgwYN4o033oi99947Lb3/ee03adIkpfrrrrsu1qxZk5beZVG3bt3429/+Fpdcckm5X587d+6c8vP+66+/jjFjxpSrHwAAAADZJbgEAAAAAAD/5qyzzooHH3wwbScRVK9ePR588MFo0KBB0tpXXnkl1q9fn5a+y5Yti1tvvTVpXdOmTWPUqFEZOxGhWbNm8cwzz0TNmjVLrFu5cmXce++9aenZt2/fqF+/flrWKo3BgwfHpZdemrTuiSeeyPwwSTRp0iRGjx4dHTp0yPUoFVa2HqPp06enFFrs1KlTvPzyy1GvXr2MzLHrrrumNMfMmTPjqaeeKlevuXPnxvDhw1Oqvfvuu+O0004rV79/V6tWrfjzn/+csVPYMsX1uHXluR6nTJmStCaV1/SKorLtJ1eeeOKJmDdvXkq1Tz75ZPTs2TOt/bt27RrPPPNMSu9Dly9fHg888EBa+6eqevXq8dJLL8Whhx6atjU7d+4cv/nNb1Kqfe6559LWFwAAAIDME1wCAAAAAID/r2fPnvHoo4+W+6/Gf1+rVq3ihhtuSFpXUFAQ48ePT0vPW2+9Nelf4c/Ly4uXXnopdtlll7T03Jb99tsvbr755qR1f/jDH6K4uDijs2Tab3/729h5551LrPniiy/igw8+yNJEW/fHP/4xdt1115zOUNFl6zG64YYbkl73+fn5MWrUqGjWrFlGZznppJPioosuSlr38MMPl6vPXXfdFUVFRUnrTjnllPjZz35Wrl5bU6dOnXj22WdTOtmjonA9bltZr8dZs2aVeHujRo3ioIMOKtPauVDZ9pMLiUQipdB3RMRPfvKTlE/ULK3DDjssLr744pRq77rrrti4cWNG5ijJTTfdFEcccUTa1/3pT3+a0gmgo0aNSntvAAAAADJHcAkAAAAAAGLLX45/7LHHok6dOhlZ/9xzz41atWolrXvnnXfK3Wvt2rXx0EMPJa0bPHhw9O/fv9z9UvHzn/88WrVqVWLN119/HaNHj87KPJmSn58fV111VdK6MWPGZGGarTvppJPixBNPzFn/7UG2HqM5c+bECy+8kLTuqquuynjA8J9+9atfRd26dUusmTBhQkyfPr1M669fvz6l05YaNmyY0ZNEWrduHbfcckvG1k8n12NmrscVK1aUeHubNm3SHmTOpMq2n1x4++2348svv0xat8MOO8Ttt9+e0VluvvnmaNmyZdK6JUuWxMiRIzM6y/f17t07pfc6ZVG9evU4//zzk9YtXLgwaVgPAAAAgIpDcAkAAAAAACLijDPOiL322itj6zdp0iSOPvropHWTJ08ud6+nn3461q5dW2JNfn5+SqcgpUutWrXisssuS1r30ksvZWGazDrzzDOjRo0aJda88cYbWZrmP1WrVi3l0ySqqmw+Rn/84x8jkUiUWNOqVau4+uqrszJPRESzZs3inHPOSVr3l7/8pUzrjxw5MulpcBERV199dcZP9Pnxj39c4U8ecz1m7nosLCws8fZ69eqVes1cqmz7yYUnnngipbqrr7464ye21atXL66//vqUalOdO11uu+22qF69esbWP/XUU5O+j4pIz3tmAAAAALJDcAkAAAAAACLiuuuuy3iPk046KWlNWU8x+XfDhg1LWvOTn/wk6QlI6Xb++edH7dq1S6x57bXXsjRN5jRt2jR69epVYs0HH3yQpWn+0wknnBCdO3fOSe/tRbYeo0QikdLJQ1dddVXk5+dnfJ5/d8kllySt+fvf/16mtZ955pmkNfn5+XHxxReXaf3SqFGjRlx++eUZ71MersfMXY/JgicLFiwo9Zq5VNn2k23FxcUphafr1asXF1xwQRYmijj77LNjhx12SFo3atSoKCgoyMJEEfvuu28MGDAgoz2aNm0aBx54YNK6dLxnBgAAACA7BJcAAAAAAKjy+vTpE926dct4nz333DNpzfz588v14dOlS5fGxIkTk9addtppZe5RVg0aNIj99tuvxJp58+bFrFmzsjRR5uy9994l3r58+fL45ptvsjTNv5x77rlZ77m9ydZj9MEHHyQNEuTl5cWpp56alXn+3S677BJt27YtsWbixImxYcOGUq1bVFSU0mljp59+esZPM/mns846K+rXr5+VXmXheszc9di0adMSb58/f35MnTq1VGvmUmXbT7Z9+OGHsXz58qR1p512WtZen+rWrRuDBw9OWrdp06YYN25cFiaKlE5AS4dU3jPPmDEj84MAAAAAkBaCSwAAAAAAVHknnHBCVvp07do1atasWWJNIpGIhQsXlrnH3//+90gkEiXWtG3bNvr06VPmHuWRyl/QnzJlShYmyawOHTokrcn2SQGNGjWKQw89NKs9tzfZfIxGjRqVtKZfv35ZPxntn5I9Vzdt2hSfffZZqdb84IMPYtWqVUnrTjnllFKtWx716tWLo446Kmv9SsP1+C+ZuB532mmnpDW/+c1vSrVmLlW2/WTbmDFjUqo7+eSTMzzJf/rBD36QUl0qodDyysvLi+OPPz7jfSIi9thjj6Q1uQiAAwAAAFA2gksAAAAAAFR52fpgeM2aNWOXXXZJWrd48eIy90jlg7eDBg2KvLy8Mvcoj379+iWtqQzBpYYNGyatyfYHbg844ICoVatWVntub7L5GKXyXM3WB8S3JhPP1QkTJiStqVu3bgwcOLBU65bXsccem9V+qXI9/ksmrsf+/fsnrXnmmWfizjvvLNW6uVLZ9pNtkydPTlqTi9en/fffP5o1a5a0btKkSRmfpXv37tGyZcuM9/lnr2TK834ZAAAAgOwSXAIAAAAAoEqrWbNm7L777lnr16RJk6Q1y5cvL/P677//ftKaVP6KfaakciLEzJkzszBJZtWuXTtpzaJFi7Iwyb+k8qH2qi5bj1EikUgpZFHZnquffvpp0pp99tkn6wG7VEIxueB6/JdMXI8DBgxIqe7KK6+Mc889N5YsWVKq9bOtsu0n2z755JOkNfvss09KP9/TKS8vL6XXqFReX8urV69eGe/xT5l+vwwAAABAdgkuAQAAAABQpXXo0CGrH0JN5SSewsLCMq29fv36+Pzzz5PWdevWrUzrp8OOO+6YtGb+/PlZmGSLJUuWxKuvvhp33HFHXHDBBXHkkUdG7969o127dtGkSZPIz8+PGjVqRF5eXqm+zj777KS9ly1bloUd/ks2A3rbq2w9Rl9++WWsWbMmaV1le65OnTo1ac1+++1XqjXToVOnTrHDDjtkvW8yrsd/ycT12L9//2jVqlVKtY899lh06NAhfvrTn6YUEM6FyrafbFq3bl3Mnj07aV0uXp8iIvr06ZO0ZvXq1TFv3ryMzpHN14BMvl8GAAAAIPsElwAAAAAAqNJat26d1X4NGjRIWrNhw4YyrT19+vQoKipKWrfbbruVaf10SOXD5998803G+m/cuDH+9re/xYUXXhgdO3aMFi1axLHHHhtXXXVVPPzww/Haa6/Fhx9+GF999VWsXLky1q9fn9JjWhbr16/PyLrb0qVLl6z22x5l6zH67LPPktbUr18/2rRpk4Vpti4Tz9VZs2YlrcnVddq1a9ec9C2J6/FfMnE91qpVK6655pqU69etWxcPPvhg7LPPPtG5c+e48sor44033ijzz+x0q2z7yaZ58+ZFIpFIWper14lUA0Nz587N6BzZfM+cyffLAAAAAGRfjVwPAAAAAAAAuZTtUzbq1q2btGbz5s1lWvvrr79Oqa5Zs2ZlWj9bUjn5o7QWLFgQ9957bwwbNiyWLl2a9vXLItsfuN1pp52y2m97lK3HKJXn6tq1a6NatYr9NwhL81zdtGlTfPvtt0nrOnfuXJ6Ryqxz584xYcKEnPTeFtdj6ZTlZ8d5550X99xzT8yZM6dU95s1a1bceeedceedd0adOnVi3333jf79+0ffvn2jT58+KQWtMqGy7SdbUg297bLLLhmeZOt23XXXlOoyGfyOyO575lTeL2cqWA4AAABA+gkuAQAAAABQpdWpUyfXI6TN/Pnzcz1CWqTzJKK1a9fGjTfeGPfff3+F+8v8mzZtylqv/Pz8qFevXtb6bY+y+RhVxefqokWLUjrRpEWLFuUZqcxy1XdbXI+lV5afHXXq1Im//OUv0bdv3ygoKChT3w0bNsT48eNj/Pjx332vS5cu0a9fvzjggAPi4IMPjvbt25dp7dKqbPvJloULF6ZUl6sAcKp9U91HWVWm98wAAAAAZFfF/rNYAAAAAACQYdWrV8/1CGmzaNGiXI+QFukKLo0fPz722GOPuOOOOypcaCkiUgpxpEv9+vWz1mt7lc3HqCo+V1euXJlSXdOmTcs4TflUtJPoXI+lV9afHT169IgRI0ZEzZo10zbL559/Ho899licffbZ0aFDh+jatWtcfvnlMXHixIy/9le2/WTDqlWrUqpr3rx5hifZukaNGkXt2rWT1qW6j7KqTO+ZAQAAAMguwSUAAAAAAKgkynq6QkWTjg9BP/bYY3HooYfG3Llzyz9QJZDKB56rumw+RpXluVpcXJxybarhwVydDJafn5+Tvtvieiy90lyP33f88cfHa6+9Fi1btkzjRP/y+eefx9133x19+/aNTp06xU033RRLlizJSK+IyrefTEv19SmXIeBUeqfzxEoAAAAASCfBJQAAAAAAqCQq4qlCufCHP/whzj333Ni0aVOuR6kwqlXzT0LJZPMxqorP1cLCwpTqatWqleFJtq6ihftcj9l3yCGHxCeffBJDhgyJvLy8jPWZM2dOXH/99dGuXbv42c9+FkuXLs1In8q2n0xK5TlQvXr1nP4sTeU1ynMZAAAAgIqqRq4HAAAAAAAA0iPVYEBl9sYbb8QFF1xQ7nXq1KkTzZs3j+bNm0fDhg2jfv36Ubdu3ahevXrUqFEj6YfAZ86cGe+++26556By8lzdtkwGLCpi34rA9fgvzZo1i+HDh8dll10WN998c7z44ouxefPmjPTasGFD3H///fHEE0/ELbfcEhdeeGHae1S2/WRKKqd15ToAXL169aQ15Tl1DAAAAAAySXAJAAAAAAAqiZo1a+Z6hJxauXJlDBkyJIqKikp1vzZt2sTAgQNjn332iZ49e0anTp2iZcuW5Zpl+PDhgktsU1V8rqZ6olFhYWHUrVs3w9P8t6p8UklVvB6T6dmzZzzzzDPxzTffxBNPPBHPPvtsTJkyJSO9Vq9eHT/96U/jtddeiyeffDLq16+f9h6VbT/plsrr06ZNmyKRSOQs5JhKwLBOnTpZmAQAAAAASk9wCQAAAAAAKolUP+y/adOmqFGj8v0TwW9/+9tYsGBBSrW1atWKoUOHxk9+8pPYe++9MzwZ/KdUnqs777xzzJ8/PwvTZEeqH6hft25dToJL69aty3rPiqIqXo+patWqVVx77bVx7bXXxvz58+O1116LcePGxbvvvhuzZ89Oa6+//vWvMWjQoBg9enTGwmSVbT/pkurrU2FhYc7CQamEKwWXAAAAAKiocnueOQAAAAAAkDb5+fkp1VXGk0WWLl0av//971Oq3X///WPq1Knx8MMPZyy0tH79+oysS+WQynO1sj1PGzVqlFLd0qVLMzxJxepbEVTF67EsWrduHeeee2488cQTMWvWrFiwYEE89dRTceGFF8Yee+wR1aqV/5/ex44dG+edd14apk2usu2nPOrVq5dS3bJlyzI8ydYVFhbG6tWrk9alug8AAAAAyDbBJQAAAAAAqCRatGiRUl0qH37d3vzpT39KKSx09NFHx1tvvRWdO3fO6DxV+fQWkkvlubpmzZosTJI9LVu2TKlu8eLFGZ6kYvWtCKri9ZgOrVq1ih/+8IfxwAMPxCeffBIrVqyIV155JS6//PLYbbfdyrzu8OHD47nnnkvjpKmpbPspjVRfn5YsWZLhScrXN9V9AAAAAEC2CS4BAAAAAEAl0bZt25TqFixYkOFJsu/pp59OWtOuXbt4+umno3bt2hmfZ9GiRRnvwfYrlefqxo0bK9UpQLVq1Yodd9wxad3MmTOzME3F6VsRVMXrMRMaNmwYxxxzTNx5550xderUmDNnTtx5553Rs2fPUq91ww03RFFRUQamTF1l209Jdtppp5Tq5s6dm9lBtmHOnDkp1aW6DwAAAADINsElAAAAAACoJNq1a5dS3bx58zI8SXatXr06Pvzww6R1//d//xcNGjTIwkQR8+fPz0oftk9V9bnaqVOnpDWff/55FiapOH0rgqp6PWZa+/bt4/LLL4+PPvoo3n333TjqqKNSvu+MGTPi+eefz+B0pVfZ9vPv2rRpk1JdRX99at26dYYnAQAAAICyEVwCAAAAAIBKolu3blGjRo2kdR9//HEWpsme9957L+lJDjvuuGOccsopWZoo4tNPP81aL7Y/e+yxR0p1le252r1796Q1kydPzsIk/2nWrFnx7bffZr1vRVFVr8ds6tu3b/ztb3+Lp556KmrWrJnSfV555ZUMT1V2lW0/zZo1i6ZNmyatmzJlSham+W+phLNr1qwZu+66axamAQAAAIDSE1wCAAAAAIBKok6dOil9AD0XwYBM+uKLL5LWHHLIISl/uLq8CgoKYsaMGVnpxfapc+fOscMOOyStq2zP1VRfnzZu3JiFaf7l3XffzWq/iqaqXo+58MMf/jCefPLJlGrHjBmT4WnKrzLtp0ePHklrcvVaMWHChKQ1Xbp0iVq1amVhGgAAAAAoPcElAAAAAACoRPbbb7+kNePHj49169ZlYZrs+Oqrr5LWpHqiSDq8+eabSU+Agn333Tdpzd///vcsTJI9ffv2TVqzfv36ePPNN7Mwzb9U5JNgsqUqXo+5cuqpp8bxxx+ftG7RokUxZ86cLExUPpVlP7169Upa880338S0adOyMM1/9kzlFMdU5gcAAACAXBFcAgAAAACASuSoo45KWrNhw4b429/+loVpsmPNmjVJa5o3b56FSbb461//mrVebL9Sea5+9dVX8f7772dhmuzYe++9o2HDhknrnn/++SxMs0VBQUGMGjUqa/0qqqp4PebSeeedl1LdkiVLMjxJelSG/RxyyCEp1WX7Z/xf//rXSCQSSesGDBiQhWkAAAAAoGwElwAAAAAAoBI57LDDIj8/P2ndI488koVpsmP9+vVJa6pVy84/iRQUFMSzzz6blV5s30444YSU6irTc7V69eoxcODApHVPP/10rFq1KgsTRTz55JOxdu3arPSqyKri9ZhLAwYMiLy8vKR1S5cuzcI05VcZ9nPQQQdFzZo1k9Y98cQTWZjmXx577LGU6g499NAMTwIAAAAAZSe4BAAAAAAAlUjdunXjuOOOS1o3ZsyY+PDDD7MwUeal8kHjbH1Y+qGHHkrpBCho27Zt9OnTJ2ndk08+GQsWLMjCRNlx2mmnJa0pKCiI+++/P+OzbN68Oe66666M99keVNXrMVfq1KkTTZo0SVqXrQBfeVWG/dSvXz+lU5dmzJgRY8aMycJEEZMmTUrplLOePXtG69atszARAAAAAJSN4BIAAAAAAFQyF110UdKaRCIRV155ZRamybwGDRokrfnqq68yPseqVavitttuy3gfKo9Unqvr16+PX/7yl1mYJjsGDRoU9evXT1p32223ZTxw+Ic//CG++OKLjPbYnlTF67GiS+UExe1JRd/PWWedlVLdr371qwxPssX111+fUt3gwYMzPAkAAAAAlI/gEgAAAAAAVDL9+/ePXr16Ja1766234oEHHsjCRJnVpk2bpDWjR4/O+BzXXHNNLFmyJON9qDxOPfXUaNGiRdK64cOHx9/+9rcsTJR5+fn5MWTIkKR1q1evjp/+9KcZm2P+/Plx7bXXZmz97VFVvB5zZd26dbF8+fKkdTvuuGMWpim/yrKfk046KaVg5YQJE+LZZ5/N6CyvvPJKvP7660nratSoEWeccUZGZwEAAACA8hJcAgAAAACASuh///d/U6q74oor4t13383wNJm1yy67JK2ZO3du/OMf/8jYDM8//3w8/PDDGVufyqlWrVopn14zZMiQSnM60OWXXx7Vq1dPWvf888/H/fffn/b+hYWFcdppp8WqVavSvvb2rKpej7mQapi2a9euGZ4kPSrLfurVqxfnn39+SrUXX3xxxsLKK1asiAsuuCCl2jPPPDNatmyZkTkAAAAAIF0ElwAAAAAAoBI69thjY+DAgUnrNmzYEIMGDYr33nsvC1Nt27x58+K6664r03333XfflOquvvrqMq2fzD/+8Y84++yzM7I2ld8FF1yQ0of5ly1bFocffnjMmjUrC1Nt29SpU+Pmm28u1xodO3aMH/3oRynVXnrppWk92WTjxo1xxhlnxIQJE9K2ZmVSVa7HN954I/70pz9FUVFRBqZK7ve//33Smvbt20fz5s1TWq+y7SeXrrzyyqhTp07SuqVLl8Ypp5wSmzZtSmv/oqKiOO2002LBggVJa6tVqxb/8z//k9b+AAAAAJAJgksAAAAAAFBJ3X///VG3bt2kdStWrIhDDjkkXnzxxSxM9Z+mT58e559/fuy6664xbNiwMq2x4447Rq9evZLWvf3223H77beXqUdJax555JGxdu3atK5L1VGjRo144IEHIi8vL2ntvHnzom/fvvH2229nYbL/9N5778Vpp50WPXr0iJdffrnc6918881Rv379pHVFRUXxwx/+MO66665y91yyZEkcffTROXmt215Ulevx66+/jsGDB0fXrl3j4YcfjoKCggxMuXX33XdfjBkzJmnd0UcfnfKalW0/udSyZcu49NJLU6p9++234/TTT09beKmoqCgGDx4cr7/+ekr155xzTuy6665p6Q0AAAAAmSS4BAAAAAAAlVTXrl3jzjvvTKm2oKAgTj755DjnnHNi6dKlGZ1r48aN8eKLL8aRRx4Z3bt3j0ceeSQ2btxYrjVPO+20lOquvvrqeOCBB8rVKyIikUjEfffdFwMHDoxVq1aVez2qtkMOOSSuuuqqlGqXLFkSBx98cFxzzTUZD8wVFBTEE088EX379o199903nn322SguLk7L2jvttFPcdNNNKdUWFxfHFVdcEYcffnhMnTq11L2Ki4vj8ccfjx49esQbb7yx1Zru3buXet3KqipdjzNnzowLLrggWrduHZdffnl88sknaZp26+655564/PLLU6o955xzSr1+ZdtPrlx//fXRvn37lGpffPHFOOqoo2LJkiXl6rl8+fIYNGhQPPXUUynVN2vWLG699dZy9QQAAACAbBFcAgAAAACASuzCCy9MOdQTETFs2LDo1KlTXH/99TF//vy0zbF+/fp45ZVX4vzzz4+ddtopTj755HjttdcikUikZf1zzjkn6tSpk1LtRRddFD/4wQ/K/CHjd955Jw444ID4+c9/vs1TFvbaa68yrU3VddNNN8UBBxyQUm1xcXHcdttt0alTp7j99tvj22+/Tdscq1evjueeey7OOuusaNGiRQwZMiQmTpyYtvX/3c9//vM48sgjU65//fXXo0ePHjFo0KB47rnnYsWKFSXWT58+PW677bbo2rVrDB06NBYvXrzVup49e6Z8wkpVUdWux5UrV8bdd98dPXv2jD333DNuvvnmtIZ+pkyZEscee2xcdtllsXnz5qT1AwYMiN69e5e5X2XbT7bl5+fHo48+GtWqpfZxijfeeCN69uwZjz/+eJne1zzzzDPRs2fPGDVqVMr3uf/++2OHHXYodS8AAAAAyIUauR4AAAAAAADIrMcffzwWL14cY8eOTal+zZo1cdNNN8X//d//xSGHHBKDBg2KAw44IHbfffeoWbNm0vsXFRXF7NmzY9q0aTF58uSYMGFCTJo0KdavX1/OnWxbs2bN4sILL4y77747pfrnn38+XnnllTj99NNj8ODBsd9++0V+fv4267/44osYPXp0/OlPf4rJkyeXuPaAAQPirLPO2q5OlyD3atasGX/961+jf//+MW3atJTus2TJkrj66qvj+uuvjyOOOCKOPfbY6Nu3b3Tt2jWqV6+e9P4bN26ML7/8MqZNmxaTJk2KCRMmxPvvv7/NQF665eXlxeOPPx777bdfzJ07N6X7FBcXxyuvvBKvvPJKVKtWLTp06BCdO3eORo0aRa1ataKgoCAWL14cn3/+eUoBmtq1a8djjz2W8ZNptjdV8Xr8p48//jg+/vjj+MUvfhE777xzHHDAAdG/f//Yc889o3v37tG4ceOka2zatCm++OKLeO211+Lll1+O8ePHpxxoqVGjRso/y1JR2faTLYceemj8+te/jhtuuCGl+kWLFsXQoUPjpptuivPPPz8GDRoUXbp02Wb9nDlzYuTIkfHwww+n/Bz7p0suuSROPfXUUt0HAAAAAHJJcAkAAAAAACq52rVrx1//+tc46qijYsKECSnfr6ioKMaMGRNjxoyJiIhatWpF27Zto02bNtGkSZOoW7du5OXlRWFhYaxfvz6WLVsWCxcujIULF8bGjRsztZ1t+tWvfhV//vOfY9GiRSnVb9iwIYYPHx7Dhw+PGjVqxG677RYtWrSIJk2aRM2aNWPdunXxzTffxJdffhnLly9Pac1mzZrF448//t1jBqXRpEmTeO211+LQQw+Nzz//POX7FRYWxssvvxwvv/xyRETUrVs32rVrF61bt45GjRpF3bp1I2LLNb9+/fpYsmTJd8/VoqKijOwlVc2bN49Ro0ZFv379Un6e/VNxcXHMmjUrZs2aVeb+jz32WOy1114pBZdSPX2lsqiK1+P3LViwIJ5++ul4+umnv/tes2bNolWrVrHTTjtFvXr1om7dulFcXBxr166NgoKCmD9/fsyaNSulk4i25pZbbokePXqkawv/obLtJ9N++ctfxmeffRbPPvtsyveZOXNmXHXVVXHVVVdF06ZNo1u3btGsWbPIz8+PDRs2xLfffhvTp09P+b3K9x1++OFx++23l+m+AAAAAJArgksAAAAAAFAFNGzYMMaMGROnnXZajBw5skxrbNy4MWbOnBkzZ85M83Tp0ahRo3jyySfj8MMPj+Li4lLdd/PmzeU+caV+/frxt7/9LVq3bl2udajaWrduHe+++24cc8wxMWnSpDKtsX79+pgxY0bMmDEjzdNlRteuXWP06NFx9NFHx5IlS7LW9+abb44zzjgj5fratWtncJqKqSpej8ksXbo0li5dGh9//HHa1/7xj38cV1xxRdrXLUll20865eXlxZNPPhkbNmz4LohXGsuWLYu33347bfMccsgh8Ze//CWl0y8BAAAAoCKpWn8WDAAAAAAAqrC6devGSy+9FL/4xS8q7ckhAwcOjPvuuy/rfevVqxcvvfRS7L333lnvTeWz4447xptvvhk//vGPcz1K1vTu3Tvefffd2HXXXTPeq3r16vHQQw/Fdddd9933Ujklrk6dOpkcq8KqitdjLlx44YXx8MMP53qMtKks+6lZs2Y899xzMXTo0JzOcfLJJ8crr7zy3YllAAAAALA9qZz/KgkAAAAAAGxV9erV46abboq33norOnbsmOtx/kOjRo3Sss5Pf/rTuP/++7MWzmrTpk288847ceihh2alH1VDfn5+PProo/HCCy9E8+bNcz3Of0jXc/X7OnfuHB988EGcffbZGVk/YsvzddSoUXH++ef/x/c3bNiQ9L5VNbgUUTWvx2ypW7duPPjgg/HAAw9UilBxZdtPREStWrVi2LBhcffdd0etWrWy2rt69epx4403xnPPPRf5+flZ7Q0AAAAA6VI5/pdCAAAAAACgVA488MCYNm1a3HrrrdGwYcOczVGzZs044YQT4sUXX4xPP/00betedNFF8corr2T8A/Ynn3xyvPfee7HnnntmtA9V10knnRRffvllXHPNNVG7du2czZGfnx9nnnlmjB49OkaNGpWxPvXr14/HHnss3nzzzejdu3fa1q1Tp0787Gc/i6lTp8Zhhx32X7evXLky6Ro77rhj2ubZXlWW67Fr166xzz77RF5eXgamS91hhx0WH3/8cVxwwQXlWqey7aeiuvTSS2PKlCnRt2/frPTr1atXTJ48OW644Yac/7cFAAAAgPIQXAIAAAAAgCqqdu3acfXVV8e8efPijjvuiA4dOmSlb506dWLAgAFx3333xcKFC+Oll16KE088Me2nGBx11FExderU+MlPfhLVq1dP69o9evSIv/3tb/H8889HixYt0ro2fF/Dhg3jlltuiTlz5sQNN9yQtWuuQYMGccwxx8Rjjz0WixcvjieffDIOO+ywrJyicsghh8R7770Xf//73+PEE0+MmjVrlmmdjh07xi9/+cuYN29e3HvvvdGgQYOt1i1cuDDpWp7rW1SG67FPnz4xefLkWLhwYQwbNixOPvnkrIV48/Ly4vDDD4833ngjRo8eHbvssku516xs+6nIdtttt3jnnXfihRdeiL322isjPbp37x4jRoyI9957L2M9AAAAACCbauR6AAAAAAAAILcaN24cV1xxRVx22WXx9ttvx0svvRQvv/xyzJkzJy3r16hRI3r16hUDBw6MgQMHRv/+/aNOnTppWTuZpk2bxiOPPBJXX311PPDAAzFixIhYsmRJmdZq3LhxHHnkkXH++efHwQcfXGLtbrvtFpdcckmJNfvuu2+Z5qDq2mmnneLGG2+MX/7yl/H666/HX/7ylxg5cmQsWrQoLevXrl079t133xg4cGAceuihsd9++0WNGrn758S8vLw44ogj4ogjjog1a9bE2LFjY/z48TFt2rT48ssv49tvv421a9dGcXFxNGjQIBo0aBCtW7eO3XbbLfbYY48YOHBgdO/ePaVec+fOTVrTsmXLcu6ocqkM12OLFi1i6NChMXTo0Ni8eXN89NFHMXHixO++UrkuUlGtWrXo3bt3HH/88XH66adHp06d0rLu91W2/VRUeXl5cdJJJ8VJJ50U7777bowYMSKef/75WLp0aZnXbNKkSZx44olx5plnxiGHHOKEJQAAAAAqlbxEIpHI9RAAAAAAAEDF880338TkyZPjww8/jNmzZ8e8efNiwYIFsWbNmli3bl1s2LAhqlWrFrVq1Yr8/PzYcccdo1mzZtG6devo2LFjdO7cOfbYY4/YfffdsxZUSqa4uDgmTZoU48ePjw8//DBmzZoV8+fPj9WrV0dhYWHUqlUr6tevHw0aNIidd945unTpEl26dIl+/frFfvvtl/aTmyAd5syZE++9915MmTIl5syZE/PmzYtvvvkmCgoKvnuu1qhR47vr+5/P1TZt2kTHjh1jl112iR49esRuu+2W06BSLrVu3ToWLFhQYs2sWbOiY8eOWZpo+1WZrsclS5bE9OnTY+bMmd99ffXVV7F69epYs2ZNrF27NtauXRsRW4JW+fn50axZs2jRokV07Ngxdt1119hzzz1j//33z9oJSCWpbPupSBKJREydOjXeeeed+Oijj2L27Nkxd+7cWLFixXfX/T8f08aNG0f79u2jY8eO0aNHj+jfv3/06NEjK6fZAQAAAEAuCC4BAAAAAAAAVdbChQujVatWJdbUrVs31q5dK1gAAAAAAACl5H9ZBwAAAAAAAKqsN954I2lNt27dhJYAAAAAAKAM/K/rAAAAAAAAQJX14osvJq3Zb7/9sjAJAAAAAABUPoJLAAAAAAAAQJW0dOnSePXVV5PWHXzwwZkfBgAAAAAAKiHBJQAAAAAAAKBKuvPOO2Pjxo0l1lSrVk1wCQAAAAAAyigvkUgkcj0EAAAAAAAAQDbNnTs3dt999ygoKCixbsCAAfHGG29kaSoAAAAAAKhcnLgEAAAAAAAAVCnFxcXx4x//OGloKSLihz/8YRYmAgAAAACAysmJSwAAAAAAAECVcumll8bvfve7pHWNGzeOr776Kho0aJCFqQAAAAAAoPJx4hIAAAAAAACQM/fcc09MmDAhK72Ki4vj5z//eUqhpYiIiy++WGgJAAAAAADKQXAJAAAAAAAAyJl33nkn+vXrF4cddliMGjUqEolERvrMmzcvBg4cGPfdd19K9U2aNIlLLrkkI7MAAAAAAEBVIbgEAAAAAAAA5NyYMWPi6KOPjl122SV+85vfxKxZs9Ky7vz58+Pqq6+Orl27xtixY1O+3y233BJNmzZNywwAAAAAAFBV5SUy9SfLAAAAAAAAAJI45ZRT4oUXXtjqbbvttlscccQR0a9fv+jdu3e0a9cu8vLySlxv8+bNMWPGjBg3bly88sor8frrr0dRUVGpZho4cGC8/vrrSXsBAAAAAAAlE1wCAAAAAAAAcqak4NL35efnR/v27WOnnXaKxo0bR506dSIiYsOGDbFy5cqYP39+zJs3LzZs2FDmedq1axfvv/++05YAAAAAACANauR6AAAAAAAAAIBUrFu3LqZNmxbTpk3LyPotWrSIV199VWgJAAAAAADSpFquBwAAAAAAAADItTZt2sS4ceOie/fuuR4FAAAAAAAqDcElAAAAAAAAoEo7+uij48MPP4wuXbrkehQAAAAAAKhUBJcAAAAAAACAKqlFixbxhz/8IV555ZVo2rRprscBAAAAAIBKJy+RSCRyPQQAAAAAAABQNS1YsCCef/75eP7552PChAlRXFyc8Z5t2rSJCy64IH72s59FgwYNMt4PAAAAAACqKsElAAAAAAAAoEJYtGhRvPLKK/Huu+/GxIkT44svvoh0/XNm8+bN45hjjokTTzwxjj766KhevXpa1gUAAAAAALZNcAkAAAAAAACokFasWBHvv/9+zJw5M+bOnRvz5s2LefPmxfLly2PdunXffW3cuDFq1aoVdevWjXr16kWrVq2idevW0aFDh9hzzz2jd+/e0bVr18jLy8v1lgAAAAAAoEoRXAIAAAAAAAAAAAAAAADSrlquBwAAAAAAAAAAAAAAAAAqH8ElAAAAAAAAAAAAAAAAIO0ElwAAAAAAAAAAAAAAAIC0E1wCAAAAAAAAAAAAAAAA0k5wCQAAAAAAAAAAAAAAAEg7wSUAAAAAAAAAAAAAAAAg7QSXAAAAAAAAAAAAAAAAgLQTXAIAAAAAAAAAAAAAAADSTnAJAAAAAAAAAAAAAAAASDvBJQAAAAAAAAAAAAAAACDtBJcAAAAAAAAAAAAAAACAtBNcAgAAAAAAAAAAAAAAANJOcAkAAAAAAAAAAAAAAABIO8ElAAAAAAAAAAAAAAAAIO0ElwAAAAAAAAAAAAAAAIC0E1wCAAAAAAAAAAAAAAAA0k5wCQAAAAAAAAAAAAAAAEg7wSUAAAAAAAAAAAAAAAAg7QSXAAAAAAAAAAAAAAAAgLQTXAIAAAAAAAAAAAAAAADSTnAJAAAAAAAAAAAAAAAASDvBJQAAAAAAAAAAAAAAACDtBJcAAAAAAAAAAAAAAACAtBNcAgAAAAAAAAAAAAAAANJOcAkAAAAAAAAAAAAAAABIuxq5HgBge9WyZctYuXLlf32/Zs2a0bZt2+wPBAAAAAAAAAAAAABAhfTVV1/Fpk2b/uv7jRs3jkWLFuVgouzISyQSiVwPAbA9qlOnThQWFuZ6DAAAAAAAAAAAAAAAtlO1a9eODRs25HqMjKmW6wEAAAAAAAAAAAAAAACAykdwCQAAAAAAAAAAAAAAAEg7wSUAAAAAAAAAAAAAAAAg7QSXAAAAAAAAAAAAAAAAgLSrkesBALZXNWvWjMLCwv/6fu3ataNTp045mAgAAAAAAAAAAAAAgIpo1qxZW/38ec2aNXMwTfYILgGUUdu2bWPatGn/9f1OnTrF1KlTczARAAAAAAAAAAAAAAAVUffu3bf6+fO2bdvmYJrsqZbrAQAAAAAAAAAAAAAAAIDKR3AJAAAAAAAAAAAAAAAASDvBJQAAAAAAAAAAAAAAACDtBJcAAAAAAAAAAAAAAACAtBNcAgAAAAAAAAAAAAAAANJOcAkAAAAAAAAAAAAAAABIO8ElAAAAAAAAAAAAAAAAIO0ElwAAAAAAAAAAAAAAAIC0E1wCAAAAAAAAAAAAAAAA0k5wCQAAAAAAAAAAAAAAAEg7wSUAAAAAAAAAAAAAAAAg7QSXAAAAAAAAAAAAAAAAgLQTXAIAAAAAAAAAAAAAAADSTnAJAAAAAAAAAAAAAAAASDvBJQAAAAAAAAAAAAAAACDtBJcAAAAAAAAAAAAAAACAtBNcAgAAAAAAAAAAAAAAANJOcAkAAAAAAAAAAAAAAABIO8ElAAAAAAAAAAAAAAAAIO0ElwAAAAAAAAAAAAAAAIC0E1wCAAAAAAAAAAAAAAAA0k5wCQAAAAAAAAAAAAAAAEg7wSUAAAAAAAAAAAAAAAAg7QSXAAAAAAAAAAAAAAAAgLQTXAIAAAAAAAAAAAAAAADSTnAJAAAAAAAAAAAAAAAASDvBJQAAAAAAAAAAAAAAACDtBJcAAAAAAAAAAAAAAACAtBNcAgAAAAAAAAAAAAAAANJOcAkAAAAAAAAAAAAAAABIO8ElAAAAAAAAAAAAAAAAIO1q5HoAACq2oqKiKC4ujuLi4lyPAgAAQIry8vKievXqUa1atcjLy8v1OAAAAAAAAABAFSW4BMB3Nm3aFGvWrInCwsIoLCyMjRs3RlFRUa7HAgAAoIyqVasWtWrV+u6rXr16UbduXWEmAAAAAAAAACArBJcAqriioqJYs2ZNrFq1KtatW5frcQAAAEij4uLi2LBhQ2zYsCEiIpYtWxY1atSIhg0bRsOGDaNu3bo5nhAAAAAAAAAAqMwElwCqqEQiEWvWrIlFixY5VQkAAKAK2bx5cyxfvjyWL18eDRo0iBYtWkTNmjVzPRYAAAAAAAAAUAkJLgFUQZs2bYpFixbF2rVrcz0KAAAAObRmzZpYu3ZtNG3aNHbYYYeoVq1arkcCAAAAAAAAACoRwSWAKqawsDDmzZvnlCUAAAAiYsuJvEuXLo1169ZF69athZcAAAAAAAAAgLTxKQSAKmTjxo3x1VdfCS0BAADwXwoKCmL+/PlRXFyc61EAAAAAAAAAgEpCcAmgiti8eXN89dVXsXnz5lyPAgAAQAUlvAQAAAAAAAAApJPgEkAVsWjRoti0aVOuxwAAAKCCKygoiOXLl+d6DAAAAAAAAACgEqiR6wEAyLx169bFmjVrUq7Py8uLevXqRe3ataN27dpRs2bNqFatWuTl5WVwSgAAANIhkUhEcXFxbN68OTZu3BgbN26MgoKCUp3Au2zZsmjUqFHUrFkzg5MCAAAAAAAAAJWd4BJAJZdIJGLx4sUp1VavXj2aNm0ajRo1iurVq2d4MgAAALIlkUjE+vXrY8WKFbF69eqU6hcvXhytW7fOwnQAAAAAAAAAQGUluARQya1duzY2bNiQtK5evXrRqlWrqFHDjwYAAIDKJi8vL/Lz8yM/Pz+aNGkSCxYsSHoC05o1a2L9+vVRt27dLE0JAAAAAAAAAFQ21XI9AACZlcpf0s7Pz4/WrVsLLQEAAFQB+fn50a5du5R+B0zld0oAAAAAAAAAgG0RXAKoxBKJRKxdu7bEmry8vGjVqlVUq+ZHAgAAQFVRq1at2HnnnZPWrV69OhKJRBYmAgAAAAAAAAAqI59SB6jE1q1bF8XFxSXW7LDDDlGzZs0sTQQAAEBFkZ+fHw0bNiyxZvPmzbFhw4YsTQQAAAAAAAAAVDaCSwCVWEFBQdKaRo0aZWESAAAAKqImTZokrUl2ki8AAAAAAAAAwLYILgFUYhs3bizx9lq1akXt2rWzNA0AAAAVTd26daNGjRol1iT73RIAAAAAAAAAYFsElwAqsWQfLsvPz8/SJAAAAFREeXl5Ua9evRJrBJcAAAAAAAAAgLISXAKopBKJRGzatKnEmlq1amVpGgAAACqqZL8bbty4MRKJRJamAQAAAAAAAAAqE8ElgEqqqKgoiouLS6ypWbNmlqYBAACgokoWXCouLk76+yUAAAAAAAAAwNYILgFUUql8qKxGjRpZmAQAAICKLJXfDQWXAAAAAAAAAICyEFwCqKQSiUTSmmrV/BgAAACo6lL53VBwCQAAAAAAAAAoC59YB6jC8vLycj0CAAAAOeZ3QwAAAAAAAAAgUwSXAAAAAAAAAAAAAAAAgLQTXAIAAAAAAAAAAAAAAADSTnAJAAAAAAAAAAAAAAAASDvBJQAAAAAAAAAAAAAAACDtBJcAAAAAAAAAAAAAAACAtBNcAgAAAAAAAAAAAAAAANJOcAkAAAAAAAAAAAAAAABIO8ElAAAAAAAAAAAAAAAAIO0ElwAAAAAAAAAAAAAAAIC0E1wCAAAAAAAAAAAAAAAA0k5wCQAAAAAAAAAAAAAAAEg7wSUAAAAAAAAAAAAAAAAg7QSXAAAAAAAAAAAAAAAAgLSrkesBAAAAAAAAAAAAAAAA0qWoKGLGjIgPPoj47LOIFSsiNmyI2LgxolatiDp1Ipo0idh994i9947o0iWievVcTw2Vk+ASAAAAAAAAAAAAAACw3UokIsaNi/jrXyPeey9iypSIdetSv3+9ehF77hmxzz4Rxx8fcdBBEXl5GRsXqhTBJQAAAAAAAAAAAAAAYLuzcmXEE09EPPjglhOWyqqgIOLdd7d83XNPRNeuERdeGDF4cETjxmkaFqqoarkeAAAAqrKDDz448vLytvp18MEH53q8CufXv/71Nh+vPH/ipFKbO3duif/thw8fnusRK7Thw4eX+PjNnTs31yMCAAAAAAAAAKRs1qyI886L2HnniEsuKV9oaWtmzNiy7s47b+kza1Z614eqRHAJAAAAAAAAAAAAAACo8DZvjrj11oju3SMefTRi3brM9lu3bkuf7t0jbrstoqgos/2gMhJcAgAAAAAAAAAAAAAAKrTp0yP69Yu49tqIwsLs9i4sjLjmmi39p0/Pbm/Y3gkuAQAAAAAAAAAAAAAAFVJxccTtt0f06hUxeXJuZ5k0acsct9++ZS4gOcElAAAAAAAAAAAAAACgwtm0KWLw4Iirr87+KUvbUli4ZZ7Bg7fMB5RMcAkAAAAgIoYPHx55eXnb/Jo7d26uRwQAAAAAAACAKmPDhoiTT44YMSLXk2zdiBFb5tuwIdeTQMUmuAQAAAAAAAAAAAAAAFQYmzZFnHpqxMiRuZ6kZCNHRpx2mpOXoCSCSwAAAAAAAAAAAAAAQIVQXBxx9tkVP7T0Ty+/vGXe4uJcTwIVk+ASAAAAAAAAAAAAAABQIdx5Z8SIEbmeonRGjIi4665cTwEVk+ASAAAAAAAAAAAAAACQc9OnR1x/fa6nKJtf/nLL/MB/ElwCAIAcGjt2bCQSia1+jR07NtfjVTi//vWvt/l4JRKJXI8HAAAAAAAAAACU0ebNEUOHRhQW5nqSsiksjDj77IiiolxPAhWL4BIAAAAAAAAAAAAAAJBTd90VMXlyrqcon0mTIu68M9dTQMUiuAQAAAAAAAAAAAAAAOTMrFkRN9yQ6ynS44YbtuwH2KJGrgcAAEpWVBQxY0bEBx9EfPZZxIoVERs2RGzcGFGrVkSdOhFNmkTsvnvE3ntHdOkSUb16rqcGAAAAAAAAAAAASM2tt0YUFuZ6ivQoLNyyn0ceyfUkUDEILgFABZNIRIwbF/HXv0a8917ElCkR69alfv969SL23DNin30ijj8+4qCDIvLyMjYuAAAAAAAAAAAAQJmtXBkxYkSup0ivESMibr89olGjXE8CuVct1wMAAFusXBlx770Ru+0WccghEffcE/Huu6ULLUVEFBRsud8992xZZ7fdtqy7cmX6ZwYAAAAAAAAAAAAojyeeKP1nJSu6deu27Atw4hIA5NysWVuOBB0xIjNvvGfMiLjkkojrros488yIa66J6NQp/X2A7d+yZcvi888/j8WLF8fatWujevXq0bBhw2jatGl069YtGjdunOsRAQAAAAAAAACASiSRiHjggVxPkRkPPBBx8cUReXm5ngRyS3AJAHJk8+aIO++M+NWvIgoLM99v3bqIRx/dkuD/3/+NuOKKiOrVM9+XqmndunUxYcKEeOedd+LTTz+N2bNnx8KFC6OgoCDWr18ftWvXjnr16kWLFi2iY8eO0b179+jfv3/0798/GjZsmOvxk9q8eXNMmjQp3njjjZg6dWp88cUXsWjRoli7dm2sX78+8vPzo2nTptGpU6e45ZZbonfv3rkeeasSiUS8+eab8fTTT8frr78e8+bNK7G+TZs2cdRRR8WJJ54Yhx9+eFSrtvUDXGfPnh2zZ8/e5jqHHnpoueauqDZv3hzvvPNOjB49Oj755JOYMWNGrFixItasWRPVqlWL+vXrR+vWraNz587Rp0+fOOyww6Jnz545nbmgoCDef//9mD59esyYMSNmzJgRCxYsiNWrV8fq1au/C7DVrVs3GjduHDvvvHN06NAh9txzz9hnn32ib9++UaOGXyszYc6cOTFq1Kh45513Ytq0abFgwYJYs2ZNJBKJaNCgQeywww7RtWvX2H333eOwww6LAw44oML+t1ixYkW8//77311jM2bMiEWLFsXq1atjzZo1sXbt2qhZs2bUrVs3dthhh2jdunV07NgxevXqFX369InevXtv8/WmKlq0aFF8+OGH3z2Wn3/+eSxZsiTWrFkTq1evjoKCgqhdu3bUrVs3mjZtGq1bt45ddtklevXqFX379o099tgj11sAAAAAAAAAgO+MGxfx+ee5niIzZsyIGD8+4qCDcj0J5FZeIpFI5HoIgO1R9+7dY9q0af/1/d122y2mTp2ag4n+U2FhYYkfGo+I6NixY9SuXTtLE/Hvpk+PGDo0YvLk3M2w334Rw4ZFdOuWuxmofMaOHRuPPvpo/PWvf42CgoJS37927dpx9NFHxznnnBPHHHNM5GXoT00MHz48zj777G3ePmfOnGjfvv1/fX/WrFnx+9//PoYPHx4rVqxIqddLL70UJ5xwwjZvP/jgg2PcuHFbve2ggw6KsWPHptSnNBKJRDz77LNxww03xBdffFGmNbp06RL/8z//E4MHD/6v237961/HjTfeWGL/sqqIay9ZsiTuvffeeOihh+Lbb78tVc9u3brFFVdcEYMHD46aNWuW6r5lsXnz5hg3bly89dZb8dZbb8V7770XmzZtKvN6DRs2jGOPPTYuuOCCOOCAA9I46X+bO3dudOjQYZu3Dxs2LIYOHZrRGbJh5MiRcffdd8dbb71Vqvs1adIkzjvvvLjkkktip512+q/by/q6Vxbr16+PN99887vr7KOPPori4uIyr9esWbM48cQT48ILL4w999wzLTNGRLRv3z5pYDOdhgwZEsOHDy/1/VavXh2jR4/+7vGcPn16ueZo06ZNnHrqqXHBBRdE586dy7UWlYffHwEAAAAAAIBcueyyiHvuyfUUmXPZZRF33ZXrKagoKvrnzzPFnywGgCwqLo64/faIXr1yG1qKiJg0acsct9++ZS4oj4kTJ0a/fv3ikEMOiaeeeqpMoaWILR+afemll2LQoEHRq1eveO2119I8admsWbMmLrvssujSpUvcfffdKYeWKqL58+fHgAED4vTTTy9zaCki4vPPP48hQ4bEoYceGl999VUaJ9x+FBUVxd133x0dO3aM3/72t6UOLUVETJ8+PX784x9H796944MPPsjAlBHFxcXx1ltvxfnnnx8tW7aMQw89NH7729/GhAkTyhVaitgSqHjqqafiwAMPjL59+8aECRPSNHXV8/nnn8eAAQPiuOOOK3VoKWLLqUa33nprdO7cOe6+++5yBYXKYtOmTfHKK6/EWWedFc2bN49jjz027rzzzvjwww/LPcvSpUvjkUceiV69esXRRx8dn332WZqmrrjWrVsXzzzzTJx44onRvHnz+MEPfhAPPPBAuUNLERFff/113HnnnbHrrrvGWWedldXwFgAAAAAAAAB833vv5XqCzKrs+4NUCC4BQJZs2hQxeHDE1VdHFBbmepotCgu3zDN48Jb5oLQKCwvjZz/7WfTv3z/tgYWPP/44jjzyyDjrrLNi9erVaV27NKZOnRo9e/aMe+65J4qKinI2Rzq8/fbb0bNnz7Se4vTGG2/EfvvtF1OmTEnbmtuDZcuWxYABA+Lyyy8vc1Dv33366afRv3//ePrpp9Mw3X868sgjY8CAAfHII4+UKVyVqokTJ0b//v3jiiuuiI0bN2asT2X05z//Ofbee+8yBZa+b926dXH55ZfHkUceGWvWrEnDdKnp3r17DBo0KEaMGBFr167NWJ9Ro0bFXnvtFbfddlu5TliryDZu3BjNmzeP008/Pf7yl79EYYbeOCYSiRgxYkTsvvvu8fjjj2ekBwAAAAAAAACUpKgoorJ/7GjKlC37hKpMcAkAsmDDhoiTT44YMSLXk2zdiBFb5tuwIdeTsD1ZuHBhHHTQQXH//fdn9GSPESNGRJ8+feLLL7/MWI9tGT9+fPTt2zfmzJmT9d7pNmrUqDj88MNj+fLlaV970aJFcdBBB8Unn3yS9rUrotmzZ8d+++0X48ePT+u6GzZsiDPPPDOee+65tK6bzeBfIpGIu+66K4466qiMhlcqkzvvvDPOOOOMtD9er7/+ehx44IFZOyEum9fZpk2b4pprromzzjorNm/enLW+2VJcXJyWQGSq1q5dG0OHDo1rrrkmaz0BAAAAAAAAICJixoyIdetyPUVmFRREfP55rqeA3BJcAoAM27Qp4tRTI0aOzPUkJRs5MuK005y8RGq++eabOPDAA2PSpElZ6Td9+vQ48MAD4/Ms/gb36aefxnHHHZfT057SZfLkyXHKKafEhgymE9esWRODBg2KxYsXZ6xHRbBw4cI47LDDYvbs2RlZv7i4OIYMGRJTp07NyPrZ8uabb8Yxxxzj5KUk7r333rjyyisztv5HH30Up5xySmyqpD/cn3rqqRg8eHCux6g0brvttrjuuutyPQYAAAAAAAAAVcgHH+R6guyoKvuEbamR6wEAoDIrLo44++yKH1r6p5df3jLvE09EVBNvZhtWrVoVhx56aMycOTOl+po1a8b+++8fvXr1irZt20a9evVi/fr18c0338Qnn3wS48ePj/Xr1yddZ9GiRTFgwICYPHly7LzzzuXdRonWrl0bJ5xwQqxatWqbNV26dIk+ffpEx44do0mTJlGzZs1Yu3ZtfP311/Hxxx/HhAkTKkRY4Ntvv40TTzwx1qXwp0lq1qwZxx57bBxzzDHRu3fvaN++fdSvXz82btwYy5Yti+nTp8fYsWPjmWee2eopVF999VWcf/75seeee2ZgJ7lXWFgYgwYNKjG0tOuuu0bfvn2jRYsW0bx586hVq1YsXrw45s+fH2PGjIn58+cn7bN+/foYPHhwvPfee1EtSy/GzZs3j549e0bHjh2jUaNG330VFxfHqlWrYtWqVTFjxoz44IMPYuHChSmtOX78+Pj5z38eDz30UIan3z69+uqrcdlll6Vcv+uuu0b//v1jl112iUaNGsXmzZtj2bJlMW3atBg7dmwsW7Zsq/d7880343/+53+ie/fu6Rq9zHbeeefo2bNntG3bNho1ahSNGzeORo0axcaNG2PVqlWxcuXKmDp1anzwwQfx7bffprTmn//85+jRo0dce+21GZ6+YsnLy4v27dtHz549o1WrVt89ng0bNowNGzbEypUrY/ny5fHJJ5/ElClTUg7h3nLLLdGzZ884/fTTM7wDAAAAAAAAAIj47LNcT5AdVWWfsC2CSwCQQXfeGTFiRK6nKJ0RIyL23DMigwdAsB1LJBIxZMiQmD59etLaFi1axLXXXhtDhw6Nxo0bb7Nu/fr18ec//zl++9vfJj3F5ptvvokf/OAHMW7cuKhZs2Zpx0/Z1VdfvdVZGjRoEBdffHGce+650alTpxLXWLlyZTz22GOx4447ZmrMlJx77rnxzTffJK0755xz4je/+U20atXqv26rUaNGtG3bNtq2bRtHHHFE3HzzzfHcc8/FVVddFV999dV/1P71r3/daqipMrjyyivjg638+ZPGjRvHVVddFaeffnp07NixxDUmTZoUV199dYwfP77Eug8//DAef/zxOPvss8s187a0bds2jjvuuDjqqKOiV69esdNOO6V839mzZ8ewYcNi+PDhSYNYDz/8cJxyyilx6KGHlnfkSmXhwoUxZMiQKC4uLrEuLy8vBg8eHFdeeWXsvvvu26wrLi6OUaNGxW9/+9uYOHHif91+9913x/nnn1/uuUurS5cucfzxx8cRRxwRPXv2LNXr4aeffhqPPfZY/OlPf0oaYvrVr34Vxx13XOy2226lmu/WW2+NNWvW/Mf3JkyYEMOGDdvmfW655ZYyv67vuuuuZbrfP+25555xwgknxMCBA6NHjx7RsGHDlO6XSCRi0qRJ8Yc//CGeeeaZWLt2bYn1F110UQwYMCCaN29ernkBAAAAAAAAIJkVK3I9QXZUlX3CtuQlEolErocA2B517949pk2b9l/f32233WLq1Kk5mOg/FRYWJg0AdOzYMWrXrp2liaqe6dMjevWKKCzM9SSlV7t2xJQpEd265XoSKppHHnkkpQ+/DxkyJO67775o0KBBymsXFhbGL37xi7jzzjuT1l5//fXxv//7vymv/X3Dhw8vdSDkuOOOi0ceeSRatGhR5r5bc/DBB8e4ceO2ettBBx0UY8eOLfPaI0eOjOOOO67Emnr16sVTTz2VtG5rVq5cGT/60Y/ilVdeKdX9yvMryK9//eu48cYbc7L21lx44YVx0003xQ477FCq+919991x+eWXl1jTtWvXmDZtWuTl5ZVq7e/r06dPTJo0KRo1ahQ/+clP4vTTT4/evXuXa82ILc/Z//3f/43bb7+9xNPFunXrFp999lm5T4+aO3dudOjQYZu3Dxs2LIYOHVquHtly3HHHxcgkxzG2adMmnnnmmdh///1TXjeRSMQDDzwQl19+eWzcuPE/bqtWrVqJQak5c+ZE+/btU+71fS1btozFixdHixYt4qc//Wn84Ac/iG5peCOxatWquPrqq+PRRx8t8fl9xBFHxN///vdy90v286G8j1MqNmzYEHXr1o2IiA4dOsTFF18cJ598crRr167cay9cuDAuuuiieOmll0qsO//8852WVsX4/REAAAAAAADIhR/9KOLJJ3M9Reb96EcRTzyR6ymoCCr6588zpXyfHAMAtmrz5oihQ7fP0FLElrnPPjuiqCjXk1CRLFmyJK699tqkdTfffHMMHz68VKGliIjatWvHHXfcEY899ljSgMOtt94aM2bMKNX65XHVVVfFX/7yl7SHljKpqKgorrjiihJr6tatG6NHjy5TaCliy0lDL730Upx44olluv/2rFq1anH//ffHAw88UOrQUkTEZZddljSkN2PGjHIF1/6pbdu2cccdd8TXX38dt99+e1pCSxFbnrO//e1v480334z69etvs2769Onx/PPPp6VnZTB69OikoaWuXbvG5MmTSxVaithyQtNFF10Uf/vb374LvvxTstOdyqtbt27x6KOPxrx58+KGG25IS2gpIqJRo0bx8MMPx7PPPhs1amz70OjXXnstJk+enJaeFcG+++4bzzzzTHz55Zdx+eWXpyW0FBGx0047xYsvvhh33313iXXDhg1LeqIaAAAAAAAAAJTX9/4ua6W1vX6WFNJFcAkAMuCuuyK298/OTpoUkcLBN1Qht9xyS6xIcmbtNddcE9ddd125+px99tlx1113lVizcePGuOGGG8rVJ1Xnnntu3HbbbeU+9SbbXnjhhfjyyy9LrHn44Yejb9++5epTo0aNePLJJ6N79+7lWmd78+ijj8ZFF11UrjUuv/zy6N+/f4k1zz33XLl6REQ8++yzccUVV5Q6TJiq/v37x6uvvho1a9bcZs3DDz+ckd7bo2QB0ObNm8fo0aOjZcuWZe4xcODAGDFiRFZft95666348Y9/nLHTWE455ZR4IsmfHqos11mdOnVi0qRJceqpp0b16tUz0uPSSy+Nm2++eZu3b9y4MYYNG5aR3gAAAAAAAADwT7Vq5XqC7MjQxylguyG4BABpNmtWRJbyFBl3ww1b9gPLli1L+oHwffbZp8QPQZfGJZdcEoMGDSqx5oUXXsj4qUtt27aNe+65J6M9MiXZ3AMGDIgf/ehHaemVn58fv//979Oy1vbgjDPOiHPOOScta/3ud78r8fbXXnstLX0y7cADD4yf//zn27z9rbfecnpLRLz55psxZcqUEmseeeSRaNOmTbl7nXjiiXH++eeXe52K5Ic//GGcfPLJ27z9ueeeiw0bNmRxou3btddeG/vss882b//Tn/6UxWkAAAAAAAAAqIrq1Mn1BNlRVfYJ2yK4BABpduutledYz8LCLfuBxx9/PNatW7fN26tVqxa///3vo1q19L29vOeee6JOCb+xFRcXZ/x0jYceeijq16+f0R6ZMGvWrJg4ceI2b69Zs2bcf//9ae150EEHxRlnnJHWNSui5s2bx4MPPpi29fbaa6/o2bPnNm+fPXt2LFy4MG39MulXv/pVNGzYcKu3JRKJGD16dJYnqniSBfwGDhwYxx9/fNr6/eY3v4nGjRunbb2K4I477tjmSVJr1qyJCRMmZHmi7VdeXl7ccccd27z9yy+/jNmzZ2dxIgAAAAAAAACqmiZNcj1BdlSVfcK2CC4BQBqtXBkxYkSup0ivESMiVq3K9RTkWrJTF4YMGVLiqQ1l0bFjx7jyyitLrHnqqadi8+bNae37T3vttVccddRRGVk705577rkSbx80aFB069Yt7X2vvvrqtK9Z0Vx44YXbDOeU1Q9/+MMSb//444/T2i9TGjRoEEceeeQ2b3/zzTezOE3Fs3r16nj11Ve3eXteXl7cfffdae3ZtGnTuKGyHAP5/7Vv377EnzdV/TorrQMOOCBatmy5zds9ngAAAAAAAABk0u6753qC7Kgq+4RtEVwCgDR64omIEg6l2S6tW7dlX1Rdc+bMSRqcuOiiizLS+8ILL4zq1atv8/YlS5bEu+++m5HeZ599dkbWzYbXX3+9xNvPOuusjPTt2bNn7F6Jf8uuXbt2XHjhhWlft0+fPiXePmPGjLT3zJSSwn5TpkzJ4iQVz6uvvhqFJRzJ2K9fv9hjjz3S3vfss8+O2rVrp33dXHKdpU9eXl4cccQR27zd4wkAAAAAAABAJvXunesJsqOq7BO2RXAJANIkkYh44IFcT5EZDzywZX9UTclCMLvttlv0ztBvVq1atYqBAweWWDNmzJi0961Ro0acccYZaV83GzZu3BgTJ07c5u2NGzeOY445JmP9f/SjH2Vs7Vzr169ftGjRIu3r9ujRo8Tbv/7667T3zJR27dpt87YvvvgiNm7cmMVpKpY33nijxNuTnbxVVo0bN46jjz46I2vnSknX2WeffZbFSSoHjycAAAAAAAAAudK1a0R+fq6nyKx69SK6dMn1FJBbgksAkCbjxkV8/nmup8iMGTMixo/P9RTkyttvv13i7ZkO+CQLwiSbryx233332GGHHdK+bjbMmDEj1q9fv83b999//6hVq1bG+h900EEZWzvX+vXrl5F1mzRpEs2bN9/m7UuWLMlI30xo2bLlNm/bvHlzLFiwIIvTVCzjxo3b5m3Vq1ePH/zgBxnrvb0GMbelpOts/vz5UVRUlMVptn8lPZ5z587N3iAAAAAAAAAAVDnVq0f06pXrKTKrV68t+4SqrEauBwCAyuL/sXef4VGVXdvHzxQIJIQQei+hhdBL6FWKoghIERFBELEgqICABVGBW6WK2AAREESxgFJEECVUaULoEOm9EwJJSJ/3w7z6WJg9KXvPpPx/x8Hx3A/XNWudOzNpuNdcy5a5O4G1li2TsvE8Agzs3bvXcL158+aW9m/RooXh+r59+0zvWa9ePdNrusrBgwcN1+vUqWNp/5o1a8rT01MpKSmW9nGHpk2bWlY7ICDA4YBSVFSUZX3/LSUlRWfPntXly5d19epVRUdHKz4+XomJibKl4ui969evG65fvHhRFSpUMCtulhEdHa3jx487XK9SpYqKFCliWX+rhu7SKykpSWfOnNHly5d17do1xcTEKCEhIdWvswiDSfGUlBRdvnxZJUuWNDNyphYfH6/Tp0/r6tWrunbtmmJjY5WQkKCkpKRUfTx37tzpcO3SpUtmRgUAAAAAAAAAAAAA4D9CQ6UtW9ydwjqhoe5OALgfg0sAAJjE4J7PbCG7Xx/uLikpSUeOHHG47uHhYfkgTLly5RQYGKjIyMi7rkdGRurcuXMqXbq0aT2z8uDSiRMnDNetfr58fX1VuXJlw8GCrKps2bKW1fb393e4Fh8fb1nfs2fPatWqVdq6dat+//13HTt2zNJ+zgabsqtDhw4ZDpDUqlXL0v4lSpRQkSJFdPXqVUv7OPLHH3/op59+0rZt27Rr1y6dPHlSSUlJlvW7fv16th5c2rNnj37++Wdt27ZN4eHhOnPmjGXDogkJCbp9+7bh1ygAAAAAAAAAAAAAADKiSxdp+nR3p7BOly7uTgC4H4NLAACYIDlZCg93dwprhYfbr5MjS3OWixcvKjEx0eF6+fLlFRAQYHmOunXrat26dQ7XT58+bergkpUDKla7cOGC4XrlypUtz1ClSpVsObgUGBhoWe18+fI5XEtISDC1V2xsrBYtWqRPP/3U8KQVK9y5c8el/TILo9OWJKl27dqWZ6hdu7Z++eUXy/v8KTIyUvPnz9ecOXN06NAhl/WVsufr7OLFi/r00081d+5cnT592qW979y5w+ASAAAAAAAAAAAAAMAyrVpJVatK2fB2IwUHSy1bujsF4H6e7g4AAEB2cOSIFBvr7hTWionJnr8YwJizIZhKlSq5JIezYRtnOdPKFcNYVrly5YrhuiuuLX/+/Jb3cIeCBQtaVtvDw8PhmtFJPWlhs9k0e/ZsVapUSU899ZTLh5Yka0+PyswuXrxouF6lShXLM7iihyQlJibqnXfeUYUKFTR8+HCXDy1J2et1Fh0drZEjRyooKEhvvPGGy4eWpOz18QQAAAAAAAAAAAAAZD4eHtLgwe5OYY3Bg+3XB+R0nLgEAIAJdu1ydwLX2LVLCglxdwq40rVr1wzXXTXg46zP1atXTe2XlQdvYp1MUbri2rLyx8+Ij4+PuyOk26VLl/Too48qLCzMrTmSk5Pd2t9dLl++bLjuiq+lrugRERGhXr16ae/evZb3MpJdXmfbtm3To48+qpMnT7o1R3b5eAIAAAAAAAAAAAAAMq9+/aRXXslebyDv62u/LgCcuAQAgCkOHHB3AtfIKdeJ/3Pnzh3DdVcNqDi74d5ZzrTKyoM3zk7G8Pf3tzxDVv74ZUdHjx5V48aN3T60lJM5GyjMDp+X27ZtU9OmTd0+tJRdLFu2TG3atHH70BIAAAAAAAAAAAAAAK5QoIDUp4+7U5irTx/JRe8LDmR6DC4BAGCCyEh3J3CNnHKd+D9xcXGG65llcMlZzrTy9My+PyZ7uODs4ez88ctqLl++rA4dOuj06dPujpKjZYavpVb2OHLkiO6//37duHHDsh45ycaNG9WrVy/Tv7cBAAAAAAAAAAAAAJCZjR4t+fi4O4U5fHzs1wPAztvdAQAAyA5yyn2lOeU6gazMx8lv77du3VLhwoUtzRAVFWVpfaRe//79derUqVTt9fHxUWhoqOrVq6cqVaqoQoUKKl68uAoXLiw/Pz/5+fnJ29tb3t6Of408deqUKlSoYFL67CMlJcVwPVeuXJZnsKpHQkKCevXqpchUTjf7+fmpcePGqlu3ripXrqxy5cqpePHiKlSokPz8/OTr6ysvLy/D19n69evVpk0bsy4hU7lx44Z69+7t9PS8PwUGBqpJkyaqU6eOKlasqLJly6pYsWIqWLCg/Pz8lDdvXnl7e8vLy8thjfnz52vAgAFmXQIAAAAAAAAAAAAAAOlSsaI0blz2GPgZN85+PQDsGFwCAMAECQnuTuAaqbyHFtlInjx5DNdv3brlkhzOBmGc5cxJfH19DdcZXMo5vvvuO61evdrpvnvuuUeDBw9Wx44dnb5+nLHZbBl6fHblbKDw9u3blmew6uv1jBkztG/fPsM9Hh4e6tq1q5566indc889yp07d4Z6ZufX2dixY3XhwgXDPd7e3urTp48GDhyoZs2aZfiUu+z88QQAAAAAAAAAAAAAOJecLB05Iu3aJR04IEVG2t/kPCFByp1bypNHCgyUatSQGjSQqlaVDN4/M0OGD5eWLJF27LCmvis0aiSNGOHuFEDmwuASAAAmyOD9t1lGdjmGFamXN29ew/XMMrjkLGdOUrRoUcN1VzxnrnpdwNi4ceMM1/38/DRnzhw98sgjpvVkaO3uMsMQqBU94uPjNXHiRMM9RYoU0eLFi3XPPfeY1je7vs4uXryoTz/91HBPUFCQli5dqtq1a5vWN7t+PAEAAAAAAAAAAAAAd2ezSRs2SMuWSTt3SuHhUmxs6h/v5yfVqSOFhkpdukitWkkeHuZk8/aW5s+X6tbNmm+07uMjzZtn3WAXkFUxuAQAgAlyymEvOeU68X+KFCliuJ5ZBpecDevkJCVKlDBcP3r0qOrUqWNphqNHj1paH87t2LFD+/fvd7ieK1curVu3Tg0bNjS1b2RkpKn1souCBQsarmfVwaVly5bp2rVrDtcLFCig7du3q0KFCqb2za6vs4ULFyrB4BjPChUqaOfOnU5fT2mVXT+eAAAAAAAAAAAAAIB/unlTWrBA+uQT+wlL6RUTI23ZYv8zfboUHCw9+6zUr59UoEDGc1arJo0fL40alfFarjZhgj0/gH/ydHcAAACyg8BAdydwjZxynfg/zoZgjh8/7pIcx44dM1x3ljMnCQoKMlzfs2ePpf3v3LnD4FImsGzZMsP1N9980/ShJUm6ceOG6TWzA2dfoy5cuGB5hosXL5pe09nr7KOPPjJ9aEnKvq8zo4+nh4eHFi5caPrQkpR9P54AAAAAAAAAAAAAALvjx6WnnpJKlZJeeCFjQ0t3c+SIvW6pUvY+ZtxSNmKE1KdPxuu4Up8+0vDh7k4BZE4MLgEAYIIaNdydwDVyynXi/5QoUUK5c+d2uH7ixAmXnBQSHh5uuF6uXDnLM2QV1atXN1x39rHMqH379ik5OdnSHnBu8+bNDtfy5MmjoUOHWtL3xIkTltTN6sqUKWO4vm/fPssz7N271/SaRq+z0qVLq3fv3qb3lLLn6yw+Pl6///67w/WmTZuqWbNmlvTOjh9PAAAAAAAAAAAAAICUlCRNnChVry59+qkUG2ttv9hYe5/q1aVJk6SM3ELk6SnNmyc9+KB5+azUubM9ryfTGcBd8akBAIAJ6td3dwLXyCnXif/j7e2t4OBgh+s2m83yE3zOnDljeBpEYGCgSpcubWmGrKRatWrKkyePw/Vt27YpISHBsv4bN260rDZS79ChQw7X7rvvPvn7+1vSd8uWLZbUzepCQkIM160YKvo7K05Ci46O1pkzZxyu9+jRQx4eHqb2/FN2fJ0dO3bM8Gtzz549Lelrs9m0detWS2oDAAAAAAAAAAAAANzn8GGpWTPp5Zel+HjX9o6Pl0aPtvc/fDj9dXLlkr75JvMPL3XuLH39tT0vgLtjcAkAABMEB0u+vu5OYS0/P6lqVXengDvUrl3bcN3qG8id1a9Vq5al/bOa3Llzq0mTJg7XIyMjtWrVKsv6f/HFF5bVRurExsbq2rVrDtedDdFkxG+//WZZ7aysdOnSCggIcLi+f/9+S08q27t3r+n1jYaWJOteZ7dv39b+/fstqe1Op0+fNly36uN56NAhRUZGWlIbAAAAAAAAAAAAAOB6KSnS5MlS3brSjh3uzbJ9uz3H5Mn2XOmRJ4+0ZInUp4+52czSp4/03Xf2nAAcY3AJAAATeHnZf8DOzurWtV8ncp6WLVsarn/55ZeW9l+4cKHheqtWrSztnxW1b9/ecN2q4aJ9+/Zp3759ltRG6t2+fdtwvXjx4pb03b59u65evWpJ7eygadOmDtdu3bqlX3/91bLeS5cuNb2mu15nq1atUkp6/zUzFbyc/LCTmJhoSV93fTxXrlxpSV0AAAAAAAAAAAAAgOslJkr9+kmjRrn+lCVH4uPtefr1s+dLj1y5pAULpEmTJB8fc/Oll4+PfSBrwQJOWgJSg8ElAABMEhrq7gTWyu7XB8ecDcEcOHBAe/bssaT35cuX9fPPPxvuadeunSW9s7KePXsari9fvlwRERGm9508ebLpNZF2CQkJhuvOBjPS6/3337ekbnbRpk0bw/WvvvrKkr42m02LFy82vW52fZ3lzp3bcP3OnTuW9HXHxzM5OVkfffSR6XUBAAAAAAAAAAAAAK4XFyd17y4tWuTuJHe3aJE9X1xc+h7v6SmNHCmFh0sNG5qbLa0aNbLneOkley4AzvGpAgCASbp0cXcCa2X364Nj5cqVU10nR4p98sknlvSeNWuWkpOTHa4XK1ZMTZo0saR3VlapUiU1atTI4XpiYqKGDh1qas9NmzZZdpIT0iZv3ryG61euXDG954ULF/Tdd9+ZXjc7efDBBw3Xv//+e8XGxpred/369Tp79qzpdd3xOvv999+1detW0+v+nb+/v+H6rVu3LOnrjo/n999/b8lrAwAAAAAAAAAAAADgWomJ0sMPSytWuDuJsRUrpF690n/ykiRVqyZt2SJNnOj605d8fOynPm3ZYs8BIPUYXAIAwCStWklVq7o7hTWCg6WWLd2dAu7Ut29fw/U5c+aYfurSmTNnNHHiRMM9ffr0kbe3t6l9s4sXX3zRcH3t2rVaZNJbrMTFxem5554zpRYyLjAw0PDzYufOnab3fP7555WYkX9VygGCg4NVq1Yth+tRUVFOv+allc1m02uvvWZqzT8VKVLEcN3s11lSUpKGDBlias27cXZdJ06ccEtfsz+et2/f1siRI02tCQAAAAAAAAAAAABwvZQUacCAzD+09Kfly+15U1LSX8PbWxo1Sjp4UBo0SPL1NS/f3fj62vscPGg/9cnLy9p+QHbE4BIAACbx8JAGD3Z3CmsMHmy/PuRc/fr1k5+fn8P1lJQUDRkyRDabzbSew4YNMzx9xNPTU08//bRp/bKbnj17qlKlSoZ7nnrqKW3fvj1DfZKTk9WvXz/t378/Q3VgHi8vL5UrV87helhYmKKiokzr9/nnn2vJkiWm1cvOnnjiCcP1KVOmmHoCzpdffmnZCUWlS5eWj8FbF61YsUJJSUmm9fvf//6X4a9XqVGmTBnD9UOHDlnSt2LFiobr33//van9nn/+eZ06dcrUmgAAAAAAAAAAAAAA15s6VTLpvYtdZtEiadq0jNepWFGaPVu6cEGaMcP+Bu1mCg62171wwd7HyX/aB2CAwSUAAEzUr5/10/uu5utrvy7kbIUKFdIzzzxjuGfLli166623TOn38ccfa+nSpYZ7evbsqSpVqpjSLzvy8vLS5MmTDffExsaqXbt2+vHHH9PV49atW+rWrZu+/fbbdD0e1gkNDXW4dufOHf3vf/8zpU94eLief/55U2rlBE888YQCAgIcrsfGxurZZ581ZQj00qVLlp6o4+Xlpbp16zpcP3v2rGbPnm1Kr9WrV2vChAmm1HKmePHiKlCggMP19H69dKZ06dIqXry4w/WtW7dq1apVpvT67LPPNH/+fFNqAQAAAAAAAAAAAADc5/Bh6fXX3Z0ifcaMsec3Q0CANHSodOiQtH69NGyY1Lx52u/l9POzP27YMHudQ4fsdQ1u9QCQSgwuAQBgogIFpD593J3CXH368IM37F5++WUVLFjQcM9bb72l999/P0N9vvjiC6eDED4+Pho/fnyG+uQEXbt2VadOnQz3REdH68EHH9SgQYN08eLFVNW12Wz67rvvVLt2bS1fvvw/67Vq1UpXXpinQ4cOhuvTp0/XmjVrMtRj69at6tChg27dupWhOjmJv7+/hg8fbrjnxx9/1OjRozPUJzo6Wg899FCqP6fTy9nr7JVXXtGePXsy1GPZsmXq1q2bqac3OdOwYUOHawcOHNDKlSst6evs4/n0009n+ESumTNn6qmnnspQDQAAAAAAAAAAAACA+yUlSf37S/Hx7k6SPvHx0oABUnKyeTU9PKRWreynOW3aJN26JR08KC1YII0aJQ0aJPXtKz38sP3/Dhpk//sFC+z7oqLsj5s2zV7Hw8O8bEBOx+ASAAAmGz1a8vFxdwpz+PjYrweQpMKFC2vSpElO97344ot65plnFBsbm6b6CQkJeuWVV9SvXz8lO/mN9JVXXlHlypXTVD+nmjt3ruEpHpJ9EGnOnDkqX768evbsqXnz5mnfvn2KiopScnKy4uLidPbsWa1du1ZjxoxR5cqV1bNnT506deo/tTp37qyHHnrIoqtBaj300EPyNXjbmMTERHXv3j1dp2UlJydrypQpatOmja5du/aPNS8vrzTXy2leeukllSpVynDP5MmTNXTo0HQN61y8eFHt2rXTtm3b0hsx1R599FF5GPwr3a1bt3Tvvfdq/fr1aa4dFxenUaNGqVu3brpz584/1qx+nbVr185w/bHHHtP8+fOVkJBgat/HHnvMcP3cuXNq27at9u3bl+baN2/e1IABA/Tss88qJSXlH2t83gIAAAAAAAAAAABA1jNtmrRjh7tTZMz27dLUqdbV9/KSQkLsQ0oTJ0qzZ9uHlL7+2v5/Z8+2/33fvvZ9/OdzwDoMLgEAYLKKFaVx49ydwhzjxtmvB/jTwIED1a1bN6f7Zs2apSpVquijjz7S7du3DffGxcVp/vz5ql69ut59913ZbDbD/c2aNdOrr76aptw5WZEiRfT9998rb968TvcmJCTou+++0xNPPKHatWurQIEC8vb2Vt68eVW2bFl16NBB//vf/3T8+PG7Pr5MmTKaPXu22ZeAdChQoICeeOIJwz0xMTF6+OGH1aNHj1QNudy6dUtz5sxRSEiIRo4cqfi7vGXPK6+8ku7MOYWvr69mzpzpdN+HH36oJk2a6LfffktV3eTkZM2bN0+1a9fW9u3b/7Nep06dtEZ1qmrVqnrggQcM91y5ckVt27bVoEGDdPDgQac1r169qmnTpqlixYqaPHnyf4ZsPDw89PLLL2cotzM9e/aUp6fjfy6JiorSgAEDVKJECXXp0kWvvPKKpk6dqpkzZ2rOnDkO/2zcuNGwb/v27VWzZk3DPUePHlVoaKhGjhx51+HRfztz5ozeeustBQUFaf78+f9Z9/Hx0bBhw5zWAQAAAAAAAAAAAABkHsePS2PHujuFOcaOtV8PgOzN290BAADIjoYPl5YsydrvaNCokTRihLtTIDOaP3++IiIinN6Afv78eQ0ZMkQjRoxQ06ZNVbduXZUuXVq+vr6Ki4vTxYsXtXfvXm3cuDHVpzOVKlVK3377rXLlymXGpeQYjRs31jfffKMePXrcddjEDP7+/lqxYoWKFStmuM/bm19BXOWNN97QokWLFBkZabhvyZIlWrJkicqXL6+mTZuqSpUqCgwMVO7cuRUdHa3Tp09rz5492rFjh+EJM126dNHAgQM1YcIEsy8l2+nUqZOeffZZffLJJ4b7fv/9dzVr1kyNGzdWjx491KxZM1WuXFkBAQFKTk7WtWvXdOjQIf3666/68ssvdfbs2bvWCQ0N1dNPP60nn3zS9GuZPHmy1qxZo8TERId7UlJS/hreqVq1qpo2baoKFSooMDBQXl5eunXrlk6dOqXff/9d4eHhhqfuDR06VO3atdP//vc/06/lT+XLl1fXrl21dOlSw303btzQ8uXLtXz58lTVffzxx9WyZUvDPe+9957TE58SEhI0ZcoUTZs2TTVr1lSTJk1UpkwZFShQQJL9dKUTJ05o+/btOnjwoOFA8DvvvKPAwMBU5QcAAAAAAAAAAAAAZA4TJ0oW3QLkcvHx/3caEoDsi7sGAQCwgLe3NH++VLdu1vwFwcdHmjePo09xd/7+/vrll1/UsmVLHT161On++Ph4hYWFKSwsLEN9ixcvrnXr1qlEiRIZqpNTderUSWvWrFHXrl118+ZNU2sXK1ZMq1atUu3atSXZT9FyJE+ePKb2hmOFCxfW7Nmz1bNnz1TtP3XqVKpOcLmbevXqaeHChbp+/Xq6Hp8Tvf/++zp8+LDWr1/vdO+2bdtSdSrW3RQoUEALFy7U1q1b0/V4Z4KDg/XOO+/opZdeStX+iIgIRUREpKtXx44dNXXqVG3evDldj0+LiRMn6qefftKdO3cs7/V3bdu21ZAhQ/Thhx863ZuSkqK9e/dq79696eo1aNAgDRs27K4nMQEAAAAAAAAAAAAAMqebN6VFi9ydwlyLFkmTJ0sBAe5OAsAqnu4OAABAdlWtmjR+vLtTpM+ECfb8gCPFixfXxo0b1bhxY5f0CwkJ0aZNm1SlShWX9MuuWrVqpb1796pFixam1WzdurW2bdumevXq/fV3Rif8MLjkWj169NB4i78Z1ahRQ6tWrZK/v7+lfbKbXLly6fvvv1doaKilPb799ltVrVrVsh6SNGLECEtOc/q71q1b69tvv3XZqW2VKlXS559/Li83THFPmzZNHTt2tLTHI4884vTELwAAAAAAAAAAAABA5rNggRQb6+4U5oqNtV8XgOyLwSUAACw0YoTUp4+7U6RNnz7S8OHuToGsoHjx4lq/fr2GDh0qT0/rfqx87LHHtG3bNlWqVMmyHjlJ2bJltWHDBn355ZeqXLlyuutUqlRJn332mdatW6fy5cv/Y83oRKdChQqluyfSZ8yYMfrkk0+UO3du02vff//9+u2331SsWDHTa+cEBQoU0K+//qp27dqZXjtfvnxauXKlJbXvZtasWXrjjTfk4eFheu0nnnhCP//8s/z8/EyvbaRnz55atWqVSpUq5dK+fw61PfXUU6bX9vDw0JgxY/Tll1+6ZSgLAAAAAAAAAAAAAJB+Npv08cfuTmGNjz+2Xx+A7InBJQAALOTpKc2bJz34oLuTpE7nzva8Fs6gIJvx8fHRjBkztHnzZjVt2tTU2rVr19bq1au1cOFCTnIxmYeHh3r37q2IiAitWbNGAwYMUJkyZZw+rnTp0ho4cKBWrFihiIgIPfHEE3cdUjA6cal48eIZyo70eeaZZ7R582bTBgALFSqkOXPmaOXKlXx+ZpC/v7/WrFmjN954w7TThGrVqqXNmzerQ4cOptRLDU9PT7355pv68ccfTRtkK1OmjH744Qd99tlnypUrlyk106pDhw46cuSIJk+enKFhz7Ty8fHRrFmzNG/ePOXPn9+UmtWrV9fGjRs1fvx4SwbMAAAAAAAAAAAAAADW2rBBiohwdwprHDkibdzo7hQArGLOXVEAAMChXLmkb76RHn5YWrHC3Wkc69xZ+vpre14grZo0aaItW7Zow4YNmj17tpYtW6aYmJg01/Hx8VHHjh01cOBAPfDAA9xYbTEPDw916NDhr+GGK1euKCIiQleuXFF0dLS8vLzk7++vwoULKyQkRIGBgamqu2/fPodrrj65BP8nNDRUhw8f1ldffaV3331Xhw4dSnONSpUqafDgwXriiScUEBDwn3UfHx/Vr1/f4eMLFy6c5p45wZ9DP7169dLo0aO1cuVK2dLxNkIlSpTQiBEj9Pzzz7tt0Kdjx446deqU5syZoylTpuj06dNprlGnTh0NGTJEffr0UZ48ef6z7u/vb/g6M3uYLl++fHrppZf00ksv6fDhw9q4caN2796to0eP6vz587p27ZpiYmKUmJiolJQUU3v3799fDz30kD788ENNnz5d165dS9PjPTw81KxZMz3//PN66KGH7jocV7hwYcOPp4+PT5pzAwAAAAAAAAAAAADMt2yZuxNYa9kyqVUrd6cAYAUPW3ruhgIAqHr16ne94TckJEQHDx50Q6J/io+P14kTJwz3BAUFcSOiCyUmSgMGSIsWuTvJf/XpYz9piaElmCU2NlZbtmzRli1btG/fPp04cUIXLlxQTEyM4uLi5OPjIz8/PxUrVkxBQUGqXr26mjVrphYtWtx1GAJZx6lTp1ShQgWH6+PHj9eYMWNcmAiOHDx4UGFhYVq/fr1OnDih69ev6/r164qPj5efn5/y5cuncuXKqWrVqqpTp446dOig4OBgd8fOEY4ePap58+Zp1apV2rdvn+EQU5EiRdSuXTt16dJFDz30kHLnzu3CpMZSUlIUHh6usLAwbdiwQWfOnPnrdZacnCw/Pz/lz59fFSpUUNWqVdWgQQN16NBB5cqVc3f0TCkxMVE7duxQWFiYNm/erPPnz+v69eu6ceOGbDab8uXLp4CAAFWsWFFVq1ZVo0aN1KFDB9NOwEL2xu+PAAAAAAAAAAAAQObXvLm0ZYu7U1ineXNp0yZ3pwCsldnvP7cKg0sAkE6Z/RsHN55lTikp0tSp0uuvS/Hx7k4j+fhIEyZIw4dLnp7uTgMgO1i8eLF69+7tcH3p0qV66KGHXJgIyNqio6N1+PBhnTt3TtHR0bLZbPL391ehQoVUtWpVhlIAmILfHwEAAAAAAAAAAIDMLTlZyp9fio11dxLr+PlJUVGSl5e7kwDWyez3n1vF290BAADISTw9pZEjpU6dpP79pR073JelUSP7KUvVqrkvA4Ds58svvzRcb9y4sYuSANlDvnz5FBoaqtDQUHdHAQAAAAAAAAAAAAAAbnLkSPYeWpKkmBgpIkIKCXF3EgBm42wFAADcoFo1+5GtEyfaTz1yJR8fadIke3+GlgCY6eTJk/rxxx8drleuXFklSpRwYSIAAAAAAAAAAAAAAAAg69u1y90JXCOnXCeQ0zC4BACAm3h7S6NGSQcPSoMGSb6+1vbz9bX3OXjQfuoTx6kCMNvUqVOVkpLicP2BBx5wYRoAAAAAAAAAAAAAAAAgezhwwN0JXCOnXCeQ0zC4BACAm1WsKM2eLV24IM2YIQUHm1s/ONhe98IFe5+KFc2tDwCS9PPPP+vjjz823NO7d28XpQEAAAAAAAAAAAAAAACyj8hIdydwjZxynUBO4+3uAAAAwC4gQBo6VBoyRNq4UVq2TNq5U9q9W4qNTX0dPz+pbl0pNFTq0kVq2VLy8LAuNwCcP39e/fr1k81mc7inZs2aatiwoQtTAQAAAAAAAAAAAAAAANlDXJy7E7hGTrlOIKdhcAkAgEzGw0Nq1cr+R5KSk6WICGnXLvsxqJGR9h/O4+MlHx8pTx4pMFCqUUOqX1+qWlXy8nLvNQDIXHbs2KFvvvlGw4cPV8mSJU2tvXPnTnXt2lWXL1823Dd69GhT+wIAAAAAAAAAAAAAAAA5RUKCuxO4Rny8uxMAsAKDSwAAZHJeXlJIiP0PAKRHbGyspk6dqg8//FCPP/64nn32WdWpUyfDNT/55BONGTNGcU7e6qROnTp65JFHMtQPAAAAAAAAAAAAAAAAyKly53Z3Atfw8XF3AgBW8HR3AAAAAACuER8fr9mzZ6tu3bqqWrWqxo4dq507dyohlW/JYrPZtH//fk2YMEHlypXTSy+95HRoydPTUzNnzpQXR8EBAAAAAAAAAAAAAAAA6ZInj7sTuEZOuU4gp+HEJQAAACAH+uOPPzR+/HiNHz9euXLlUs2aNVWrVi0VKVJEgYGBKlCggOLj43Xjxg3duHFDZ86c0ZYtW3Tjxo009XnnnXfUqFEji64CAAAAAAAAAAAAAAAAyP4CA92dwDVyynUCOQ2DSwAAAEAOl5iYqN27d2v37t2m1h00aJBGjRplak0AAAAAAAAAAAAAAAAgp6lRw90JXCOnXCeQ03i6OwAAAACA7OeFF17QrFmz3B0DAAAAAAAAAAAAAAAAyPLq13d3AtfIKdcJ5DScuAQAAADANAEBAZo5c6YeeeQRd0cBAAAAAAAAAAAAAAAAsoXgYMnXV4qNdXcS6/j5SVWrujsFACtw4hIAAACQzZUpU0bNmjWTh4eHZT1y586tZ555RkePHmVoCQAAAAAAAAAAAAAAADCRl5dUt667U1irbl37dQLIfjhxCQAAAMjmKlasqM2bN+vixYtasmSJfvrpJ23btk03btzIcO1atWrp4Ycf1pNPPqlixYqZkBYAAAAAAAAAAAAAAADAv4WGSlu2uDuFdUJD3Z0AgFUYXAIAAAByiBIlSmjIkCEaMmSIbDabIiIitGPHDh09elQnT57UqVOndOnSJcXExCg2NlaxsbGy2WzKmzev/Pz8VLx4cZUpU0bBwcGqV6+emjVrprJly7r7sgAAAAAAAAAAAAAAAIBsr0sXafp0d6ewTpcu7k4AwCoMLgEAAAA5kIeHh4KDgxUcHOzuKAAAAAAAAAAAAAAAAACcaNVKqlpViohwdxLzBQdLLVu6OwUAq3i6OwAAAAAAAAAAAAAAAAAAAAAAAHDMw0MaPNjdKawxeLD9+gBkTwwuAQAAAAAAAAAAAAAAAAAAAACQyfXrJ/n6ujuFuXx97dcFIPticAkAAAAAAAAAAAAAAAAAAAAAgEyuQAGpTx93pzBXnz5SQIC7UwCwEoNLAAAAAAAAAAAAAAAAAAAAAABkAaNHSz4+7k5hDh8f+/UAyN4YXAIAAAAAAAAAAAAAAAAAAAAAIAuoWFEaN87dKcwxbpz9egBkbwwuAQAAAAAAAAAAAAAAAAAAAACQRQwfLjVs6O4UGdOokTRihLtTAHAFBpcAAAAAAAAAAAAAAAAAAAAAAMgivL2l+fMlHx93J0kfHx9p3jzJy8vdSQC4AoNLAAAAAAAAAAAAAAAAAAAAAABkIdWqSePHuztF+kyYYM8PIGdgcAkAAAAAAAAAAAAAAAAAAAAAgCxmxAipTx93p0ibPn2k4cPdnQKAKzG4BAAAAAAAAAAAAAAAAAAAAABAFuPpKc2bJz34oLuTpE7nzva8nkwxADkKn/IAAAAAAAAAAAAAAAAAAAAAAGRBuXJJ33yT+YeXOneWvv7anhdAzsLgEgAAAAAAAAAAAAAAAAAAAAAAWVSePNKSJVKfPu5Ocnd9+kjffWfPCSDnYXAJAAAAAAAAAAAAAAAAAAAAAIAsLFcuacECadIkycfH3WnsfHykyZPtuThpCci5vN0dAAAAAAAAAAAAAAAAAAAAAAAAZIynpzRypNSpk9S/v7Rjh/uyNGokzZsnVavmvgyulJwsHTki7dolHTggRUZKcXFSQoKUO7f9tKnAQKlGDalBA6lqVcnLy92pAddgcAkAAAAAAAAAAAAAAAAAAAAAgGyiWjVpyxZp2jRp7FgpPt51vX18pPHjpeHDs/dgjs0mbdggLVsm7dwphYdLsbGpf7yfn1SnjhQaKnXpIrVqJXl4WBYXcCtPdwcAAAAAAAAAAAAAAAAAAAAAAADm8faWRo2SDh6UBg2SfH2t7efra+9z8KD91KfsOrR086Y0Y4YUEiK1aSNNn24fEkvL0JIkxcTYHzd9ur1OSIi97s2b5mcG3I3BJQAAAAAAAAAAAAAAAAAAAAAAsqGKFaXZs6ULF+yDMcHB5tYPDrbXvXDB3qdiRXPrZxbHj0tPPSWVKiW98IJ05Ii59Y8csdctVcre5/hxc+sD7sTgEgAAAAAAAAAAAAAAAAAAAAAA2VhAgDR0qHTokLR+vTRsmNS8edpPYvLzsz9u2DB7nUOH7HUDAqxI7X5JSdLEiVL16tKnn6b9ZKW0io2196leXZo0SUpOtrYf4Are7g4AAAAAAAAAAAAAAAAAAAAAAACs5+EhtWpl/yPZB2MiIqRdu6QDB6TISCkuToqPl3x8pDx5pMBAqUYNqX59qWpVycvLvdfgKocPS/37Szt2pL/GffpJRXVFC/R4mh4XHy+NHi0tXSrNmydVq5b+DIC7MbgEAAAAAAAAAAAAAAAAAAAAAEAmkJwsHTny30GihAQpd+5/DhI1aJDxQSIvLykkxP4Hdikp0tSp0uuv2weI0sNP0Zqil/SMZilWebVNjfWHqqa5zvbtUt260vjx0ogRkqdn+vIA7sTgEgAAAAAAAAAAAAAAAAAAAAAAbmCzSRs2SMuWSTt3SuHhUmxs6h/v5yfVqSOFhkpduthPUvLwsCxutpeYKA0YIC1alP4ajbRNC9VXlXVMkuSrO1qovmqmLUpSrjTXi4+XRo2S9u61n76UK+0lALdi3g4AAAAAAAAAAAAAAAAAAAAAABe6eVOaMcN+0lGbNtL06dKWLWkbWpKkmBj746ZPt9cJCbHXvXnT/MzZXVyc1L17+oeWcilB4zVGW9Tsr6GlPzXUTr2qtzOUb9Eie764uAyVAVyOwSUAAAAAAAAAAAAAAAAAAAAAAFzg+HHpqaekUqWkF16Qjhwxt/6RI/a6pUrZ+xw/bm797CoxUXr4YWnFivQ9vpoOaauaaIz+Jy+l3HXP6xqvBtqZgZT2fL162fMCWQWDSwAAAAAAAAAAAAAAAAAAAAAAWCgpSZo4UapeXfr007SfrJRWsbH2PtWrS5MmScnJ1vbLylJSpAED0je05KEUvaDp2q16qq/dhnu9layF6qu8ytiTv3y5PW/K3eejgEyHwSUAAAAAAAAAAAAAAAAAAAAAACxy+LDUrJn08stSfLxre8fHS6NH2/sfPuza3lnF1KnSokVpf1xpndVatdd0DVMepe6JDVaEJmp02pv9y6JF0rRpGS4DuASDSwAAAAAAAAAAAAAAAAAAAAAAmCwlRZo8WapbV9qxw71Ztm+355g8mZN6/u7wYen119P6KJv66AvtV0211bo09xyqD9VeP6f5cf82ZgzDaMgaGFwCAAAAAAAAAAAAAAAAAAAAAMBEiYlSv37SqFGuP2XJkfh4e55+/ez5crqkJKl//7Q9PwV1XV+rl75QXxVQVLp7z9MABepGuh8v2XMPGCAlJ2eoDGA5BpcAAAAAAAAAAAAAAAAAAAAAADBJXJzUvbu0aJG7k9zdokX2fHFx7k7iXtOmpe0krHu1WvtVUw/r2wz3LqUL+kjPZbjO9u3S1KkZLgNYisElAAAAAAAAAAAAAAAAAAAAAABMkJgoPfywtGKFu5MYW7FC6tUr5568dPy4NHZs6vb6KkYfabBWq6NK6qJpGTpppcrpVIbrjB1rvx4gs2JwCQAAAAAAAAAAAAAAAAAAAACADEpJkQYMyPxDS39avtyeNyXF3Ulcb+JEKT7e+b6G2q5w1dVgfWJq/41qoVrap9Mqn+Fa8fH26wEyKwaXAAAAAAAAAAAAAAAAAAAAAADIoKlTpUWL3J0ibRYtkqZNc3cK17p50/nz5K1EvaWx2qJmqqKjpvWOV26N1CS1UZhOqYJpdRctkqKiTCsHmIrBJQAAAAAAAAAAAAAAAAAAAAAAMuDwYen1192dIn3GjLHnzykWLJBiYx2vB+uwtqqJxmq8vJVsWt99qqlQ7dQUjVSKvEyrK9mvZ8ECU0sCpmFwCQAAAAAAAAAAAAAAAAAAAACAdEpKkvr3l+Lj3Z0kfeLjpQEDpGTzZnQyLZtN+vjju695KEVDNUO7VU8NtMu0niny0CSNVKh2ar9qmVb33z7+2H59QGbD4BIAAAAAAAAAAAAAAAAAAAAAAOk0bZq0Y4e7U2TM9u3S1KnuTmG9DRukiIj//n0pndMa3asZekF5FWdav5Mqr9Zar9GapAT5mFb3bo4ckTZutLQFkC4MLgEAAAAAAAAAAAAAAAAAAAAAkA7Hj0tjx7o7hTnGjrVfT3a2bNl//+4RfaX9qqn2+sXUXnM1QLW1V5vU0tS6Ru52fYC7MbgEAAAAAAAAAAAAAAAAAAAAAEA6TJwoxce7O4U54uPt15Od7dz5f/87UDf0lR7RV3pUgbppWo8rKqIu+kEDNVe3ld+0uqnx9+sDMgsGlwAAAAAAAAAAAAAAAAAAAAAASKObN6VFi9ydwlyLFklRUe5OYY3kZCk83P6/O2iN9qumHtHXpvZYrgdVU/u1XF1MrZta4eH26wQyEwaXAAAAAAAAAAAAAAAAAAAAAABIowULpNhYd6cwV2ys/bqyoyNHJFtsrD7QEK3RfSqlC6bVvq18Gqg56qJluqJiptVNq5gYKSLCbe2Bu2JwCQAAAAAAAAAAAAAAAAAAAACANLDZpI8/dncKa3z8sf36sptT3+xQuOpqiD4yte5mNVNt7dVcDZTkYWrt9Ni1y90JgH9icAkAAAAAAAAAAAAAAAAAAAAAgDTYsCH7nmxz5Ii0caO7U5goMVF6803dN76pquoP08omKJdG61210gadVJBpdTPqwAF3JwD+ydvdAQAAAAAAAAAAAAAAAAAAAAAAyEqWLXN3AmstWya1auXuFCaIiJAee0z6/Xd5mVh2v2qorxZqr+qYWNUckZHuTgD8EycuAQAAAABylPnz58vDw8Phn1OnTrk7IrKB/v37O3yNlS9fPkO1eQ0DAAAAAAAAAAAAgPvt3OnuBNbK8teXkiJ9+KFUt670++/mlZWHpmiEQrUzUw4tSVJcnLsTAP/EiUsAAAAAAAAAAAAAAAAAAAAAAKRScrIUHu7uFNYKD7dfp5eZxxS5yvnz0oAB0tq1ppY9rbLqpwXaqMx9FFV8vLsTAP/EiUsAAAAAAAAAAAAAAAAAAAAAAKTSkSNSbKy7U1grJkaKiHB3inRYvFiqWdP0oaX5ely1tC/TDy1Jko+PuxMA/8TgEgAAAAAAAAAAAAAAAAAAAAAAqbRrl7sTuEaWus7ISKl3b/ufyEjTyl5VYT2kpRqg+bqlANPqWilPHncnAP7J290BAAAAAAAAAAAAAAAAAAAAAADIKg4ccHcC18gy17l2rTRggHT+vKllV+oBPak5uqzipta1WmCguxMA/8SJSwAAAAAAAAAAAAAAAAAAAAAApJKJB/pkapn+OmNjpeeflzp0MHVoKVp+GqTZelArstzQkiTVqOHuBMA/ceISAAAAAAAAAAAAAAAAAAAAAACpFBfn7gSukamvc+dOqW9fKSLC1LJb1FT9tEAnVNHUuq5Uv767EwD/xIlLAAAAAAAAAAAAAAAAAAAAAACkUkKCuxO4Rny8uxPcRVKSNG6c1KSJqUNLifLWK3pbLbUxSw8t+flJVau6OwXwT5y4BAAAAAAAAAAAAAAAAAAAAABAKuXO7e4EruHj4+4E//LHH/ZTlnbsMLXsQYXoMX2hPapral13qFtX8vJydwrgnzhxCQAAAAAAAAAAAAAAAAAAAACAVMqTx90JXCPTXKfNJn38sVSnjulDS9M0TPW1K1sMLUlSaKi7EwD/xeASAAAAACBH6d+/v2w2m8M/5cuXd3dEwBCvYQAAAAAAAAAAAABwr8BAdydwjUxxnRcuSB07Ss89J925Y1rZMyqje/SrRmia4pVZJrQyrksXdycA/ovBJQAAAAAAAAAAAAAAAAAAAAAAUqlGDXcncA23X+c339hDrFljatkf8vdVLe1TmO4xta67BQdLLVu6OwXwXwwuAQAAAAAAAAAAAAAAAAAAAACQSvXruzuBa7jtOiMjpT59pF697P/bLAULSt9+qzPjFyhKBcyrm0kMHix5eLg7BfBfDC4BAAAAAAAAAAAAAAAAAAAAAJBKwcGSr6+7U1jLz0+qWtUNjX/5RapZU/ryS3PrduwoHTgg9eihfv2y3/Pn6yv16+fuFMDdMbgEAAAAAAAAAAAAAAAAAAAAAEAqeXlJdeu6O4W16ta1X6fL3LkjvfCC1L69dP68eXV9faWZM6Uff5RKlJAkFShgP9ApO+nTRwoIcHcK4O4YXAIAAAAAAAAAAAAAAAAAAAAAIA1CQ92dwFouvb5du6R69aQZM8yt27ixtGeP9PTTkofHP5ZGj5Z8fMxt5y4+PvbrATIrb3cHAAAAAOBcTEyMIiIidO7cOd2+fVvJycny9/dXYGCgqlSpopIlS7o7ItwkOjpax48fV1RUlG7duqVbt24pMTFRefPmla+vr3x9fVWoUCGVK1dOBQoUcGtWm82m06dP68qVK3/lvX37tnLlyvVX1nz58qlUqVIqXbq0vL35lRUAAAAAAAAAAAAAAGROXbpI06e7O4V1unRxQZOkJOmdd6Rx4+z/2yze3tKbb9qneRzcf1Kxor1tdhj4GTfOfj1AZsVdYAAAAHCJpKQkbd++Xb/++qsOHjyoP/74Q5cuXVJ0dLTu3LkjX19fFS5cWBUrVtS7776r+vXrZ7jnpUuXtHnzZm3dulV//PGHTpw4oatXryomJkZxcXHKmzev/Pz8VLp0aVWsWFH169dXixYt1KhRI3m59Jzjuzt06JAWLFigNWvWaO/evbLZbA73FihQQPfcc4+6dOmi7t27y8/P7677IiMjtWvXLod16tevr8DAwAxnT4/4+Hht2rRJYWFhOnz4sP744w9du3ZN0dHRiouLU758+VS0aFFVrFhRs2bNUtmyZTPc89SpU9qyZYu2bdumY8eO6eTJk7p+/bpiYmKUkJCgvHnzyt/fX2XLllXFihUVGhqqli1bql69eiZccfpcuXJFixcv1pYtW7Rnzx4dPXrU8LXxdwEBASpfvrxq1aqlJk2aqHHjxqpVq5Zlr3ebzab169dr2bJlCg8P1549e3Tr1q1UPdbLy0ulS5dWpUqV1LBhw7/yFilSxJKs7hAbG6vffvtNmzdv1v79+3XixAldvHhRMTExunPnjnx8fOTn56dixYopKChI1atXV/PmzdW8eXPlz5/f3fGdstls2rlzp1atWqW9e/fq8OHDun79uqKiouTh4SE/Pz+VKFFCFStWVMOGDXXPPfeoSZMm8vjXOxwha8kOz3tSUpJ2796tLVu2KDw8XCdOnNCZM2d0+/ZtxcTEyMPDQ76+vipYsKAqVKig4OBgNWvWTG3atFHx4sXdHR8AAAAAAAAAAACAi7RqJVWtKkVEuDuJ+YKDpZYtLW5y9KjUt6+0fbu5datVkxYulFJx/9nw4dKSJdKOHeZGcKVGjaQRI9ydAjDmYUvtHW4AsrQTJ07o119/1b59+xQREaGTJ08qKipK0dHRSkxMlJ+fn/z8/BQYGKgKFSooKChIVapUUWhoqOrUqaPcuXO7+xIynerVq+vQoUP/+fuQkBAdPHjQDYn+KT4+XidOnDDcExQUJJ/scs4lAMvNnz9fAwYMcLh+8uRJlS9f/j9/f/z4cX300UeaP3++IiMjU9Xr+++/V9euXdOV8/bt2/r888/11VdfaevWrake6Pi74sWLq1evXnrhhRdUoUKFdOXIiJ07d+qVV17Rr7/+mq7HFypUSEOGDNGoUaPk6+v7j7X169erTZs2Dh8bFham1q1bp6vvm2++qbfeesvhuqPnYu/evfrggw/01VdfKTY2NlW9wsPDVadOnfTE1NWrV/XZZ59p8eLF2rt3b7pqlC9fXo899piGDBmiYsWKpatGWv3888/64IMPtHr1aiWZ+A4zAQEB6tKlix5++GG1b9/elJ/7IiMj9d5772nBggU6ffq0CSn/T/369fXwww+rZ8+e6f78TO/XM7OsX79en376qZYtW6aYmJg0P97Hx0f333+/nnjiCT3wwAOWDXyk9+N069YtzZw5Ux988IHOnTuXpp5ly5bV888/r2efffY/X7+ymv79++vzzz+/61q5cuV06tSpdNe28jWck5/3bdu2ae7cuVq6dKmuX7+e5sd7enqqVatWGjhwoB555JFMMQSdWvz+CAAAAAAAAAAAAKTPjBnSCy+4O4X5ZsyQhg61qLjNJs2cKb30kpTKe4VS7cUXpbfflvLmTfVDDh+W6taV4uPNjeIKPj5SeLh9VgtZQ2a//9wqnu4OAGQGp06d0nfffaeXX35Z7dq1U2BgoDw8PAz/ZAWnT5/WG2+8oUqVKqlixYp66qmn9OGHH2rt2rU6duyYrl69qjt37igpKUlRUVG6cOGCDh48qJUrV2rGjBkaMmSIGjVqpPz586tp06Z666239Pvvv6frBnAAQM5z+/ZtDRs2TFWrVtV7772X6qGl9IqJidHYsWNVtmxZDR06VL/99lu6v2ddunRJ77//vqpUqaKBAwfq2rVrJqe9u7i4uL++/6Z3aEmSrl+/rrfeeku1atXSpk2bTExorsuXL6tv376qU6eOPvvss1QPLaXXtWvX9Pzzz6tcuXJ65ZVX0j20JNl/fpwwYYLKly+vkSNHpmv4JLXOnTunHj166N5779XKlStNHVqSpKioKC1YsECdOnVSv379Mlxv4cKFCg4O1vjx400fWpKkXbt2afTo0QoKCtLhw4dNr2+lrVu3/nUqy5dffpnu1018fLy+//57Pfjgg6pbt67WrFljctL0W7hwoYKCgjR69Og0D69I0pkzZ/TSSy8pJCREa9eutSAhrJDVn/dNmzapdevWatKkiT799NN0DS1JUkpKisLCwvTYY4+patWq+uGHH8wNCgAAAAAAAAAAACDT6ddPyuLvy/kfvr7267LExYvSAw9IgwebO7RUurT0yy/Se++laWhJsg/9jB9vXhRXmjCBoSVkDQwuIcc5d+6cfvjhB40ZM0b33XefihQpogoVKqhnz56aOHGifv31V928edPdMTPk2LFj6tWrl4KCgjRu3DgdP348Q/Xi4+O1detWvfnmmwoNDVWJEiUUHR1tUloAQHZ08OBB1a5dW9OnT1dycrLl/VauXKlq1app/Pjxpn4fT0pK0ty5cxUcHKzly5ebVvduLly4oMaNG+ujjz4ybUj4+PHjatu2rRYsWGBKPTNt3LhR1atX1xdffOGSfvPmzVPVqlX1wQcf6M6dO6bVjYuL05QpUxQSEqLffvvNtLp/WrVqlUJCQrRkyRLTa99NRoaiYmJi1KVLF/Xr109XrlwxMZVjrvj6Yob4+HgNHTpUzZs3N/11snfvXt1333167LHHdOvWLVNrp0VsbKx69uypfv36pXvo4+9Onz6t++67T1OnTjUhHayS1Z/3yMhIDRgwQC1bttSGDRtMrX38+HE99NBD6tGjh1s/NwEAAAAAAAAAAABYq0ABqU8fd6cwV58+UkCABYW//VaqUUP66Sdz6z72mLR/v9S2bbpLjBiR9Z7HPn2k4cPdnQJIHW93BwCsdPnyZe3cuVO///77X38uX77s7liWiY+P15gxY/T+++8rMTHRsj6XL182/Z3+AQDZx8aNG/Xggw+65Cbd5ORkvfLKK5o8ebKlfa5fv66uXbtq/Pjxeu2110yvf+rUKbVu3dqS02kSExP1+OOPKzk5WQMGDDC9fnp88803euyxxyz9eeVPd+7c0VNPPWX5gNSZM2fUpk0bzZo1S/379zel5ooVK9StW7cs8XNXfHy87r//fm3cuNHdUTKdixcv6qGHHtL27dst7bNo0SLt3r1by5YtU+XKlS3t9W/Xr1/Xvffeq127dplaNyUlRS+99JI8PDw0nH9py3Sy+vO+d+9edevWTSdOnLCshyQtWbJEBw4c0KpVqxQUFGRpLwAAAAAAAAAAAADuMXq0tGCBFB/v7iQZ5+Njvx5T3bwpDR0qmX3/TsGC0syZUs+eGS7l6SnNmyfduiWtWGFCNot17mzP68kxNsgiGFxCtnbvvfdq79697o7hEgcPHlTv3r21f/9+d0cBAORg+/fvV+fOnV0ytJSQkKBevXrphx9+sLyXJNlsNo0ZM0Z37tzRhAkTTKt748YN3XfffZYMLf3d008/nSlumP7ll1/Ut29flwwtRUVF6b777tO2bdss7yXZX5NPPPGEEhMTNWjQoAzVOnr0qHr37p0lhpYkaejQoQwt3cWFCxfUqlUrHTt2zCX9Dh8+rJYtW2r9+vWqWrWqS3pGR0fr/vvvN3145e9eeukl1apVS+3atbOsB9Imqz/vYWFhevDBBxUTE2N67buJiIhQ69attX79+kzxvRgAAAAAAAAAAACAuSpWlMaNs2Dgxw3GjbNfj2nWrZP695fOnjWxqKR775XmzpVKljStZK5c0jffSA8/nLmHlzp3lr7+2p4XyCoYXAKygbCwMHXt2tUlN4kDAOBIdHS0unbtqqioKId7qlatqsaNGysoKEiBgYHKlSuXoqOjdfbsWe3du1e//fZbqgZakpKS1L17d61cuTLV+cqXL69mzZqpRIkSKlSokAICAnTz5k1duXJFR48e1fr161N1A/P//vc/lSxZUoMHD051b0dsNpseffRRRUREpGp/06ZN1bVrVzVr1kyVKlVSgQIFZLPZFBUVpaNHj2rLli36/vvv7zqok5iYqL59++qjjz7KcO70unDhgh5++GElJCTcdd3T01M1a9ZUgwYNFBQUpICAAHl6eur27ds6efKkwsPDtXPnTqWkpDjtFR0drfbt22vnzp2pzhccHKzGjRurWLFiKliwoPz9/XX9+nVduXJFhw4d0qZNmxxm/5PNZtPTTz+tkiVL6oEHHkh1738bNGhQql6PJUuW1H333admzZqpcuXKKl++vPz9/eXr6/vXayMqKkqRkZE6cuSI9u3bp3379mnHjh2Gn6tpsX79en366adO93l7e6tJkya69957VaNGDVWuXFmFCxeWn5+f8uTJo+joaN26dUtRUVE6f/78X1n37NmjAwcOmJLVlaKiotSuXbtUDy3lypVLTZo0Ud26dVW2bFn5+fnpzp07unDhgvbt26eNGzfqzp07TutcunRJ99xzj3bs2KFSpUpl9DIM/fk1bMeOHQ73lC1bVi1btlTx4sVVtGhR+fr66urVq7p48aLCwsJ09OjRVPXp37+/IiIi5OfnZ+YlIB2y+vMeFhamBx54IFWfT5KUJ08eNWrUSDVq1FChQoVUsGBBeXp66vLly7p8+bI2bdqUqu/jZ8+e1X333aedO3cqICAgo5cBAAAAAAAAAAAAIJMZPlxaskQy+E+pmV6jRtKIESYVu3NHevVVafp0kwr+f76+0pQp0jPPSB4e5taWlCeP/XkcMEBatMj08hnWp4/9pCWGlpDVMLgEZHE//PCDevXq5fQm2j/5+PgoNDRUVatW/evG1jx58igqKko3b97U9evXdeDAAe3bt0/R0dEWpwcAZCejRo3SiRMn/vP3/v7+GjJkiAYOHKiKTt6O4+bNm5o7d64KFSpkuO/FF19M1dBS2bJl9eKLL6pnz54qXbq04d74+Hj9+uuvGjdunLZv3+60f7169dS4cWOnGYy8//77WrNmjdN9zZs313vvvacGDRrcdb1o0aIqWrSomjVrplGjRmnnzp0aNmyYtmzZ8o99Z8+e1ZgxYzKUOSOefPJJRUZG/ufvixYtqmHDhqlfv34q6eRdUC5fvqyPPvpIvr6+DvekpKSoT58+qRpaqlatmkaMGKHOnTurSJEihntjYmK0cuVKvfXWWzp8+LDDfTabTX369NHu3bvTdbLGunXrtGHDBsM9ISEhGjdunLp16yYPg3+E+fO1IUkNGzb86+8TExO1ceNGLV++XD/88IPOnDmT5px/Gjt2rOG6l5eXBg8erFGjRhl+HgYEBCggIEBlypRRjRo1dO+99/61du7cOS1fvlwrVqzQL7/8kulPorLZbHr88ccNXyd/KlasmF5++WX1799fBQoUcLjvzp07+uqrr/S///3vrl9r/+7ChQvq2bOnNmzYoFwW/kvVtGnTtOIubzGUN29eDR06VP369VP16tUNaxw6dEivvfaa09Pzzp8/r0mTJumtt97KSGSYICs/70ePHlX37t2dDi15enqqW7dueu6559S0aVPlzp3bcP+pU6c0Z84cTZ8+3XDo9OjRo+rbt6+WL1+ervwAAAAAAAAAAAAAMi9vb2n+fKluXSk+3t1p0s7Hxz4Q4+VlQrHdu6W+faVDh0wo9jcNG0oLF0pVqphb919y5ZIWLJBq15Zefz1zPJ8+PtKECfYBOU9Pd6cB0sEGZGO1a9e2SbLkT2awYcMGm4+Pj9Os3t7etocfftj2448/2u7cuZOq2ikpKbY//vjD9sEHH9jatWtny5Ur1z9qRkZGWntxWUBISMhdP94hISHujmaz2Wy2uLg426FDhwz/xMXFuTsmgCxk3rx5af5+2blzZ9ulS5dMzbFgwQKnff38/GyzZ8+2JSYmpqvH119/bfP39zfsUa1aNVt8fHy6r+PChQu2fPnyOb2WN954w5acnJzm+snJybaxY8em+TkLCwtL9zW98cYbae735JNP2m7dupXunnczbtw4p32LFCliW7JkiS0lJSXN9ZOSkmwffvjhf34++veftm3bpit/7969Det2797dFhMTk67ad5OcnGxbsmSJrVmzZrYePXqk6bERERGGWf39/W1r1641LavNZrOdOXPG9tJLL9kKFChg279/f7pqOPt6dvLkyQxlnDVrVqpe/48//niaX/9xcXG2ESNGpKr+66+/nqHrSM/X/R49etjOnj2b5l5ff/2108+pwMBAU1/7Vnv88ccdXku5cuUyVNvK13B2fd7j4uIc/g739z/t27e3HTt2LF09Ll68aOvSpYvTHp9//nmGr8ds/P4IAAAAAAAAAAAAmGPSJJtNynp/Jk824eITE222CRNsNm9vc8N5e9ts48bZ67vYoUM2W8OG7n1uGjWy50D2kNnvP7cK83bAv5QvX14dOnRwdwyn/vjjD3Xt2lXxTsZ4u3btqkOHDunrr7/W/fffrzx58qSqvoeHhypXrqwhQ4Zo7dq1unr1qj7++GOFhISYER8AkAOMHDlSP/zwg4oVK2ZazYsXL+qFF14w3FOzZk3t2rVLgwYNkrd3+g4Yffjhh7VlyxaVKVPG4Z7Dhw9r2rRp6aovSWPGjHF6uuF7772nN998U57peJsMT09PvfXWW5o6dWp6I1rugw8+0Keffip/f3/Tau7fv1/jx4833NO6dWvt3bvX6WlFjnh5eem5557TmjVrDE/I+fXXX7V48eI01U5JSdHq1asdrtesWVNffPGF4YlTafXnySKbN2/WRx99lKbHrlq1ynB95syZateuXUbi/UeZMmU0efJknT17Nl0nWlntypUrevnll53ue/vttzV//vw0v/59fHw0ZcoUzZ071+nXhokTJ+rIkSNpqp8Ro0eP1jfffOP0hLu7efjhh/XVV18Z7omMjNTXX3+d3niwSFZ53t944w0dMng3L09PT02YMEGrV692ekKkI8WLF9fSpUs1bNgww30jRozQ7du309UDAAAAAAAAAAAAQOY2YoTUp4+7U6RNnz72k3wy5NgxqWVLacwYKSnJlFySpOBgaetW+9FH6bwXLCOqVZO2bJEmTrSfeuRKPj7SpEn2/tWqubY3YDYGl5CjlSlTRg899NBfNyddu3ZNJ0+e1KxZs9wdzVBCQoIeeeQRRUZGOtyTJ08eff755/r+++9VuXLlDPcMCAjQs88+q4MHD+qXX35R3rx5M1wTAJB9DRw4UJMmTUrXUIiRkSNHGn7/Cw4O1vr161W1atUM96pZs6Z+/vln+fn5OdwzZcqUdN14fO7cOS1cuNBwzxNPPKEXX3wxzbX/bfjw4RowYECG65ht/PjxGjJkiOl1Bw8erMTERIfrLVq00OrVq1WiRIkM92rTpo2+//57eRmckf3WW28pJSUl1TWPHTtm+BofM2ZMqgfR06No0aJp2r9jxw6HayEhIXr00UczGsmhfPnymTrAZZZ3333X8DmU7IMer7zySob6DBgwwOnwZEJCgsaOHZuhPqn1+uuv6913383Q1/3u3burj5N/vf3222/TXR/myyrPe0REhKZMmWK454MPPtBrr72WrmHhv/P09NS0adM0cOBAh3uuXbumDz74IEN9AAAAAAAAAAAAAGROnp7SvHnSgw+6O0nqdO5sz5vu/1Rqs0mzZkl16tgHjMz0/PPS7t1Sgwbm1k0jb29p1Cjp4EFp0CDJ6ttVfH3tfQ4elEaOlAxuTQKyDNePHQJuUrJkSTVo0EANGjRQ/fr1FRoaqiJFirg7Vrq89tprCg8Pd7ju7++vH3/8US1atLCkf9u2bS2pi2zmxRelPXvcnQLIuDp1pOnT3Z0iSylbtqymW/AxO3jwoOGpDEWLFtXq1atVsGBB03oGBwdr9uzZDm+ovn79uubPn6+hQ4emqe7HH39sOFxTuHBhpzdYp8WUKVO0fPlyXb9+3bSaGREaGqpXX33V9Lo//fSTNm/e7HC9atWqWrZsmXxMfPuT1q1ba9y4cXrttdfuun7kyBH9+OOPejCV/xp14sQJh2seHh6pruMqRnkzW1ZXuHbtmtM3QQgNDdXbb79tSr8XXnhBv/76q1asWOFwz5IlS3TkyBEFBweb0vNuWrRooTfeeMOUWlOmTNG3336rhISEu66HhYUpISFBuXPnNqUf0i8rPe9jx45VcnKyw/VRo0Zp8ODB6artyAcffKCdO3dq3759d12fMWOGRo0ale7TIQEAAAAAAAAAAABkXrlySd98Iz38sGTwn/TdrnNn6euv7XnT5dIlaeBAadUqU3OpVClp/nypXTtz62ZQxYrS7NnS5MnSggXSxx9LR46YVz84WBo8WOrXTwoIMK8ukBlwdwSytaFDh6pYsWJq0KCBihcv7u44pti3b5/ee+89h+ve3t767rvvLBtaAlJtzx5pwwZ3pwDgBjNnzlS+fPlMrztx4kTDk2smTZqkcuXKmd730Ucf1SeffOJwIOazzz5L0+CSzWbTokWLDPe88847CgwMTFNOIwULFtQ777yjp556yrSa6eXt7a05c+Zk+ESLu3nnnXcM12fNmmXqx/VPo0aN0qeffqpTp07ddf2zzz5L9RCP0Uk9hQsXznSnXhrlLVu2rAuTZA6ff/65YmNjHa57enrqo48+MvX1P336dK1du1ZxcXF3XU9JSdGsWbMMf4fIiNy5c2vhwoWGJ4+lRfHixdWxY0ctW7bsrutxcXHatWuXmjRpYko/pE9Wet6PHTtmeGJTlSpVNGHChDTXdSZv3ryaNm2a2jn4h/TLly9r5cqV6tq1q+m9AQAAAAAAAAAAALhfnjzSkiXSgAGSk1uF3KJPH/tJS+keWlqyRHr6acnsN1J+9FHpww8lC+7xMUtAgDR0qDRkiLRxo7RsmbRzp/1wKIPbRv7Dz0+qW1cKDZW6dJFatpQ8PKzLDbiT+XcLApnIwIED1alTp2wztCRJL774ouE7Rb/11lvq0KGDCxMBAPB/6tWrp44dO5peNzIy0vCm4wYNGqhfv36m9/3Tyy+/7HBt7969ioiISHWt7du368yZMw7XixYtqv79+6clXqoMGDAgU5w22blzZ9WqVcv0ukeOHNGmTZscrnfr1k2tWrUyva9kH8Z66aWXHK6vWrVK0dHRGe6TlJSU4RqulNXymmHhwoWG648//rhCQ0NN7RkUFGT4+pOkL7/80rLno3fv3qYPjfbu3dtwfe/evab2Q9plped9zpw5stlsDtenTJmiXOn+l3hjbdu2Nfyc//rrry3pCwAAAAAAAAAAACBzyJXLfjLPpEmSj4+709j5+PzfiUHp+k+lUVHS449LPXqYO7QUGCgtXmyf8srEQ0t/5+EhtWolTZsmbdok3bolHTxo/9iOGiUNGiT17Ws/eatvX/v/P2qUff3gQfuHctMm++NbtWJoCdkbg0tAFrJ69WqFhYU5XK9Xr55Gjx7twkQAAPzTgAEDLKn7zTffODxNRJJeeukleVj4m9sDDzygUqVKOVz/+eefU11r7dq1huuPPPKIvL3NPxjV29tbvXr1Mr1uWln1Gvn8888N10eNGmVJ3z/179/f4Y3viYmJhj/D/V2hQoUcrkVGRhoOvbmDUd49e/a4LkgmcPLkSaeDFc8995wlvZ999lnDk2+uXLmiLVu2WNJ72LBhptds3Lix4foRM89ZR7pklefdZrMZDhRWq1Yt1SfipdegQYMcrv3yyy+Gp0kCAAAAAAAAAAAAyPo8PaWRI6XwcKlhQ/dmadTInuOll+y50mz9eqlWLfvkjZk6dJD275cywb1NGeHlJYWE2IeUJk6UZs+2f6i+/tr+f2fPtv993772fQa3egDZDoNLQBYyefJkw/WJEyca3rAIAICVvL299eijj1pSe+XKlQ7X/Pz8LL/pWJLhaT0bNmxIdZ3169cbrj/22GOprpVWffv2tax2ahQtWtSSE7kk49dIhQoV1KhRI0v6/snPz8/wVI3UvkacnYr14YcfpimX1YzyLlmyRJcuXXJhGvdyNpQYEhKi+vXrW9K7ZMmSatu2reGeX375xfS+QUFBql27tul1y5Urp4CAAIfrZ8+eNb0nUi8rPe+7d+/WhQsXHK67YqC3devWDteuXbumQ4cOWZ4BAAAAAAAAAAAAgPtVqyZt2WIfXHH16Us+PvZTn7ZssedIs7g4acQI6Z57JDPfdDdvXunDD6XVqyWDN5UGkPUxuARkEXv27NG6descrjds2FDt2rVzYSIAAP6pRo0aKliwoOl1ExISDE+r6dixo3x9fU3v+28tW7Z0uBYeHp7qOkan0OTLl8+ywQZJatCggUs+Vo40bdrUkiHr8+fP68CBAw7Xu3fvbnrPuzHjNVKjRg3D5+i9997T0qVL05zNKg0N3gro1q1beuSRRxQdHe3CRO6zadMmw3WrBjv/5Gww0Vm+9GjWrJnpNf9UtWpVh2tXrlyxrC+cy0rP++rVqw3Xe/TokeaaaVW5cmUVL17c4XpafoYAAAAAAAAAAAAAkLV5e0ujRkkHD0qDBklW38bj62vvc/Cg/dSndN22Ex4uNWggTZsm2WzmhQsNtdd+7jnJw8O8ugAyJQaXgCxi3rx5huvPPPOMi5IAAHB39erVs6TugQMHFBMT43DdykGfvytXrpzDtZMnTxpm/NPFixd148YNh+s1a9aUZ7rOYU4dT09P1axZ07L6zlj1Gtm+fbvhemZ4jezfvz9VNXLlyqUWLVo4XE9KSlLPnj01ePBgXb58Oc0ZzebslJ8NGzaobt26WrFihWxm/uNVJrR3717D9ebNm1va3+h1I0n79u0zvWfTpk1Nr/kno5N3oqKiLOsL57LS8270/SFv3ryqlq63Eks7M74/AAAAAAAAAAAAAMg+KlaUZs+WLlyQZsyQgoPNrR8cbK974YK9T8WK6SiSnCy9847UqJF98sksXl7Sm2/aj38yeHNLANkLg0tAFpCSkqJvvvnG4Xru3Lld8k7RAAAYsWooxdlJBCEhIZb0/bdChQo5XLPZbDp//rzTGidOnDBcr1OnTlpjpZkrejiSk18jV69eVXx8fKrqPPHEE4brKSkp+uSTT1S2bFn17t1bK1asUFxcXJqymqVRo0aqXr264Z5jx46pc+fOqlq1qiZOnKijR4+6KJ3rJCUl6ciRIw7XPTw8LP/cK1eunAIDAx2uR0ZG6ty5c6b2LFu2rKn1/s7f39/hWmo/l2CNrPS8G31/CA4OtnRY+O+Mvj+Y/XkJAAAAAAAAAAAAIOsICJCGDpUOHZLWr5eGDZOaN0/7SUx+fvbHDRtmr3PokL2uwXtHGjt+XGrZUnr1VSkxMZ1F7qJqVWnrVumNN6RcucyrCyDT83Z3AADObdiwQZcuXXK43qpVK8MbvAAAcAWrbmQ2GgaQ7DclX7lyxZLef+fsdJvz58+rSpUqhnsuXLhguF65cuU050orZxmt5K7XyKZNm7Rjxw5Lev/doUOHDNcvXLigChUqOK3To0cPhYSEOK2XkJCgxYsXa/HixfLz81ObNm3UunVrtW7dWnXq1JFXus73ThsPDw+9/vrreuSRR5zuPXr0qF5++WW9/PLLqlatmtq2bavWrVurZcuWKlKkiOVZrXTx4kUlGvxDXfny5Q1PkjFL3bp1tW7dOofrp0+fVunSpU3rZzQolVH58uVzuJaQkGBZXziXVZ73mJgYw6EgDw8PzZkzJ0010+vatWsO11Iz+AwAAAAAAAAAAAAge/PwkFq1sv+R7IcdRURIu3ZJBw5IkZFSXJwUHy/5+Eh58kiBgVKNGlL9+vZ5IFNuE7HZpDlz7BNQMTEmFPybIUOkiRPTPpUFIFtgcAnIAtauXWu4fs8997goCQAAjll1U/7Zs2cN1998801L+qbVrVu3nO5xNmDlisGG/PnzW97DEXe9RoYMGWJJ37RKzWtEkjw9PbVgwQI1b9481ScpxcTEaOXKlVq5cqUkyc/PTw0bNlSzZs3UvHlzNW3a1LJB9169emnJkiX69ttvU/2Yw4cP6/Dhw/rwww8l2Yf2mjRpoubNm6t58+aqVq2aJVmt4mwosVKlSi7JUblyZcPBJWc506pgwYKm1vs7Dw8Ph2s2m82yvnAuqzzvzr437N69W4MGDUpTTSuk9nsDAAAAAAAAAAAAgJzDy0sKCbH/cZnLl6Unn5T+/70npilZUpo/X2rf3ty6ALIUBpeALGD9+vWG640aNXJNEAAADFg1EGP2jfZWuXPnjtM9sbGxhuuuGCpy5+ASrxHnr5E/1a9fX/Pnz1ffvn0NT/JxJCYmRmFhYQoLC5MkeXt7q0mTJnrwwQfVo0ePVJ38lBbz5s3T2bNntW3btnQ9/ujRozp69KgWLFggSSpZsqTuu+8+devWTe3bt1fu3LnNjGs6o9NUJNcMJaamz9WrV03t5+PjY2o9ZA1Z5XnPjt8bAAAAAAAAAAAAAMAS338vPfWU5OT+hzR75BHpo48kC98gE0DW4OnuAACM3blzRzt37jTcU7duXad1UlJSdOzYMa1evVpff/215s+fr8WLF2vlypXas2ePoqKizIoMAMihrBpKuX37tiV1zRYfH5/hPVadiPN32XFwKTu9Rv6uV69e+vXXX1W0aNEM905KStKmTZs0atQoBQUFqXXr1vr666+VnJyc4dqS/YSn9evXq3///qbUu3DhgubOnatOnTqpVKlSGj58uE6fPm1KbSs4Gzxw1eeds8ElBiSQk2TX7w0AAAAAAAAAAAAAYJpbt6QBA6Ru3cwdWipQQPrqK/sfhpYAiBOXgEzv4MGDSkpKcrheuHBhFShQ4K5r0dHRWrx4sZYtW6awsDDFxMQY9qpYsaKaNm2qzp07q2PHjvLz88tIdOR0deq4OwFgDl7Lqebpac1MfFa50d5ms2W4hoeHhwlJjFn1PLmzd3Z+jbRo0UKHDh3S+PHj9cknnyghIcGULBs2bNCGDRtUuXJlTZw4UQ899FCGa/r4+GjevHnq2bOnXn75Ze3fv9+EpPbTjN577z198MEHeuKJJzR+/HhThrnMFBcXZ7ieWQaXnOUEspPs/L0BAAAAAAAAAAAAADJswwbp8ccls99Itn17ae5cqXRpc+sCyNIYXAIyuQMHDhiuV6xY8T9/d/v2bb399tv65JNP0nSS0vHjx3X8+HEtXLhQ/v7+GjRokEaMGKGSJUumOTeg6dPdnQBANpGYmOjuCKbx8fExXL9165blGbLjKYvZ6TVyN4UKFdL06dM1bNgwzZo1SwsWLND58+dNqX306FF169ZN3bt319y5c00ZsLn//vt13333aenSpZo7d65+/vlnU052SkpK0uzZs7V06VJ99tln6ty5c4ZrAsi+svv3BgAAAAAAAAAAAABIl7g46fXXpalTJTPfaDFPHmnyZGnwYMmNb6wMIHPiqwKQyR06dMhwvVixYv/4/1esWKHg4GC9++67Gbox+fbt25o2bZqqVKmid955x/DUJwAArORs2Ccr8fX1NVxncCl9stNrxEi5cuX09ttv68yZM/rll180atQoNWjQQF5eXhmuvWTJEjVr1kw3b97MeFDZT9fq0aOHVq1apTNnzmjmzJnq2bOnihQpkuHa165dU9euXTV79mwTkpojT548huuu+NyWnH9+O8sJZCc55XsDAAAAAAAAAAAAAKTa3r1SaKg0ZYq5Q0sNGkjh4dKQIQwtAbgrTlwCMrmzZ88arv/95s+xY8dqwoQJspn4w0RMTIxeffVV/fTTT1q8eDGnLwEAXM7ZsM/Ro0dVqVIlF6XJmKJFixquu2K4wVUDFK7k6+urO3fuOFxPTEyUt3f2+dXH09NTbdu2Vdu2bSXZh1U2bdr0159du3YpISEhzXUPHDig7t27a/Xq1cqVK5dpeUuWLKmnn35aTz/9tGw2mw4ePKiNGzf+lTc9p0fZbDY999xzKl++vDp06GBa1vTKmzev4XpmGVxylhPITpz9/NCnTx998cUXLkoDAAAAAAAAAAAAAG6UnGwfVnr9dSkx0by6Xl7SmDHSa69JJt5rAiD7YaQRyOQuXrxouJ4/f35J0osvvqjx48ebOrT0d5s2bVLTpk117NgxS+oDAOBIoUKFDNfj4uJclCTjSpQoYbh+9OhRyzO4ooerZafXSHoEBASoU6dOmjhxon777TdFRUUpLCxMr7/+uho0aCAPD49U11q3bp3ee+89y7J6eHioRo0aGjx4sL766iudO3dOp06d0rx58/TII4+oYMGCqa6VlJSkxx57TDExMZblTS1nJ0lllsElZ8OTQHaS0783AAAAAAAAAAAAAIAk6cQJqXVr6eWXzR1aqlJF+u036c03GVoC4FT2edtxIJtyNriUO3duvf3223r//fctz3L69Gm1atVK27dvV+nSpS3vl14fffSRPv74Y8v7HD9+3PIeAACpbNmyhutXrlxxUZKMCwoKMlzfs2eP5Rlc0cPVypYtqz/++MPh+pUrV5QvXz4XJnKvPHnyqHXr1mrdurXGjRunc+fO6auvvtLs2bNTNYQ+adIkPfvss/L393dBWqlcuXLq37+/+vfvr6SkJK1bt07z5s3Td999p6SkJMPHXr16Ve+//75effVVl2R1xNlQoqt+bnT2/DrLCWQn2ennBwAAAAAAAAAAAABIM5tNmjtXevFFKTra3NrPPSdNmiT5+ppbF0C2xeASkMk5e9f0rVu3avPmzQ7Xvb291apVK3Xu3FlNmjRR8eLFVbRoUcXExOjSpUs6ceKEfvzxR61YsULnz593mufChQt68MEHtXXrVuXJkyfN1+MKV69e1aFDh9wdAwBgEmfDPqdOnXJNEBOULFlSgYGBioyMvOv6vn37lJKSIk9Paw5GTUlJ0f79+y2p7U6peY0425OdlS5dWiNHjtSIESO0cOFCDR8+XDdu3HC4//r16/r666/15JNPujClnbe3tzp06KAOHTro3Xff1YsvvqgffvjB8DEff/xxphhcyp07txISEu66fuLECd26deuv01KtEh4ebrherlw5S/sDmUmJEiWUJ08ehycrZaWfHwAAAAAAAAAAAAAgTS5flgYNklasMLduiRLSvHnSvfeaWxdAtmfNHZEATHPnzh3D9Y0bNyolJeWua506ddLhw4f1yy+/6Pnnn1doaKjKlCkjHx8fFSxYUCEhIerUqZM++eQTnT59WjNmzFBgYKDTTHv27HH7zaEAgJyjbt26hut79+51URJz1KlTx+FadHS0du/ebVnvXbt2KSYmxrL67pLdXiNW8fT01OOPP64NGzaoUKFChnvXrl3rolSOlStXTt9//72eeeYZw33nz5/X4cOHXZTq7ry9vRUcHOxw3WazWX7a2ZkzZwwH0gIDAzP1qamA2Tw9PVW7dm2H62fPnjX8nAEAAAAAAAAAAACALGnZMqlmTfOHlh5+WDpwgKElAOnC4BKQyTl6d2gjXl5emjdvnlasWKFKlSql+jFDhw7VkSNHnN78K0nvv/++pTdWAwDwp4YNGxquG508mBm1bt3acP2LL76wrLeVtd2pUaNGhutZ7TVitRo1amjKlCmGezZt2uSiNM69//77qly5suGezJDXaEBCkrZs2WJpf2f1a9WqZWl/IDNy9v3B6s9LAAAAAAAAAAAAAHCZW7ekgQOlrl2lq1fNq1uggLRokbR4sVSwoHl1AeQoDC4BmVxiYmKa9nt7e+ubb75R//7909WvaNGiCgsLU5MmTQz3paSkcOoSAMAlChYsqHr16jlc3717t86ePevCRBnTvn17w/XFixcrOTnZ9L5JSUlavHix6XUzg1q1aqlIkSIO13/++ed0DYNnZ3369FFAQIDD9StXrjg81dPVcufOrUGDBhnuuXjxoovSONayZUvD9S+//NLS/gsXLjRcb9WqlaX9gcyoXbt2huvLli1zURIAAAAAAAAAAAAAsNCmTVLt2tLcuebWbdtW2r9fevRRycPD3NoAchQGl4BMzsvLK037x4wZo27dumWoZ0BAgL777jsFBgYa7luzZo3279+foV4AAKTGQw89ZLg+Z84cFyXJuMaNG6tMmTIO1y9fvqwFCxaY3vfzzz/XlStXTK+bGXh5ealz584O16Ojo/XVV1+5MFHmlytXLsPTzJKTkxUZGenCRMaaNWtmuH7t2jUXJXHM2VDigQMHtGfPHkt6X758WT///LPhHmcDHEB21L59e/n5+Tlc/+abb3T79m0XJgIAAAAAAAAAAAAAE8XHS6NHS61aSadOmVc3Tx7p/feln3+WSpc2ry6AHIvBJSCTy507d6r31qtXT6+99popfUuWLKkPPvjA6b6ZM2ea0s9MRYoUUUhIiOV/fHx83H2pAJBj9O7dW56ejn90/fjjjxUVFeXCROnn4eGhRx991HDP6NGjdfPmTdN6RkZG6uWXXzatXmbUp08fw/XJkycrKSnJRWmyhsKFCxuux8fHuyiJc1kha7ly5VS3bl3DPZ988oklvWfNmmV4UluxYsWcnqgKZEd58uRR9+7dHa7fvn1bM2bMcGEiAAAAAAAAAAAAADDJvn1Sw4bSpEmSzWZe3fr1pd27peeflwzu1wKAtOCrCZDJpWVwady4cfL29jatd58+fVS9enXDPd9//71sZv7AY4LnnntOBw8etPxPxYoV3X2pAJBjVKxYUR07dnS4fu3aNb3++usuTJQxzz33nOH37KtXr2rkyJGm9Rs1alSmOJHGSm3atFGNGjUcrh8+fJib0//F2WsiICDARUmcyypZ+/bta7g+Z84c009dOnPmjCZOnGi4p0+fPqb+ngBkJUOHDjVcf/fdd3X69GkXpQEAAAAAAAAAAACADEpOliZPlkJD7cNLZvHykl5/Xdq6VapWzby6ACAGl4BMz8/PL1X7ypcvb3hDd3o9++yzhusXL15UeHi46X0BAPi3V155xXD9ww8/1LJly1yUJmPKlCmjxx57zHDPnDlzUnX6oTMzZszQnDlzMlwnK3B2qtSrr76qnTt3uihN5paUlKS9e/c6XC9atGiqfw51hV27dhmuBwUFuSiJsX79+hl+3FJSUjRkyBBTB/+HDRum2NhYh+uenp56+umnTesHZDUNGjRQu3btHK5HR0erd+/emeLkNgAAAAAAAAAAAAAwdPKk1KaNNGqUlJBgXt1KlaTNm6Vx46RcucyrCwD/H4NLQCZXsGDBVO3r27evPC04krFv377y8vIy3LNt2zbT+wIA8G/NmjVT9+7dHa7bbDb17t1ba9eudVmmmzdvat26del67IQJE5wOhjz//PMaP358uoYcUlJSNG7cOL3wwgvpypcVPfroowoNDXW4Hh8fr/vvv9/0E2+MXLx4UVu3bk31/s8++0wREREWJrJbunSprly54nC9QYMGTmucPHlSc+bMUWJiopnR/iM5OVmffvqp4Z7U5HWFQoUK6ZlnnjHcs2XLFr311lum9Pv444+1dOlSwz09e/ZUlSpVTOkHZFVTp041/H1569at6tmzp+EQoNk2bNigGzduuKwfAAAAAAAAAAAAgCzMZpPmzZNq1ZI2bTK39rPPSnv2SI0bm1sXAP6GwSUgkytUqFCq9jVr1syS/vnz51eNGjUM9+zevduS3gAA/Nu0adNUoEABh+t37tzRfffdp/HjxyslJcWyHGfOnNHLL7+scuXKae7cuemqUapUqVQNL4wdO1Zt2rRJ0/fbXbt2qU2bNnrjjTf+s1arVq005cxKPDw89MknnyiXwTu/XLt2TU2aNLH8FKrDhw9r8ODBCgoK0o8//pjqx61YsUIhISHq1auXfvvtN0uynTlzRs8995zhnk6dOjmtExUVpUGDBqly5cp67733FBUVZVbEf3j11Ve1f/9+h+vFixdX/fr1LemdHi+//LLTNx9466239P7772eozxdffKHnn3/ecI+Pj4/Gjx+foT5AdlCrVi2ng7wrVqxQo0aNdOTIEctyJCcn6/vvv1eLFi3UunVrBpcAAAAAAAAAAAAAOHflivTQQ9ITT0jR0ebVLV5cWrVK+vhjycmbLwNARjG4BGRyhQsXdrrHw8NDjRo1siyDs9rHjx+3rDcAAH9XtmxZzZw503BPSkqKxo4dq7Zt22rz5s2m9b5z546+/vprPfjggwoKCtLEiRN169atDNUcPny42rVr53Tfhg0bVL9+fbVs2VLTpk3T1q1bde3aNSUmJioxMVFXr17V1q1bNXXqVDVv3lwNGjTQxo0b/1OndOnSmjBhQoYyZ3b169d3OqgRFxenQYMGqXv37tq3b59pvaOiojR37ly1adNGISEh+uSTTxQXF5fmOikpKfrmm2/UrFkz1atXTzNmzNDVq1dNybhp0yY1btxY165dc7jHz89Pjz76aKprnj59WsOHD1fp0qX1xBNPaMOGDek6JezfYmNj9fTTT2vSpEmG+5588klLTh5Nr8KFCzvNLEkvvviinnnmmTSf8JKQkKBXXnlF/fr1U3JysuHeV155RZUrV05TfSC7euedd1S7dm3DPQcOHFCDBg307rvvmjqMefjwYY0ZM0YVKlRQt27dTP35BAAAAAAAAAAAAEA2tmKFVLOmtGyZuXV79JAOHJA6djS3LgA44O3uAACMlS1b1umeEiVKGJ4+kVEhISGG62fPnrWsNwAA/9arVy/t2bNH7777ruG+9evXq0WLFmrUqJEGDx6sNm3aqEyZMqnuk5SUpH379mnLli36+eeftW7dujQPGDjj4eGhr776Sk2bNtXRo0ed7t+0aZM2pfO451y5cmnhwoWpypTVjRo1Svv27dOXX35puG/p0qVaunSp2rdvr0GDBqlly5YqVqxYqvvEx8dr9+7d2rx5s1avXq3NmzcrISEho/H/ITw8XOHh4Ro+fLiaNGmiTp06qWXLlqpfv75y586dqhoJCQkKCwvTxx9/rOXLlzvdP3LkSAUEBKQ5a3R0tObNm6d58+apWLFi6tSpk9q3b6/mzZurVKlSqa5z6tQpffvtt5o6daouX75suLdgwYIaNmxYmrNabeDAgVq1apWWLl1quG/WrFlauXLlX4NI/v7+DvfGxcVp8eLF+t///qdjx445zdCsWTO9+uqrac4OZFc+Pj764Ycf1LRpU128eNHhvpiYGL3yyit6++239eSTT6pbt24KDQ2Vj49PqntduXJF27ZtU1hYmH766SdFRESYcQkAAAAAAAAAAAAAcorbt6Vhw6TPPjO3bkCA9OGHUp8+Uja4RwhA1sHgEpDJVahQwekeK4eWJCkwMNBw/caNG5b2BwDg39555x1dvXpVn6Xil/Pt27dr+/btkqRy5cqpcePGKlasmAoWLKjAwEDlyZNHcXFxio6O1uXLl3X+/Hn98ccfOnr0aLpOy0mrwoULa/Xq1WrdurWlw8AzZ85U69attX79esN93t5Z/1cEDw8PzZ8/Xzdu3NDq1aud7l+7dq3Wrl0rSapSpYpCQ0NVpEgRFSxYUAULFpS3t7fi4uJ0+/ZtXbp0SefOnVNERISOHz+uxMREqy9HkpScnKzNmzf/dUpH7ty5VbVqVVWrVk2lS5dWsWLF5Ofnp1y5cik2NlbR0dE6d+6cDh8+rPDwcN2+fTtVferUqaPRo0dnOO/ly5f12Wef/fU5Wrx4cVWvXl1BQUEqWbLkX597ycnJio6O1s2bN/XHH3/owIEDabrB/6OPPlLBggUznNcK8+fPV0REhA4ePGi47/z58xoyZIhGjBihpk2bqm7duipdurR8fX0VFxenixcvau/evdq4cWOqhydLlSqlb7/9Vrly5TLjUoBso3z58vrpp590zz33OP099vbt23rvvff03nvvycfHRw0bNlRwcPBf3xsCAgKUnJysuLg4Xb9+XZcuXdLJkycVERGhCxcuuOiKAAAAAAAAAAAAAGQ7mzdL/fpJJ0+aW/eee6T586U0vPEzAJgl69+VCGRzQUFBTvdYPbjkrL7Zp08AAJAan376qQoWLKjJkyen+jGnT5/W6dOnLUyVPkFBQfrtt990//33a//+/abW9vb21pw5c/T4449LktNhrDx58pja311y5cql5cuXq3///k5PXvq7P/74Q3/88YeFycyRkJCg/fv3m/p6KVmypJYuXWrJa+DSpUu6dOmSfv31V9NqvvLKK3rkkUdMq2c2f39//fLLL2rZsmWqTlSLj49XWFiYwsLCMtS3ePHiWrdunUqUKJGhOkB2Vbt2bW3evFn33Xefzpw5k6rHxMfHZ+jUQwAAAAAAAAAAAABwKj5eeuMNadIkyWYzr66Pj/Tuu9Lzz0uenubVBYA04KsPkMnVqFHD6Z68efNamsFZ/aSkJEv7AwBwNx4eHpo0aZLmz5+vfPnyuTtOhpUuXVrbtm3T008/bVrN8uXLa+3atX8NLUlSZGSk4WOyy+CSZB9e+uKLLzRx4kROnnGiUqVKCgsLS9Vpn5nB66+/rrffftvdMZwqXry4Nm7cqMaNG7ukX0hIiDZt2qQqVaq4pB+QVVWrVk3bt29X+/bt3R0FAAAAAAAAAAAAAKQDB6RGjaSJE80dWqpbV9q9W3rxRYaWALgVX4GATK5s2bIqUqSI4Z6oqChLMzirb/XgFAAARh5//HGFh4erQ4cOLu9dsmRJ3XPPPabV8/X11cyZM7Vt2za1adMm3XUKFCig1157Tfv371fr1q3/sXbz5k3DxxYqVCjdfTMjDw8PjRo1Slu3blVoaKjL+1eqVMllQyvp4eHhof79+2vHjh1ZYtilXLlyWrZsmcaNG+fuKKlWvHhxrV+/XkOHDpWnhf8I+Nhjj2nbtm2qVKmSZT2A7KR48eJas2aNZsyYocDAQJf29vT0VIcOHVSwYEGX9gUAAAAAAAAAAACQySQnS1OmSPXrS3v3mlfX01MaM0batk0KCTGvLgCkE4NLQBZQv359w3VnNyBnlLOTGbLDKRcAgKytUqVKWrNmjVatWqWmTZta2itv3rx65JFHtHr1ap05c0ZPPPGE6T0aNWqkdevWaf/+/Ro5cqRq1aolDw8Pw8cEBASoa9eumjt3rs6cOaMJEybc9Xu00fd1T09PpwPTWVX9+vW1fft2LVq0SDVr1rS0V0BAgJ588klt2rRJR48eVadOnVL92GnTpmnKlClq3bq1vL29LUxp/5j89ttvmjdvXrpu2q9evbqWL1+up556SqVKlbIg4f/JkyePxowZo8OHD6tz586W9rKCj4+PZsyYoc2bN5v+Nap27dpavXq1Fi5cKH9/f1NrA9mdh4eHhg4dqmPHjumll15SgQIFLO1XrVo1vfvuuzpz5ozWrFnD4BIAAAAAAAAAAACQk50+LbVtK40cKSUkmFe3YkVp82Zp/Hgpd27z6gJABlh7JxwAUzRv3lyrV692uH716lVL+1+5csVw3eobVQEASK2OHTuqY8eO2r17txYsWKAffvhBp0+fzlBNDw8P1apVS+3atVO7du3UsmVL+fr6mpTYWI0aNTRp0iRNmjRJ0dHROnLkiM6dO6fbt28rJSVF/v7+KlCggKpUqaLSpUunquZeg3dnKV68uLy8vMyKn+l4eHjo0Ucf1aOPPqoNGzboiy++0IoVK3T58uUM1fXy8lJoaKjatm2rdu3aqWnTpsqdzn/4CQoK0ogRIzRixAhFRUXp559/1qZNm7R161bt3btXiYmJGcpapEgRPfLII3rsscfUsGHDDNXKlSuXHnzwQT344IOSpPDwcP3yyy/67bfftHXr1gx/XD08PNSiRQv17dtXPXv2VEBAQIbqZQZNmjTRli1btGHDBs2ePVvLli1TTExMmuv4+PioY8eOGjhwoB544AGng40AjBUsWFCTJ0/Wm2++qa+++krffvutwsLCMvw1NzAwUK1bt/7rZ4iscLIdAAAAAAAAAAAAAIvZbNLnn0vPPy/dvm1u7WeekSZPljiQAEAm42Gz2WzuDgFkNqdOnVKFChUM97jyU+f3339XaGio4Z6IiAjLboJ66KGH9MMPPzhc79atm5YsWWJJ78ysevXqOnTo0H/+PiQkRAcPHnRDon+Kj4/XiRMnDPcEBQXJx8fHRYkAwD0OHz6s7du3a9euXTp+/LhOnz6tq1evKjY2Vnfu3FHu3LmVP39++fv7y9/fX8WLF1fVqlUVHBys4OBg1axZU4UKFXL3ZZimfPnyDoe52rZtq19++cXFidwrJSVF+/bt0/bt27V7926dPHlSZ86c0bVr13Tnzh3FxcUpT548f70+8ufPr5IlS/71+vjzNZI/f37Ls965c0e///67Dh8+rOPHj+vYsWM6deqUIiMjFR0drdu3bysxMfGvnPnz51fhwoVVs2ZN1a1bV3Xr1lWNGjUsP8npTydOnFB4eLiOHTumY8eO6fjx47p48aJu376t6OhoRUdH//X5lz9/fgUEBKhChQqqW7eu6tSpo/r166to0aIuyeousbGx2rJli7Zs2aJ9+/bpxIkTunDhgmJiYhQXFycfHx/5+fmpWLFiCgoKUvXq1dWsWTO1aNEiWwxyAZnZrVu3tH37du3YsUMHDx7U6dOndfbsWd2+fVuxsbFKTk5Wvnz5/vr+UKBAAQUFBf31vaFatWqqVq2aPD2zxmHn/P4IAAAAAAAAAAAAuMDVq9LTT0vff29u3WLFpLlzpfvvN7cuANNl9vvPrcKJS0AWUK9ePRUpUsTwZKVt27ZZNri0fft2w/XatWtb0hcAADP8eeNw//793R3F7S5dumR4AlX16tVdmCZz8PT0VJ06dVSnTh13R3Eqb968atGihVq0aOHuKKkSFBSkoKAgd8fI1Hx9fdW+fXu1b9/e3VEA/Ev+/Pn5/AQAAAAAAAAAAABgnpUrpSeflC5fNrdu9+7SzJlS4cLm1gUAE2WNt30FcjhPT0/16NHDcM/PP/9sSe/9+/fr4sWLhnsaNWpkSW8AAGCuL7/80nC9cePGLkoCAAAAAAAAAAAAAAAA5ADR0dJTT0kPPmju0FL+/NKCBdK33zK0BCDTY3AJyCIef/xxw/XvvvtO165dM73vJ598Yrj+5zv/AwCAzC0lJUUfffSR4Z5WrVq5KA0AAAAAAAAAAAAAAACQzW3ZItWuLX36qbl1W7eW9u2T+vaVPDzMrQ0AFmBwCcgiGjVqpBo1ajhcj4+P1+zZs03tefPmTX3xxReGe+699175+vqa2hcAAJhv6dKlOnHihMP1OnXqqGTJki5MBAAAAAAAAAAAAAAAAGRDCQnSq69KLVtKBvfrpJmPjzR1qvTrr1K5cubVBQCLebs7AIDUGz16tPr27etw/e2331avXr1UsWJFU/q98MILun37tuGeQYMGmdILAABY5+LFixo8eLDhnt69e7soDQAAAAAAAAAAAAAAALKj5GTpyBFp1y7pwAEpMlKKi7PP8eTOLeXJIwUGSjVqSA0aSFWrSl5e7k5tsgMH7Cch7dljbt3ataUvvrB/8AAgi2FwCchCevfurTfffFPHjx+/63pMTIz69++vsLAweXtn7NP7+++/14IFCwz3BAcHq2PHjhnqAwAArJWQkKA+ffro6tWrDvfkzp3bcDgaAAAAAAAAAAAAAAAA+DebTdqwQVq2TNq5UwoPl2JjU/94Pz+pTh0pNFTq0kVq1Ury8LAsrrVSUqTp0+0nLcXHm1fX01MaPVp680379BcAZEGe7g4AIPW8vLw0bdo0wz2bN29Wjx49FJ+BH3p++uknPfroo073vfvuu/LIsj8hAgCQefTs2VO7d+82ve6VK1d0zz33KCwszHBfv379VKJECdP7AwAAAAAAAAAAAAAAIPu5eVOaMUMKCZHatLHP62zZkrahJUmKibE/bvp0e52QEHvdmzfNz2yp06eltm2lESPMHVoKCpI2bpTefpuhJQBZGoNLQBbTuXNnde7c2XDPsmXL1LFjR506dSpNtVNSUvTJJ5+oa9euiouLM9zbsWNHdenSJU31AQDA3X333XeqX7++7rvvPq1Zs0ZJSUkZqmez2bR06VKFhoZqy5Ythnv9/Pz0+uuvZ6gfAAAAAAAAAAAAAAAAsr/jx6WnnpJKlZJeeEE6csTc+keO2OuWKmXvc/y4ufVNZ7NJCxZItWpJ69ebW3vQIGnPHqlZM3PrAoAbeLs7AGC1jRs36o8//kjTY65fv+50z5w5c9KcpVWrVqpcuXKaH/dvs2fP1u+//64LFy443BMWFqZq1appxIgRevLJJ1W+fHmHe+Pj47V27VqNHTtW4eHhTvsXKVJEc+fOTU90AABgYM2aNVqzZo2KFCmi7t27q1u3bmrYsKECAgJS9fgzZ85o7dq1mjZtmg4dOpSqx7z55psqW7ZsRmIDAAAAAAAAAAAAAAAgG0tKkqZOld54w9wDhRyJjZU+/dQ+EzRunP0gIy8v6/umybVr0tNPS0uXmlu3aFHps8+kTp3MrQsAbuRhs9ls7g4BWKl///76/PPP3R1DkjRv3jz179/flFq//fab2rRpo4SEhFTtr127tho3bqzixYurSJEiio2N1eXLl3X8+HH98ssvio6OTlWdPHny6Ndff1XTpk0zEj9bqF69+l1vCg8JCdHBgwfdkOif4uPjdeLECcM9QUFB8vHxcVEiAIAjHh4ehmuVKlVSvXr1VLJkSQUGBqpAgQLy9PTUjRs3dOPGDV2+fFlbt25N82mLDzzwgJYvXy5PTw5iBQAgJ+P3RwAAAAAAAAAAADhy+LDUv7+0Y4f7MjRqJM2bJ1Wr5r4M/7BqlfTEE9Lly+bWfeghadYsqUgRc+sCyDQy+/3nVuHEJSCLatq0qb755hv17NlTiYmJTvfv3btXe/fuzVBPHx8fffPNNwwtAQDgQjabTUePHtXRo0dNrVu/fn0tWrSIoSUAAAAAAAAAAAAAAAD8R0qK/ZSl1193zSlLRrZvl+rWlcaPt5++5LbbXaKjpZdesg8XmcnfX/rgA6lfP8ngDZABIKviLkUgC+vSpYuWLl2qfPnyWd4rMDBQq1ev1oMPPmh5LwAAYK0WLVro119/VUBAgLujAAAAAAAAAAAAAAAAIJNJTLTP0Iwa5f6hpT/Fx9vz9Otnz+dyW7dKdeqYP7TUsqW0b5/0+OMMLQHIthhcArK4Tp06aceOHQoJCbGsR7NmzbRnzx61bt3ash4AAMB6Xl5eGj16tNatW8fQEgAAAAAAAAAAAAAAAP4jLk7q3l1atMjdSe5u0SJ7vrg4FzVMSJDGjJGteXPp+HHz6ubOLU2eLK1bJ5Uvb15dAMiEGFwCsoFq1aopPDxcEydOlL+/v2l1S5UqpXnz5mnTpk0qW7asaXX/H3t3H691XdiP/3Vu4ODBRFquG7tnxa0KclezSbbKtqVUNm2dIllpRZkpCtZPsdRukCCywtQKws5Kl31DanOtlrKokBAVFGgjq5Wl3YA3nDjAOef3x2dWK1RuPtf1OTfP5+NxHtu4ruv1fn0QTNZ5+QYA/q9Xv/rVOeSQQ2p6xoknnpj169fnwx/+cJqbm2t6FgAAAAAAAAAAfc/u3cmppyYrV1bd5LGtXJmcdlptb17q6UluXXZ3fvr0FyQf+EAaurvLCz/mmOT730/OOy9paiovF6CXMlyCfmLw4MGZM2dOfvzjH+cjH/lInv/85x9QTmNjY6ZNm5bly5fnnnvuyemnn54GV08CQE19+ctfzi9/+ct88YtfzOtf//o861nPKiX36U9/et75zndmw4YNuemmm3LUUUeVkgsAAAAAAAAAQP/S3Z3MnNn7R0uPuPHGom+Ze6Ik2b49uWJxdz78lMU5euaxefov15eW3dPQkJ1nz03WrEl8Hw8wgDT09PT0VF0CqI0f/OAH+frXv57bbrstmzdvzk9+8pM89NBD2bFjR5qamjJ06NAcccQRefazn52xY8dm6tSpOeGEE/Lnf/7nVVfvE8aOHZu77777T358zJgxueuuuypo9H91dnbmhz/84WO+57nPfW5aWlrq1AiA/fHzn/883/3ud7Np06b86Ec/yj333JOf/vSnefjhh7Njx450dHRkz549aWlpSWtra4444og84xnPyIgRI3Lsscdm6tSpOfroo6t+DACgD/DnRwAAAAAAABYsSObMqbrF/luwoLi46GBt3ZrMn5/ccu1PsmTnzPx1/uPgQ//AD/OczMjyrG99UdrakrlzkxEjSj0C6AN6+/ef10pz1QWA2nn+859/wDcvAQDVeupTn5rXvOY1VdcAAAAAAAAAAKCf27QpueiiqlscmAsvTP7u75LRow/s83v2JAsXJhfP68lrd7VnTd6Zw/NAqR0/nTfnnHw0D+cJSUdyzTXJ8uXJJZcks2cnTU2lHgfQ6zRWXQAAAAAAAAAAAAAAgPrbsyc5/fSks7PqJgemszOZOTPp6tr/z27alBx3XHL5Bb/O8l2n5fN5Y6mjpftzRE7OipyRTxejpT/Q2VncunTccUUPgP7McAkAAAAAAAAAAAAAYABatCi59daqWxycNWuKW5P2VXd3smBBMmFCMvzWm7IhR+XU/HOpnb6S6RmXjVmZkx/zfWvWFD0WLCh6AfRHzVUXAAAAAAAAAAAAAACoSldXsnlzsm5dsnFjsm1bsnNnsmtXMnhwMmRIMnx4Mm5cMmlSMnJk0tRUdeuDt3VrMm9e1S3KMW9ecsopyYgRj/2+3buLG5r+X/uOLMr5mZUrS+3xUA7Nu3JFluX0JA379JnOzmTOnOSOO5KlS5NBg0qtBFA5wyUAAAAAAAAAAAAAYMDo6UluuSVZsSJZuzZZvz7p6Nj3zw8dmowfn0yenEyfnkybljTs20alV5k/vxjN9AedncXzXH31o79n587k1FOT+1auyfq8Mc/Pf5XaYVX+Km/K5/KjPOeAPt/enjz4YHL99cVYDqC/aKy6AAAAAAAAAAAAAABArW3fnlxxRTJmTHLCCcnixcnq1fs3WkqSHTuKzy1eXOSMGVPkbt9efuda2b69GMr0J+3tyQMP7P213buTf3jt7kxaOS+rc1ypo6XODM6czM8J+dYBj5YesXJlctppRV+A/sJwCQAAAAAAAAAAAADot7ZuTc48MznyyOTss5PNm8vN37y5yD3yyOKcrVvLza+F5cv3f7DV23V0FM/1x7q7k//vNZvy/33thZmXS9OcrtLOvDNHZXLWZkHmpDtNpWTeeGMyc2bRG6A/MFwCAAAAAAAAAAAAAPqdPXuS+fOTsWOTa66p/VCno6M4Z+zY5PLLk67y9jGl6ulJliypukVtLFlSPN/vdHfnW6++Iu//6rGZlHWlndOdhlye8zM5a7MhR5eW+4j29mTRotJjASphuAQAAAAAAAAAAAAA9CubNiXHHZdccEHS2Vnfszs7k7lzi/M3barv2fvilluSLVuqblEbmzcnq1b97//x059mx3Evz1/feHYOyc7SzvhRnpUX5+bMzeXZlZbScv/YhRf2zl8/APvLcAkAAAAAAAAAAAAA6Be6u5MFC5IJE5Jbb622y5o1RY8FC4pevcWKFVU3qK0VX+lJ/umf0nPUURn6vW+Wmv3ZzMzRuTP/meNLzd2bzs5k5szee3MXwL4yXAIAAAAAAAAAAAAA+rzdu5MZM5I5c+p/y9Kj6ews+syYUfTrDdaurbpB7QzPb/J3n39d0taWhu3bS8v9ZZ6UV+X/5c35bB7KYaXlPp41a5KFC+t2HEBNGC4BAAAAAAAAAAAAAH3azp3JKack7e1VN9m79vai386d1fbo6krWr6+2Q628PP+WDTkqf/2r60vNvTEnZVw2ZkVeVWruvpo3L9m6tZKjAUphuAQAAAAAAAAAAAAA9Fm7dyennpqsXFl1k8e2cmVy2mnV3ry0eXPS0VHd+bVwSDry8bwz/5ZX5MjcW1ruQzk0b8k1mZ4VuT9PLi13f3V2JvPnV3Y8wEEzXAIAAAAAAAAAAAAA+qTu7mTmzN4/WnrEjTcWfbu7qzl/3bpqzq2Vybk16zMh78wnS839do7LMbkjn8lbkjSUmn0g2tuTBx6ougXAgTFcAgAAAAAAAAAAAAD6pIULi1FHX9LenixaVM3ZGzdWc27ZmrM7F+d9+U7+MiPzg9Jyd2VQLsiHMi235J48t7Tcg9XRkSxfXnULgANjuAQAAAAAAAAAAAAA9DmbNiUXXVR1iwNz4YVF/3rbtq3+Z5ZtZDbnO/nLvC/vT3O6SsvdkHGZklszPxekO02l5ZZlyZKkp6fqFgD7z3AJYADr8U+wAAAAA54/GwIAAAAAAH3Rnj3J6acnnZ1VNzkwnZ3JzJlJV3m7m32yc2d9zytTQ7rzznw86zMhk/P90nK705CPZHYmZ23uyPjScsu2eXOyalXVLQD2n+ESQD/V0NDwuO/p7u6uQxMAAAB6s335s2Fjo/83IgAAAAAA0LssWpTcemvVLQ7OmjXJwoX1PXPXrvqeV5an5We5Ka/Ix/OuHJLy1lc/zjNzQr6V8/ORdGZIabm1smJF1Q0A9p/vOADop/blm8r27NlThyYAAAD0ZvvyZ0PDJQAAAAAAoDfZujWZN6/qFuWYN694nnoZPLh+Z5XldflCNmZcXp5/LzV3Wd6Uo3NnVmVaqbm1tHZt1Q0A9p/vOADop5qamh73G8t2795dpzYAAAD0Vrse51+r19jYaLgEAAAAAAD0KvPnJ52dVbcoR2dn8Tz1MqT3Xyr0O8Pzm/xT/iFfyOszPNtLy/1lnpRX58uZmWV5MMNKy62H9euTrq6qWwDsH99xANBPNTQ0ZNCgQY/5nsf75jQAAAD6v8f7s+HgwYPT0NBQpzYAAAAAAACPbfv2pL296hblam9PHnigPmcNH16fcw7Wy/L1bMhR+Yd8sdTcr+bvclQ25Ct5dam59bJjR7JlS9UtAPaP4RJAPzb4ce507ejoqFMTAAAAeqOenp7s2LHjMd/zeH+2BAAAAAAAqKfly5P+9q1vHR3Fc9XDuHH1OedAHZKOXJGz8vWcmCNzb2m5D2dozsjVOSkrc1+eUlpuFdatq7oBwP4xXALoxx7vm8t27dqVzv5yXy4AAAD77be//W327NnzmO8xXAIAAAAAAHqLnp5kyZKqW9TGkiXF89XaxIm1P+NATcra3JZjc1Y+UWru6vxljskd+XTOSNJQanYVNm6sugHA/jFcAujHhg4d+rjveaBe98sCAADQ62zbtu1x33PooYfWoQkAAAAAAMDju+WWZMuWqlvUxubNyapVtT9n1KiktbX25+yP5uzOvLw/380LMyrl/QXenea8Jx/M8VmVH2ZEablV24f/ig+gVzFcAujHWltb09j42H+r/81vfpPdu3fXqREAAAC9RUdHRx588MHHfE9zc3OGDBlSp0YAAAAAAACPbcWKqhvUVj2er6kpmTCh9ufsq+dnS1bnuLw/70tzukrLvStjMiW35sN5T7rTVFpub7BzZ9UNAPaP4RJAP9bQ0PC4/2bsnp6e3Hvvvenu7q5TKwAAAKq2a9eu/OxnP3vc9x122GFpaGioQyMAAAAAAIDHt3Zt1Q1qq17PN3lyfc55bD2ZlU9mfSZkSsp98IU5NxOzLrenFy20StTZWXUDgP1juATQzx122GGP+56Ojo789Kc/zZ49e+rQCAAAgCp1dHTkxz/+8T79GXBf/kwJAAAAAABQD11dyfr1VbeorfXri+estenTa3/GY3lafpab8op8Mu9Ma35bWu5P8oyckP/IeVmYzgwpLbe3aWmpugHA/jFcAujnDj300AwZ8vj/AL5jx4788Ic/zG9+85t01eNPPgAAANRNT09POjo68rOf/WyfR0tPeMITcsghh9ShHQAAAAAAwOPbvDnp6Ki6RW3t2JFs2VL7c6ZNS0aOrP05e3NqrsuGHJUT8/VScz+XGTkqG3JzTig1tzfah28JBehVmqsuAEBtNTQ05MlPfnJ+/OMfP+57u7q6ct999+X+++/P0KFD09LSksGDB2fw4MFpbGxMQ0NDHRoDAABwMHp6etLd3Z09e/Zk165d2bVrV3bs2LFft+w+8mdJAAAAAACA3mLduqob1Me6dcmYMbU9o6EhmTUrOfvs2p7zhw7Ptnwy78jr84VSc3+VP8tbc1W+nFNKze3Nhg+vugHA/jFcAhgAWltb84QnPCEPPfTQPr2/p6cnDz/8cB5++OEaNwMAAKA3etKTnpRBgwZVXQMAAAAAAOB3Nm6sukF91Os5Z8xI3vOe+txi9df5Rpbl9Dw9Pys192v527wln84v8tQkyeDBya5dpR7RK40bV3UDgP3TWHUBAOrjKU95im86AwAA4HENHTo0T3ziE6uuAQAAAAAA8H9s21Z1g/qo13MefnjS1lbbMw5JRz6Wd+UbeVmpo6Udac2ZuSqvzFd/N1pKkpNOKu2IXm3ixKobAOwfwyWAAaK5uTnPfOYz09zssj0AAAD2bujQoXn605+exkb/b0MAAAAAAKB32bmz6gb1Uc/nnDs3aWmpTfbEfD/rMjHvysdLzf1OXphjckeuyZlJGn734y0tyQc/mLS2lnpcrzN0aDJyZNUtAPaP70AAGEAGDx6cZz7zmWlqaqq6CgAAAL2M0RIAAAAAANCb7dpVdYP66Oys31kjRiSXXFJuZlP25MJcmu/mhRmdzaXl7k5z3psP5Pisytb8xZ+8fsklyfOfn0yYUNqRvdKECYlvAQX6Gt+FADDAtLS05DnPeU4OPfTQqqsAAADQCzQ0NOSII44wWgIAAAAAAHq1wYOrblAftboB6dGce24yZUo5Wc/LD/LtvCiXZl4GZU85oUnuyphMzZp8KO9NV5r/5PWpU5PZs4v/ffLk0o7tlfr78wH905/+nRuAfm/QoEF5+tOfnoceeii/+MUv0tXVVXUlAAAAKvCEJzwhT37ykzNo0KCqqwAAAAAAADymIUOqblAf9X7O5uZk2bLiJp8Dv+2pJ2/Lp/KRnJeh6SixXbIo5+T/yweyM4fs9fVBg5JXvSp5z3uSbduSH/2o1ON7nenTq24AsP8MlwAGqIaGhhx22GEZOnRoHnrooTzwwAPp6Cj3DwwAAAD0Ps3NzTnssMNy2GGH5ZBD9v5f8AAAAAAAAPQ2w4dX3aA+qnjO0aOTSy9N5szZ/88+NffmM3lz/iY3ldrpJ3lGTs+yfCsvecz37d5djJYGglGjkuOPr7oFwP4zXAIY4JqamnL44Yfn8MMPz+7du/PQQw+ls7Mzu3btSmdnp9uYAAAA+rDGxsYMHjz4d1+HHnpohgwZkoaGhqqrAQAAAAAA7Jdx46puUB9VPefs2ckddyTt7fv+mdfmn/OpvC1/lt+U2uXavCFn5eN5IIeXmtvXzZqV+K/5gL7IcAmA3xk0aFCe+MQn/p8f6+rqSnd3d7q7uytqBQAAwP5qbGz83ZeREgAAAAAA0B9MnFh1g/qo6jkbG5OlS5MHH0xWrnzs9w7L9nwi78wbsh8rp33w6zwxb81VuSGvLTW3P2htTWbMqLoFwIExXALgMTU1NaWpqanqGgAAAAAAAAAAAAxgo0YV442Ojqqb1M7QocnIkdWdP2hQcv31yamnPvp46YT8Rz6XN+UZ+WmpZ/9L/iZvzmfyizy11Nz+oq0tGTas6hYAB8ZwCQAAAAAAAAAAAAD6oK6uZPPmZN26ZOPGZNu2ZOfOZNeuZPDgZMiQZPjwZNy4ZNKkYhTTV/891k1NyYQJyerVVTepnQkTqv/rM2RIcsMNycyZSfsfXKg0JL/NB/PenJPFpZ63I62ZnYW5Km9N0lBqdn/R0pLMnVt1C4ADZ7gEAAAAAAAAAAAAAH1AT09yyy3JihXJ2rXJ+vX7dwPR0KHJ+PHJ5MnJ9OnJtGlJQx/aikye3L+HS5MnV92gMGhQsnx5cswxyUUXJWM6b8vn84aMyaZSz/lepuaNuTb/neeVmtvfXHJJMmJE1S0ADlxj1QUAAAAAAAAAAAAAgEe3fXtyxRXJmDHJCSckixcXA579GS0lyY4dxecWLy5yxowpcrdvL79zLUyfXnWD2upNz9fYmJx/zp785K0fyK0NU0sdLe1Ocy7MpXlRvm209DimTk1mz666BcDBMVwCAAAAAAAAAAAAgF5o69bkzDOTI49Mzj472by53PzNm4vcI48sztm6tdz8sk2blowcWXWL2hg1Kjn++Kpb/IH//u/kr/4qf37FhWnu2VNa7N0ZnRfke/lALkxXmkvL7Y9aWpKlS5OmpqqbABwcwyUAAAAAAAAAAAAA6EX27Enmz0/Gjk2uuWb/b1baXx0dxTljxyaXX550ddX2vAPV0JDMmlV1i9qYNat4vsr19CRXXZUcc0zyve+VGr04Z2di1uW2TCw1t7+67LJk9OiqWwAcPMMlAAAAAAAAAAAAAOglNm1KjjsuueCCpLOzvmd3diZz5xbnb9pU37P31YwZSWtr1S3K1dpaPFflfv7z5JWvTN72tlLXcv+Tp+el+feck8XZmUNKy+3P2tqSc8+tugVAOQyXAAAAAAAAAAAAAKBi3d3JggXJhAnJrbdW22XNmqLHggVFr97k8MOLUUd/0taWDBtWcYkbbkiOOir5l38pNfbzactR2ZBv5qWl5vZnJ5+cLF2aNPpOf6CfaK66AAAAAAAAAAAAAAAMZLt3JzNnJu3tVTf5vc7OZM6c5I47ihHFoEFVN/q9uXOT5cvrfyNVLbS0FM9TmQceSM46K7n22lJjO4YMz7V/+amsPvLUnNhZPOeQIcnw4cXXxRcnu3aVemS/cPLJk0oVjgABAABJREFUyXXX9a7fbwAHy3AJAAAAAAAAAAAAACqyc2dy6qnJypVVN9m79vbkwQeT668vhie9wYgRySWXVDz4KckllxTPU4mbb07e9KbkJz8pN/fEE9P62c/mrU97Wt76Ry/t2ZMcd5zR0t60tfW+kSBAGVwgBwAAAAAAAAAAAAAV2L27d4+WHrFyZXLaaUXf3uLcc5MpU6pucXCmTk1mz67g4J07i4NPOKHc0dIhhySf/GTyr/+aPO1pe33LokXJrbeWd2R/0NKSLFhQ3CJmtAT0R4ZLAAAAAAAAAAAAAFBn3d3JzJm9f7T0iBtvLPp2d1fdpNDcnCxbVow++qKWluJ2naamOh+8fn0yaVKxICrTlCnJ7bcns2YlDQ17fcvWrcm8eeUe29dNnVr8JTnvvKTRd/YD/ZS/vQEAAAAAAAAAAABAnS1cmLS3V91i/7S3l793ORijRyeXXlp1iwNz2WVF/7rp6ko+9KFiKXPXXeXlNjUl739/snp18vznP+Zb589POjvLO7ova2lJLr+8+Gmr668DgAoYLgEAAAAAAAAAAABAHW3alFx0UdUtDsyFFxb9e4vZs5O2tqpb7J+2tuTcc+t44NatyfHHJ+99b7J7d3m5I0cm3/1ucY1Sc/NjvnX79r431KuF1tbkjDOK7dj551dw4xZABQyXAAAAAAAAAAAAAKBO9uxJTj+9794809mZzJxZXODTGzQ2JkuXJiedVHWTfXPyyUXfxnp8F3dPT3LNNckxxyTf+U652Wedldx2WzJ58j69ffnypKOj3Ap9yahRyRVXJPfem1x9dTJiRNWNAOrHcAkAAAAAAAAAAAAA6mTRouTWW6tucXDWrEkWLqy6xe8NGpRcf33vHy+dfHJy3XVF35r7xS+KA888M9mxo7zcI49Mvv71YoXT2rpPH+npSZYsKa9CXzB0aPKiFyXnnJPcfHNy993F1mvYsKqbAdTfY9/JBwAAAAAAAAAAAACUYuvWZN68qluUY9685JRTes/NMUOGJDfcUNwG1d5edZs/1dZW3LRUl9HSl79cDJZ+/etyc//hH5JPfjIZPny/PnbLLcmWLeVW6U1e/vLkWc8qflrGjUsmTkxGjkyamqpuBtA7GC4BAAAAAAAAAAAAQB3Mn590dlbdohydncXzXH111U1+b9CgZPny5Jhjkosu6h0/1y0tyWWXJeeemzQ21viwBx5Izj47+dznys09/PDkyiuT173ugD6+YkW5dXqbsWOLm9R4fF1dyebNybp1ycaNybZtyc6dya5dyeDBxQDxkQHYpEkGYNBfGC4BAAAAAAAAAAAAQI1t3947bwI6GO3tyYIFybBhVTf5vcbG5Pzzk1e+Mjn99OTWW6vrMnVqccvS6NF1OOyWW5IZM5Kf/KTc3Je9rHiII4884Ii1a0vs0wv19+c7GD09xS/NFSuKn6f165OOjn3//NChyfjxyeTJyfTpybRpSUNDzeoCNVLr3S4AAAAAAAAAAAAADHjLl+/fN+z3BR0dxXP1RqNHJ6tXF7dCtbTU9+yWluTyy4vzaz5a2rkzOe+85IQTyh0tDRmSfPzjyU03HdRoqaurGKv0Z+vXF8/J723fnlxxRTJmTPFLc/Hi4vfD/v49cMeO4nOLFxc5Y8YUudu3l98ZqB3DJQAAAAAAAAAAAACooZ6eZMmSqlvUxpIlxfP1Rs3NyZw5yV13JWeckbS21va81tbinLvuKm59amqq7Xm5/fbiKpqFC8v9izBpUrHGeec7iyusDsLmzf1vsPfHduxItmypukXvsHVrcuaZxdbt7LOLv/5l2ry5yD3yyOKcrVvLzQdqw3AJAAAAAAAAAAAAAGrollv677Bh8+Zk1aqqWzy2ESOSq69O7r23uK1l1Khy80eNKnLvvbc4Z8SIcvP/RFdX8uEPJ1OmJBs3lpfb1JRcfHHyne+U9pO0bl0pMb3eQHnOR7NnT3G72dixyTXX1H6s1tFRnDN2bHG7mRuvoHdrrroAAAAAAAAAAAAAAPRnK1ZU3aC2VqxIpk2rusXjGzYsOeus4iKhVauK3mvXJrfdtn9Di6FDkwkTisuOpk9Pjj8+aWioXe//44c/TGbMSFavLjf3+c9Prr22GEOVqMxdVW82UJ5zbzZtSk4/Pbn11vqf3dmZzJ2bfPnLydKlyejR9e8APD7DJQAAAAAAAAAAAACoobVrq25QW33t+RoaiqHVI2Orrq7iRqx164oByrZtyc6dxSiipSUZMiQZPjwZNy6ZODEZObK4nKiuenqSz3wmOeec5OGHy81+xzuKa2taW8vNTfFzORAMlOf8Q93dycKFyUUXFb9XqrRmTTEmvPTSZPbspLGx2j7A/2W4BAAAAAAAAAAAAAA10tWVrF9fdYvaWr++eM66j3lK0tSUjBlTfPVK992XnHFGsnJlublPfWpxTc2JJ5ab+wd27qxZdK8yUJ7zEbt3JzNnJu3tVTf5vc7OZM6c5I47il/WgwZV3Qh4hC0hAAAAAAAAAAAAANTI5s1JR0fVLWprx47ixiJq4CtfKa56Knu0dOqpxfVSNRwtJcmuXTWN7zWqvnGonnbuTE45pXeNlv5Qe3vRb6CNyaA3M1wCAAAAAAAAAAAAgBpZt67qBvUxUJ6zbh58sLjS5tWvTn71q/Jyhw0rlh1f/GLyxCeWl/soBg+u+RG9QktL1Q3qY/fuYvNW9o6ubCtXJqedVvQFqme4BAAAAAAAAAAAAAA1snFj1Q3qY6A8Z12sWpUcfXSybFm5uX/918mGDcnrX580NJSb/SiGDKnLMZUbCM/Z3V1s6Xr7aOkRN95Y9O3urroJYLgEAAAAAAAAAAAAADWybVvVDepjoDxnTXV2Juefn7z4xcmPf1xe7pAhycc+lnz968kznlFe7j4YPryux1VmIDznwoXFZV19SXt7smhR1S0AwyUAAAAAAAAAAAAAqJGdO6tuUB8D5Tlr5s47k8mTk498JOnpKS934sTkttuSd70raaz/t46PG1f3IyvR359z06bkoouqbnFgLryw6A9Ux3AJAAAAAAAAAAAAAGpk166qG9RHZ2fVDfqorq5k/vxk0qRkw4bychsbi6XJd7+bjB5dXu5+mjixsqPrqj8/5549yemn993f452dycyZxW81oBqGSwAAAAAAAAAAAABQI4MHV92gPlpaqm7QB91zT/LiFycXXJDs3l1e7l/8RbJ6dXLJJcmgQeXlHoBRo5LW1kor1NzQocnIkVW3qJ1Fi5Jbb626xcFZsyZZuLDqFjBwGS4BAAAAAAAAAAAAQI0MGVJ1g/oYKM9Zip6e5LOfTY4+Ovn2t8vNfvvbk9tvT17wgnJzD1BTUzJhQtUtamvChOI5+6OtW5N586puUY5584rnAerPcAkAAAAAAAAAAAAAamT48Kob1MdAec6Ddv/9yatelbz5zcnDD5eX+5SnJP/yL8mSJcUVQL3I5MlVN6it/vx88+cnnZ1VtyhHZ2fxPED9GS4BAAAAAAAAAAAAQI2MG1d1g/oYKM95UFasKH6ibryx3NzXvjbZuDH5m78pN7ck06dX3aC2+uvzbd+etLdX3aJc7e3JAw9U3QIGHsMlAAAAAAAAAAAAAKiRiROrblAfA+U5D8hDDxU3LL3qVckvf1le7rBhybXXJtdfn/zZn5WXW7Jp05KRI6tuURujRiXHH191i9pYvjzp6Ki6Rbk6OornAurLcAkAAAAAAAAAAAAAamTUqKS1teoWtTV0aP8dphy0//zP5Jhjks9+ttzcl7wk2bAhecMbkoaGcrNL1tCQzJpVdYvamDWr1//0H5CenmTJkqpb1MaSJcXzAfVjuAQAAAAAAAAAAAAANdLUlEyYUHWL2powoXhO/kBnZzJ3bnHd0D33lJfb0pJ89KPJv/978oxnlJdbYzNm9L8BX2tr8Vz90S23JFu2VN2iNjZvTlatqroFDCzNVRcAAAAAAAAAAAAAgP5s8uRk9eqqW9TO/fcnb3xjMmRIMnx4Mm5cMmlScQvTgBw0PXIT0p13lps7YULy+c8nY8aUm1sHhx+etLUl11xTdZPytLUlw4ZV3aI2VqyoukFtrVhRbAqB+jBcAgAAAAAAAAAAAIAamj49Wby46ha184MfFF9/bOjQZPz4Yrg1fXoxFGhoqHu9+unqShYtSi68MNm1q7zcxsbkPe9J5s1LBg8uL7fO5s5Nli8vLqPq61paiufpr9aurbpBbfX354PeprHqAgAAAAAAAAAAAADQn02bVtw+NNDs2FHcNLV4cXLCCcVFQVdckWzfXnWzGvjRj5KXvCSZM6fc0dKIEcm3v51cdlmfHi0lxaNccknVLcpxySXF8/RHXV3J+vVVt6it9euL5wTqw3AJAAAAAAAAAAAAAGqooSGZNavqFtXbvDk5++zkyCOTM89Mtm6tulEJenqSZcuSo49OVq0qN/utb01uvz154QvLza3QuecmU6ZU3eLgTJ2azJ5ddYva2bw56eioukVt7diRbNlSdQsYOAyXAAAAAAAAAAAAAKDGZsxIWlurbtE7dHQk11yTjB2bXH55H7755Je/TF7zmmTmzOShh8rLffKTk69+NfnUp5JDDy0vtxdobi52Xi0tVTc5MC0tydKlSVNT1U1qZ926qhvUx0B5TugNDJcAAAAAAAAAAAAAoMYOPzxpa6u6Re/S2ZnMnZscd1yyaVPVbfbTV7+ajBuXfOUr5eaeckqycWPyd39Xbm4vMnp0cumlVbc4MJddVvTvzzZurLpBfQyU54TewHAJAAAAAAAAAAAAAOpg7ty+e9NMLa1Zk0yYkCxYkHR3V93mcTz0UHLGGclJJyX3319e7mGHJcuXJ//8z8mTnlRebi81e3bfG/K1tSXnnlt1i9rbtq3qBvUxUJ4TegPDJQAAAAAAAAAAAACogxEjkksuqbpF79TZmcyZk8yYkezeXXWbR7F6dTJ+fPLpT5eb++IXJ3fembzxjUlDQ7nZvVRjY7J0abH/6gtOPrno2zgAvvt+586qG9THQHlO6A0GwN86AQAAAAAAAAAAAKB3OPfcZMqUqlv0Xu3tySmn9LJRwa5dyXvekxx/fPLDH5aX29KSLFqUfPObybOeVV5uHzFoUHL99b1/vHTyycl11xV9B4Jdu6puUB+dnVU3gIHDcAkAAAAAAAAAAAAA6qS5OVm2rNissHcrVyanndZLbl7auDGZOjX58IeT7u7ycsePT77//eSccwbGNT6PYsiQ5IYbkra2qpvsXVtb8qUvFT0HisGDq25QH/4eDPXTXHUBAAAAAAAAAAAAABhIRo9OLr00mTOn6ia91403Jq9+dfLa1yZ3351s21bcwrRrVzGsGDIkGT48GTcumTQpGTkyaWoqsUB3d7J4cXHTUplX0DQ2JnPnJu9738BZiDyOQYOS5cuTY45JLrqod9yE09KSXHZZcUPaQNuVDZSR1kB5TugNDJcAAAAAAAAAAAAAoM5mz07uuCNpb6+6Se/1ta8VX/ti6NDiEqPJk5Pp05Np05KGhgM8+Mc/Tk4/Pbn55gMMeBTPfW6x0DnuuHJz+4HGxuT885NXvrL4qb/11uq6TJ2aLF1aDAwHouHDq25QHwPlOaE3GGD7TwAAAAAAAAAAAACoXmNjMY446aSqm/QPO3Ykq1cXlySdcEIyZkxyxRXJ9u37EdLTUwyLjj66/NHSGWcUSzWjpcc0enTx13H+/OLWo3pqaUkuv7w4f6COlpLiFrOBYKA8J/QGhksAAAAAAAAAAAAAUIFBg5LrrzdeqoXNm5Ozz06OPDI588xk69bH+cCvfpW89rXJm96UPPhgeUWe/ORk5crk6quTQw8tL7cfa25O5sxJ7rqr2Hu1ttb2vNbW4py77ipufWpqqu15vd3EiVU3qI+B8pzQGxguAQAAAAAAAAAAAEBFhgxJbrghaWurukn/1NGRXHNNMnZscZtOV9de3vS1rxXXr3z5y+Ue/upXJxs2JK98Zbm5A8SIEcXe6957i9uzRo0qN3/UqCL33nuLc0aMKDe/rxo1qvZjsaoNHZqMHFl1Cxg4DJcAAAAAAAAAAAAAoEKDBiXLlxfDmpaWqtv0T52dydy5yXHHJZs2/e8PPvxw8ta3FsOi++4r77AnPCFZtqxYpB1xRHm5A9SwYclZZyV3353cfHNyzjnJi160/+OaoUOLz51zTpFz991F7rBhtWjddzU1JRMmVN2itiZMcLMW1FNz1QUAAAAAAAAAAAAAYKBrbEzOP7/Y0Jx+enLrrVU36p/WrClGC59583fy+n+bkYatW8s94Pjjk899Lnn2s8vNJQ0NybRpxVdS3J61ZUuybl2ycWOybVuyc2cxUmtpKW4zGz68uExr4sTihh1jlX0zeXKyenXVLWpn8uSqG8DAYrgEAAAAAAAAAAAAAL3E6NHFYGDRomTevGKEQXkGZVcu6nx/Xrfkw2lId3nBgwcnH/xgcZ1PY2N5uTyqpqZkzJjii3JNn54sXlx1i9qZPr3qBjCw+E9FAAAAAAAAAAAAAOhFmpuTOXOSu+5KzjgjaW2tulH/MCZ35Xt5Qf6/fDBNZY6Wjjkm+f73k9mzjZboF6ZNK26o6o9GjSouRgPqx38yAgAAAAAAAAAAAEAvNGJEcvXVyb33JldcUXzDPfuvId15dz6adZmYY7O+xOCGZO7cZM2a5KijysuFijU0JLNmVd2iNmbNKp4PqB/DJQAAAAAAAAAAAADoxYYNS846K7n77uTmm5Nzzkle9CI3Me2LZ+Qn+UZemo/m3AxJZ3nBz3lOsmpV8uEPJy0t5eVCLzFjRv/7e0xra/FcQH01V10AAAAAAAAAAAAAAHh8DQ3JtGnFV5J0dSVbtiTr1iUbNybbtiU7dybf+17yX/9Vbdfq9aQt7flk3pFhebDc6De/OfnoR5MnPKHcXOhFDj88aWtLrrmm6iblaWsrhqBAfRkuAQAAAAAAAAAAAEAf1NSUjBlTfP2hF71oYA+Xnphf51N5W/4+Xyo3+Igjkk9/Ojn55HJzoZeaOzdZvjzpLPGysqq0tBTPA9RfY9UFAAAAAAAAAAAAAIBydHUl69dX3aI6r8i/ZmPGlT9amj69uNbKaIkBZMSI5JJLqm5RjksuKZ4HqD/DJQAAAAAAAAAAAADoJzZvTjo6qm5Rf63ZkSV5e/41f5un5hflBR96aPLZzyb/7/8lf/7n5eVCH3HuucmUKVW3ODhTpyazZ1fdAgYuwyUAAAAAAAAAAAAA6CfWrau6Qf1Nzfdye8bn7flUucF/9VfJnXcmM2cmDQ3lZkMf0dycLFuWtLRU3eTAtLQkS5cmTU1VN4GBy3AJAAAAAAAAAAAAAPqJjRurblA/zdmdS3JRVue4PC//XVpuZwbnhinzk299K3nOc0rLhb5q9Ojk0kurbnFgLrus6A9Ux3AJAAAAAAAAAAAAAPqJbduqblAfo7Ip38sLclEuS1O6S8u9M0dlctZmxsY5eeBhV7TAI2bPTtraqm6xf9raknPPrboFYLgEAAAAAAAAAAAAAP3Ezp1VN6ithnTnXflYbsuxmZjbSsvtTkMuz/mZnLXZkKPT0ZEsX15aPPR5jY3J0qXJSSdV3WTfnHxy0bfRYgIq57chAAAAAAAAAAAAAPQTu3ZV3aB2np7/ydfz8nws784hKW+hdU+enRfn5szN5dmVlt/9+JIlSU9PacdAnzdoUHL99b1/vHTyycl11xV9geoZLgEAAAAAAAAAAABAPzF4cNUNaqEnr097NuSovDTfLDX5M/nHHJM78p85/k9e27w5WbWq1OOgzxsyJLnhhqStreome9fWlnzpS0VPoHcwXAIAAAAAAAAAAACAfqK/fbP+8PwmX8zr0p435PA8UFru/Tki0/OVvCWfyUM57FHft2JFaUdCvzFoULJ8eXL55UlLy+O/vx5aWpIFC4peblqC3sVwCQAAAAAAAAAAAAD6ieHDq25QnhNzUzZmXE7L9aXmrsjJGZeNuTHTH/e9a9eWejT0G42NyfnnJ+vXJ1OmVNtl6tSix3nnFb2A3sVvSwAAAAAAAAAAAADoJ8aNq7rBwWvNjnwi78hN+Zs8LT8vLfehHJo359N5Vb6SX+bP9+kz69cnXV2lVYB+Z/ToZPXqZP78+t++1NJS3Pq0enXRA+idDJcAAAAAAAAAAAAAoJ+YOLHqBgdnStZkfSbkHVlSau5/5kU5Jnfks3lzkoZ9/tyOHcmWLaVWgX6nuTmZMye5667kjDOS1tbantfaWpxz113FrU9NTbU9Dzg4hksAAAAAAAAAAAAA0E+MGlX70UAtNGd33peLszrH5fn5r9Jyd2VQ5ubDeXFuzj157gFlrFtXWh3o10aMSK6+Orn33uSKK4q/H5Vp1Kgi9957i3NGjCg3H6iN5qoLAAAAAAAAAAAAAADlaGpKJkxIVq+uusm+G5nNuTZvzOR8v9TcDRmXN+TzuTPHHFTOxo0lFYIBYtiw5Kyzkne+M1m1KlmxIlm7NrnttqSjY99zhg4t/n42eXIyfXpy/PFJw75fmAb0EoZLAAAAAAAAAAAAANCPTJ7cN4ZLDenOO/LJXJ45OSQ7S8vtTkMWZnYuyqXpzJCDztu2rYRSMAA1NCTTphVfSdLVlWzZUtxitnFj8Xtr586kszNpaUmGDEmGD0/GjUsmTkxGjizGmEDfZrgEAAAAAAAAAAAAAP3I9OnJ4sVVt3hsR+anWZqZeVm+UWruj/KsvCmfy6pMKy1zZ3mbKhjQmpqSMWOKL2DgaKy6AAAAAAAAAAAAAABQnmnTiptKeqvX5QvZkKNKHy0tzek5OneWOlpKittgAIADY7gEAAAAAAAAAAAAAP1IQ0Mya1bVLf7U8PwmX8jr8oW8PsOzvbTcX+ZJeXW+nH/M0jyUw0rLfURLS+mRADBgGC4BAAAAAAAAAAAAQD8zY0bS2lp1i997Wb6eDTkqr8t1peauzCtzVDbkK3l1qbl/aMiQmkUDQL9nuAQAAAAAAAAAAAAA/czhhydtbVW3SA5JR67IWfl6TsyRube03IczNG/JNTk5N+a+PKW03L0ZPrym8QDQrxkuAQAAAAAAAAAAAEA/NHdu0tJS3fmTsja35diclU+Umrs6f5ljckc+k7ckaSg1e2/Gjav5EQDQbxkuAQAAAAAAAAAAAEA/NGJEcskl9T+3ObszL+/Pd/PCjMqW0nJ3ZVAuyIdyfFblhxlRWu7jmTixbkcBQL9juAQAAAAAAAAAAAAA/dS55yZTptTvvOdnS1bnuLw/70tzukrL3ZixmZJbMz8XpDtNpeU+nqFDk5Ej63YcAPQ7hksAAAAAAAAAAAAA0E81NyfLliUtLbU+qSez8smsz4RMydrSUrvTkI9kdibl+7kj40vL3VcTJiRN9dtJAUC/Y7gEAAAAAAAAAAAAAP3Y6NHJpZfWLv9p+Vluyivyybwzrfltabk/zjPzkvxHzs9H0pkhpeXuj8mTKzkWAPoNwyUAAAAAAAAAAAAA6Odmz07a2srPPTXXZUOOyon5eqm5n8uMHJ07c0teXGru/po+vdLjAaDPM1wCAAAAAAAAAAAAgH6usTFZujQ56aRy8g7PtrTn9bkur8sTs62c0CS/yp/lNbkhp+dzeTDDSss9EKNGJccfX2kFAOjzDJcAAAAAAAAAAAAAYAAYNCi5/vqDHy/9db6RDTkqr88Xyin2v76Wv824bMz/y2tKzT1Qs2YlDQ1VtwCAvs1wCQAAAAAAAAAAAAAGiCFDkhtuSNra9v+zh6QjH8u78o28LE/Pz0rr9HCG5sxclVfmq7kvTykt92C0tiYzZlTdAgD6PsMlAAAAAAAAAAAAABhABg1Kli9PLr88aWnZt89MzPezLhPzrny81C7fyQszPrfnmpyZpPdcb9TWlgwbVnULAOj7DJcAAAAAAAAAAAAAYIBpbEzOPz9Zvz6ZMuXR39eUPbkol+S7eWFGZ3Np5+9Oc96bD+T4rMrW/EVpuWVoaUnmzq26BQD0D4ZLAAAAAAAAAAAAADBAjR6drF6dzJ//p7cvPS8/yLfzolySizMoe0o7866MydSsyYfy3nSlubTcslxySTJiRNUtAKB/MFwCAAAAAAAAAAAAgAGsuTmZMye5667kjDOS1kN68rZcmdszPi/ImlLPWpRzMinfz/ocW2puWaZOTWbPrroFAPQfvW+iDAAAAAAAAAAAAADU3YgRydXvuzefvOfNGfSNm0rN/kmekdOzLN/KS0rNLVNLS7J0adLUVNtzurqSzZuTdeuSjRuTbduSnTuTXbuSwYOTIUOS4cOTceOSSZOSkSNr3wkAasVwCQAAAAAAAAAAAABI/vmfk7e9LYN+85tSY6/NG3JWPp4HcnipuWW77LJk9Ojyc3t6kltuSVasSNauTdavTzo69v3zQ4cm48cnkycn06cn06YlDQ3l9wSAWjBcAgAAAAAAAAAAAICBbPv25J3vTNrbS439dZ6Yt+aq3JDXlppbC21tybnnlpu5fXuyfHly5ZXFDUsHaseOZPXq4mvx4mTUqOTtb09mzEgOP7yksgBQI41VFwAAAAAAAAAAAAAAKvLNbyZHHVX6aKn7FX+Tc1+2sU+Mlk4+OVm6NGks6Turt25NzjwzOfLI5OyzD260tDebNxe5Rx5ZnLN1a7n5AFAmwyUAAAAAAAAAAAAAGGh++9vk3e9OXvrS5Kc/LS+3tTW58so0/svXctWNT81JJ5UXXQsnn5xcd10yaNDBZ+3Zk8yfn4wdm1xzTdLRcfCZj6Wjozhn7Njk8suTrq7angcAB8JwCQAAAAAAAAAAAAAGknXrkokTk499rNzcqVOT229P3va2pKEhQ4YkN9yQtLWVe0xZ2tqSL30pGTLk4LM2bUqOOy654IKks/Pg8/ZHZ2cyd25x/qZN9T0bAB6P4RIAAAAAAAAAAAAADAR79iSXXZa84AXlLlyam5NLL02+/e3kec/7Py8NGpQsX17cCNTSUt6RB6OlJVmwoOh1sDctdXcXWRMmJLfeWk6/A7VmTdFjwYKiFwD0BoZLAAAAAAAAAAAAANDf/dd/JX/1V8lFFxUDprKMGpV873vJhRcWA6a9aGxMzj8/Wb8+mTKlvKMPxNSpRY/zzit6HYzdu5MZM5I5c+p/y9Kj6ews+syYUfQDgKoZLgEAAAAAAAAAAABAf9XTk3zqU8n48cXAqExnn53cdlsyceI+vX306GT16mT+/PrfvtTSUtz6tHp10eNg7dyZnHJK0t5+8Fm10N5e9Nu5s+omAAx0hksAAAAAAAAAAAAA0B/9/OfJ3/1d8va3Jx0d5eU+/enJv/97snhxcsgh+/XR5ubiRqC77krOOCNpbS2v1t60thbn3HVXcetTU9PBZ+7enZx6arJy5cFn1dLKlclpp7l5CYBqGS4BAAAAAAAAAAAAQH/zpS8lRx2V/Ou/lpvb1pZs2JC89KUHFTNiRHL11cm99yZXXJGMGlVSv/81alSRe++9xTkjRpST292dzJzZ+0dLj7jxxqJvd3fVTQAYqJqrLgAAAAAAAAAAAAAAlOSBB5Kzzkquvbbc3OHDk099qrhqqETDhhV13/nOZNWqZMWKZO3a5Lbb9u+SqKFDkwkTksmTk+nTk+OPTxoaSq2aJFm4MGlvLz+3ltrbk/Hjk/POq7oJAAOR4RIAAAAAAAAAAAAA9Af/8R/J6acn//M/5eaeeGLy2c8mT3taubl/oKEhmTat+EqSrq5ky5Zk3bpk48Zk27Zk586kszNpaUmGDCm2VOPGJRMnJiNHJk1NNauXJNm0KbnootqeUSsXXpj83d8lo0dX3QSAgcZwCQAAAAAAAAAAAAD6sp07k/e+N/noR8vNPeSQ5CMfSd7+9tpcX/QYmpqSMWOKr95gz55iE9bZWXWTA9PZmcycmaxeXfuBFwD8ocaqCwAAAAAAAAAAAAAAB2j9+uLKobJHS1OmJLffnsyaVffRUm+0aFFy661Vtzg4a9YkCxdW3QKAgcZwCQAAAAAAAAAAAAD6mj17kg9+sBgY3X13eblNTcn7319czfP855eX24dt3ZrMm1d1i3LMm1c8DwDUS3PVBQAAAAAAAAAAAACA/fDf/53MmJF897vl5o4cmVx7bTJ5crm5fdz8+UlnZ9UtytHZmbziFcmxxyaDBydDhiTDhyfjxiWTJhW/BJqaqm4JQH9iuAQAAAAAAAAAAAAAfUFPT3LNNcm55yY7dpSbfdZZyYc/nLS2lpvbx23fnrS3V92iXP/938XX3gwdmowfX2zXpk9Ppk1LGhrqWg+Afqax6gIAAAAAAAAAAAAAwOP4xS+Sk05K3vrWckdLRx6ZfP3ryRVXGC3txfLlSUdH1S3qZ8eOZPXqZPHi5IQTkjFjil8a27dX3QyAvspwCQAAAAAAAAAAAAB6sy9/ORk3Lvna18rN/Yd/SDZsSF72snJz+4menmTJkqpbVGvz5uTss4t925lnJlu3Vt0IgL7GcAkAAAAAAAAAAAAAeqMHHkje9KbklFOSX/+6vNzDD0++8IXkn/4pGT68vNx+5pZbki1bqm7RO3R0JNdck4wdm1x+edLVVXUjAPoKwyUAAAAAAAAAAAAA6G1uvjk5+uhk+fJyc1/2smTjxuR1rys3tx9asaLqBr1PZ2cyd25y3HHJpk1VtwGgLzBcAgAAAAAAAAAAAIDeYufOZPbs5CUvSX7yk/JyDzkk+fjHk5tuSo48srzcfmzt2qob9F5r1iQTJiQLFiTd3VW3AaA3a666AAAAAAAAAAAAAACQ5Pbbkze8IbnrrnJzJ09Orr02GTmy3Nx+rKsrWb++6ha9W2dnMmdOcscdydKlyaBBVTcCoDdy4xIAAAAAAAAAAAAAVKmrK/nQh5IpU8odLTU1JRdfnKxebbS0nzZvTjo6qm7RN7S3J6ecUlwWBgB/zHAJAAAAAAAAAAAAAKrywx8m06Yl731vsnt3ebnPf37yne8k73ufq3AOwLp1VTfoW1auTE47rdxfwgD0D4ZLAAAAAAAAAAAAAFBvPT3Jpz+dHH10cSNSmd7xjmT9+uIGJw7Ixo1VN+h7brwxmTkz6e6uugkAvYnhEgAAAAAAAAAAAADU0333JdOnJ2eckezYUV7uU5+a3HRT8olPJK2t5eUOQNu2Vd2gb2pvTxYtqroFAL2J4RIAAAAAAAAAAAAA1MtXvpKMG5esXFlu7mmnFdcEnXhiubkD1M6dVTfouy68MNm0qeoWAPQWhksAAAAAAAAAAAAAUGsPPpjMnJm8+tXJr35VXu7hhyf/9E/JF7+YPPGJ5eUOcLt2Vd2g7+rsLH6pd3VV3QSA3sBwCQAAAAAAAAAAAABqadWq5Oijk2XLys196UuTDRuSf/iHcnPJ4MFVN+jb1qxJFi6sugUAvYHhEgAAAAAAAAAAAADUQmdncv75yYtfnPz4x+XlDhmSXHFF8m//ljz96eXl8jtDhlTdoO+bNy/ZurXqFgBUzXAJAAAAAAAAAAAAAMp2553J5MnJRz6S9PSUlztxYnLbbclZZyWNvhW4VoYPr7pB39fZmcyfX3ULAKrmn1YAAAAAAAAAAAAAoCxdXcVaY9KkZMOG8nKbmoorbL773WT06PJy2atx46pu0D+0tycPPFB1CwCqZLgEAAAAAAAAAAAAAGW4557kxS9OLrgg2b27vNznPS9ZvTp5//uTQYPKy+VRTZxYdYP+oaMjWb686hYAVMlwCQAAAAAAAAAAAAAORk9P8tnPJkcfnXz72+Vmv/3tyfr1ydSp5ebymEaNSlpbq27RPyxZUvwWAWBgMlwCAAAAAAAAAAAAgAN1//3Jq16VvPnNycMPl5f71Kcm//qvxepj6NDyctknTU3JhAlVt+gfNm9OVq2qugUAVTFcAgAAAAAAAAAAAIADsWJFMm5ccuON5eb+/d8nGzYkr3hFubnsl8mTq27Qf6xYUXUDAKpiuAQAAAAAAAAAAAAA++Ohh4obll71quSXvywvd9iw5POfT667LvmzPysvlwMyfXrVDfqPtWurbgBAVQyXAAAAAAAAAAAAAGBfffvbyTHHJJ/9bLm5L3lJcctSW1vS0FBuNgdk2rRk5MiqW/QP69cnXV1VtwCgCoZLAAAAAAAAAAAAAPB4OjuTuXOT449P7rmnvNwhQ5LFi5N///fkGc8oL5eD1tCQzJpVdYv+YceOZMuWqlsAUAXDJQAAAAAAAAAAAAB4LBs2JFOmJJdfnvT0lJd77LHJunXJ2Wcnjb6ttzeaMSNpba26Rf+wbl3VDQCogn/CAQAAAAAAAAAAAIC96epKPvKRZNKk5M47y8ttbEwuvDD57neTMWPKy6V0hx+etLVV3aJ/2Lix6gYAVMFwCQAAAAAAAAAAAAD+2I9+lLzkJcn55ye7dpWX+xd/kXz728mllyaDB5eXS83MnZu0tFTdou/btq3qBgBUwXAJAAAAAAAAAAAAAB7R05MsW5YcfXSyalW52W97W3L77ckLX1huLjU1YkRyySVVt+j7du6sugEAVTBcAgAAAAAAAAAAAIAk+eUvk9e8Jpk5M3noofJyn/KU5GtfS668Mhk6tLxc6ubcc5MpU6pu0bd1dlbdAIAqGC4BAAAAAAAAAAAAwFe/mowbl3zlK+XmnnJKsmFD8rd/W24uddXcXFzE1dJSdZO+y88dwMBkuAQAAAAAAAAAAADAwPXQQ8kZZyQnnZTcf395uYcdlixfnvzzPydPelJ5uVRm9Ojk0kurbtF3DRlSdQMAqmC4BAAAAAAAAAAAAMDAtHp1Mn588ulPl5t7wgnFLUtvfGPS0FBuNpWaPTtpa6u6Rd80fHjVDQCoguESAAAAAAAAAAAAAAPLrl3Je96THH988sMflpfb0pIsWpR84xvJM59ZXi69RmNjsnRpcUEX+2fcuKobAFAFwyUAAAAAAAAAAAAABo6NG5OpU5MPfzjp7i4vd/z4ZN265JxzinUL/dagQcn11xsv7a+JE6tuAEAV/FMRAAAAAAAAAAAAAP1fd3dxG9LEicntt5eX29iYvPe9yZo1ydix5eXSqw0ZktxwQ9LWVnWTvmHo0GTkyKpbAFCF5qoLAAAAAAAAAAAAAEBN/fjHyemnJzffXG7uc5+bXHtt8pd/WW4ufcKgQcny5ckxxyQXXZR0dlbdqPeaMCFpaqq6BQBVcOMSAAAAAAAAAAAAAP1TT0+xLDn66PJHS2eemdxxh9HSANfYmJx/frJ+fTJlStVteq/Jk6tuAEBVDJcAAAAAAAAAAAAA6H9+9avkta9N3vSm5MEHy8t98pOTlSuTq65KDj20vFz6tNGjk9Wrk/nzk5aWqtv0PtOnV90AgKoYLgEAAAAAAAAAAADQv3zta8m4ccmXv1xu7qtfnWzYkLzyleXm0i80Nydz5iR33ZWccUbS2lp1o95h1Kjk+OOrbgFAVQyXAAAAAAAAAAAAAOgfHn44eetbi2HRffeVl/uEJyTLliU33JAccUR5ufRLI0YkV1+d3HtvcsUVxXBnIJs1K2loqLoFAFVprroAAAAAAAAAAAAAAANLV1eyeXOybl2ycWOybVuyc2eya1cyeHAyZEgyfHhxadKkScnIkUlT0+OEfuc7yYwZydat5ZadNi353OeSZz2r3Fz6vWHDkrPOSt75zmTVqmTFimTt2uS225KOjqrb1Udra/HbEoCBy3AJAAAAAAAAAAAAgJrq6UluueX3w4316/dvuDF0aDJ+fDJ5cjJ9erEl+t0NLrt2Je9/f/LhDyfd3eWVHjw4+eAHk3POSRoby8tlwGloKH7NTptW/N9dXcmWLX863OvsLEZN//3f1fYtU1tbMeACYOAyXAIAAAAAAAAAAACgJrZvT5YvT668srhh6UDt2JGsXl18LV6cjBqVvP3tyemT78ph73hjsYQq0zHHJJ//fHHlE5SsqSkZM6b4+mNbtyZjxxYjpr6upSWZO7fqFgBUzfwbAAAAAAAAAAAAgFJt3ZqceWZy5JHJ2Wcf3Ghpb7Zs7s49Z380g/9yYrmjpcbG5IILkjVrjJaoxIgRySWXVN2iHJdcUjwPAAObG5cAAAAAAAAAAAAAKMWePcnChcnFF9fuxphn5CdZltPzknyr3ODnPre4Huq448rNhf107rnJDTckt95adZMDN3VqMnt21S0A6A3cuAQAAAAAAAAAAADAQdu0qdj8XHBBrUZLPXlDrs2GHFX+aOktb0luv91oiV6huTlZtixpaam6yYFpaUmWLk2amqpuAkBvYLgEAAAAAAAAAAAAwAHr7k4WLEgmTKjdDTFPzK9zfU7NtZmRYXmwvOA///PkxhuTa65JnvCE8nLhII0enVx6adUtDsxllxX9ASAxXAIAAAAAAAAAAADgAO3encyYkcyZU6tblpJX5F+zMePy9/lSucGvelWycWNy0knl5kJJZs9O2tqqbrF/2tqSc8+tugUAvYnhEgAAAAAAAAAAAAD7befO5JRTkvb22uS3ZkeW5O351/xtnppflBf8hCckS5cmX/5ycsQR5eVCyRobi1+qfWVbd/LJRd9G36EOwB/wHwsAAAAAAAAAAAAA7Jfdu5NTT01WrqxN/tR8L7dnfN6eT5UbfPzxyZ13JqefnjQ0lJsNNTBoUHL99b1/vHTyycl11xV9AeAPNVddAAAAAAAAAAAAAKCv6OpKNm9O1q1LNm5Mtm0rbh7atSsZPDgZMiQZPjwZNy6ZNCkZOTJpaqq6dbm6u5OZM2szWmrO7szLJXlvPpimdJeWu7txcJo+/IE0nntO//sLQr83ZEhyww3F77ta3XB2MNraipuWjJYA2BvDJQAAAAAAAAAAAIBH0dOT3HJLsmJFsnZtsn590tGx758fOjQZPz6ZPDmZPj2ZNq3vX/SzcGFtxhOjc3euzRszMbeVmntHjs4bu6/NjIajc57NEn3UoEHJ8uXJMcckF12UdHZW3ShpaUkuuyw599yksbHqNgD0Vv4jAgAAAAAAAAAAAOCPbN+eXHFFMmZMcsIJyeLFyerV+zdaSpIdO4rPLV5c5IwZU+Ru315+53rYtKkYTZSpId15Vz6W23JsqaOl7jRkfuZkSm7NhhydCy8s+kNf1diYnH9+MaCcMqXaLlOnFj3OO89oCYDH5j8mAAAAAAAAAAAAAP7X1q3JmWcmRx6ZnH12snlzufmbNxe5Rx5ZnLN1a7n5tbRnT3L66eXe9PL0/E++npfnY3l3hqS84Hvy7EzLLbkg87MrLUmK3jNnJl1dpR0DlRg9uhhEzp9f3HpUTy0tyeWXF+ePHl3fswHomwyXAAAAAAAAAAAAgAFvz55iBDB2bHLNNft/s9L+6ugozhk7thgB9IUxzaJFya23lpXWk9enPRtyVF6ab5YVmiT5TP4xx+SOfDt/9SevrVmTLFxY6nFQiebmZM6c5K67kjPOSFpba3tea2txzl13Fbc+NTXV9jwA+g/DJQAAAAAAAAAAAGBA27QpOe645IILyr1NaF90diZz5xbnb9pU37P3x9atybx55WQ9Mb/OdTkt7XlDDs8D5YQmuT9HZHq+krfkM3kohz3q++bN61s3XcFjGTEiufrq5N57kyuuSEaNKjd/1Kgi9957i3NGjCg3H4D+z3AJAAAAAAAAAAAAGJC6u5MFC5IJE8q8SejArFlT9FiwoOjV28yfX86o68TclA05Kqfmnw8+7A+syMkZl425MdMf972dncXzQH8ybFhy1lnJ3XcnN9+cnHNO8qIX7f9NTEOHFp8755wi5+67i9xhw2rRGoCBoLnqAgAAAAAAAAAAAAD1tnt3MnNm0t5edZPf6+xM5sxJ7rgjWbo0GTSo6kaF7dsP/uepNTuyIOdnVq4spdMjHsqhOTsfy9LMTNKwz59rby9GYsYY9DcNDcm0acVXknR1JVu2JOvWJRs3Jtu2JTt3Fn+/aWlJhgxJhg9Pxo1LJk5MRo5MmpqqfQYA+hfDJQAAAAAAAAAAAGBA2bkzOfXUZOXKqpvsXXt78uCDyfXXF6OCqi1fnnR0HPjnp2RNrs0b8/z8V3mlkvxnXpQ35XO5J8/d7892dBTPddZZpVaCXqepKRkzpvgCgCo0Vl0AAAAAAAAAAAAAoF527+7do6VHrFyZnHZa0bdKPT3JkiUH9tnm7M77My+rc1ypo6VdGZQ5mZ8X5+YDGi09YsmS4vkAAKgdwyUAAAAAAAAAAABgQOjuTmbO7P2jpUfceGPRt7u7ug633JJs2bL/nxuZzfluXph5uTTN6Sqtz505KpOzNgsyJ91pOqiszZuTVatKKgYAwF4ZLgEAAAAAAAAAAAADwsKFSXt71S32T3t7smhRdeevWLF/729Id87KFVmfCZmUdaX16E5DLs/5mZy1uTPHlJa7v88HAMD+MVwCAAAAAAAAAAAA+r1Nm5KLLqq6xYG58MKifxXWrt339x6Zn+bfcmKuyNk5JDtL6/CjPCsn5FuZm8uzKy2l5Sb793wAAOw/wyUAAAAAAAAAAACgX9uzJzn99KSzs+omB6azM5k5M+nqqu+5XV3J+vX79t7X5QvZkKPysnyj1A5Lc3qOzp1ZlWml5j5i/fr6/7wCAAwkzVUXgN7gRz/6Ub7//e//7mvdunXZvn37Y36mp6enPuVqZPfu3Tn22GOzcePGx33vtGnTcvPNN9e+FAAAAAAAAAAAQA0sWpTcemvVLQ7OmjXJwoXJnDn1O3Pz5qSj47HfMzy/yZLMyutyXaln/zJPypm5Ol/Jq0vN/WM7diSvfnXy5Ccnw4cn48YlkyYlI0cmTU01PRoAYEAwXGLA+elPf/onI6Vf/epXVdequw996EP7NFoCAAAAAAAAAADoy7ZuTebNq7pFOebNS045JRkxoj7nrVv32K+/PP+Wz+Yfc2TuLfXclXll3pJP5/48udTcRz1v5Z/+2NChyfjxyeTJyfTpybRpSUNDXeoAAPQrhkv0a/fdd1/Wrl37f4ZK9913X9W1Krdp06Z88IMfrLoGAAAAAAAAAABAzc2fn3R2Vt2iHJ2dxfNcfXV9znu0fzf2IenI/MzNWflEqec9nKF5dxbnM3lzkmpXQjt2JKtXF1+LFyejRiVvf3syY0Zy+OGVVgMA6FMMl+jXTjzxxNxxxx1V1+hVenp6csYZZ6Szv/xJHAAAAAAAAAAA4FFs3560t1fdolzt7cmCBcmwYbU/a9u2P/2xSVmbz+cNGZkflHrW6vxlZmR5fpg6XSe1nzZvTs4+O3nPe5K2tmTu3PrdfAUA0Jc1Vl0AqK8rr7wyq1evrroGAAAAAAAAAABAzS1fnnR0VN2iXB0dxXPVw86dv//fm7M7F+d9+W5eWOpoaVcG5YJ8KMdnVa8dLf2hjo7kmmuSsWOTyy9PurqqbgQA0LsZLsEA8rOf/Szvec97qq4BAAAAAAAAAABQcz09yZIlVbeojSVLiuertV27iv/5/GzJ6hyX9+X9aU55S52NGZspuTXzc0G601Rabj10dha3Lh13XLJpU9VtAAB6L8MlGEBmzZqVBx98sOoaAAAAAAAAAAAANXfLLcmWLVW3qI3Nm5NVq2p/zuBBPXlHPpH1mZApWVtabnca8pHMzqR8P3dkfGm5VVizJpkwIVmwIOnurroNAEDvY7gEf+TZz352Xv7yl1ddo3TXX399brzxxr2+9tznPrfObQAAAAAAAAAAAGprxYqqG9RWzZ/vZz/LBTe/Ip/IWWnNb0uL/XGemZfkP3J+PpLODCktt0qdncmcOcmMGcnu3VW3AQDoXQyXGNCe8Yxn5NWvfnUuu+yy3HTTTfnVr36Ve+65J1dddVXV1Uq1bdu2vOtd79rra8997nNz3nnn1bkRAAAAAAAAAABAba0t74KgXqmmz3fddclRR2Xsz75eauyyvClH587ckheXmttbtLcnp5yS7NxZdRMAgN6jueoCUC9Pe9rTMmnSpEyaNCkTJ07M5MmTc8QRR1Rdqy5mz56d++67b6+vLVmyJD//+c/r3AgAAAAAAAAAAKB2urqS9eurblFb69cXz9nUVGLotm3JO96RfOELJYYmv8qf5cxcnf+X15Sa2xutXJmcdlrypS8lgwZV3QYAoHqGS/RrZ511Vp785Cdn0qRJecpTnlJ1nUr8x3/8R5YuXbrX1173utflxBNPzLJly+pbCgAAAAAAAAAAoIY2b046OqpuUVs7diRbtiRjxpQU+I1vJKefnvzsZyUFFr6Wv82b85ncl4HzPXw33pjMnJksX540NlbdBgCgWoZL9GtvfvObq65Qqd/+9rc588wz9/ra4YcfnsWLF9e3EAAAAAAAAAAAQB2sW1d1g/pYt66E4VJHR3LBBcnHP15Kp0c8nKE5N4tyTc5I0lBqdl/Q3p6MH5+cd17VTQAAqmXHDf3Y+973vmzdunWvr334wx/Ok5/85Do3AgAAAAAAAAAAqL2NG6tuUB8H/Zzf/34ycWLpo6Xv5IUZn9tzTc7MQBwtPeLCC5NNm6puAQBQLcMl6KfWr1+fRYsW7fW1F77whY96ExMAAAAAAAAAAEBft21b1Q3q44Cfc8+e5JJLkhe+MNm8ubQ+u9Oc9+YDOT6rsjV/UVpuX9XZmcycmXR1Vd0EAKA6hkvQD3V1deUtb3lL9uzZ8yevNTc356qrrkpDw8D9t1gAAAAAAAAAAAD9286dVTeojwN6zh/8IHnRi5KLLy4GTCW5K2MyNWvyobw3XWkuLbevW7MmWbiw6hYAANUxXIJ+aNGiRbntttv2+trs2bNz1FFH1bkRAAAAAAAAAABA/ezaVXWD+ujs3I839/QkV16ZjB9frGlKtCjnZGLWZX2OLTW3v5g3L9m6teoWAADVMFyCfuaHP/xhLr744r2+9pznPOdRXwMAAAAAAAAAAOgvBg+uukF9tLTs4xvvvTf5279NZs1Kfvvb0s7/SZ6Rl+SbmZ1F6cyQ0nL7m87OZP78qlsAAFTDcAn6mTPPPDO/fZQ/WC5ZsiSHHHJInRsBAAAAAAAAAADU15ABsqHZp+f8539OjjoquemmUs9enjfm6NyZb+Ulpeb2V+3tyQMPVN0CAKD+DJegH1m6dGm++c1v7vW1U089Na94xSvq3AgAAAAAAAAAAKD+hg+vukF9POZzbt+evOENyamnJr/5TWln/jpPzGvzz3lTlueBHF5abn/X0ZEsX151CwCA+jNcgn7i/vvvz3nnnbfX14YNG5aPfexjdW4EAAAAAAAAAABQjXHjqm5QH4/6nN/8ZnHLUnt7qefd1Pg3GZeNuSGvLTV3oFiyJOnpqboFAEB9GS5BP3HWWWflN4/yb8X40Ic+lKc85Sl1bgQAAAAAAAAAAFCNiROrblAff/Kcv/1t8u53Jy99afLTn5Z3UGtrcuWVufODX8sv8tTycgeYzZuTVauqbgEAUF+GS9APrFy5Mtdff/1eX3vBC16Qt73tbXVuBAAAAAAAAAAAUJ1Ro4qtTX82dGgycuQf/MBttxVLpo99rNyDXvCC5Pbbk7e9LefObsiUKeXGDzQrVlTdAACgvgyXoI976KGHMmvWrL2+1tzcnKuuuioNDQ11bgUAAAAAAAAAAFCdpqZkwoSqW9TWhAnFc2bPnuQDH0imTk02bSrvgObm5NJLk//8z+R5z/vdDy1blrS0lHfMQLN2bdUNAADqy3AJ+rj3vOc9+emjXOl7zjnn5Oijj65zIwAAAAAAAAAAgOpNnlx1g9qaPDnJf/938ld/lVx4YTFgKsvo0cn3vlfkNjf/yUuXXlreUQPN+vVJV1fVLQAA6sdwCfqw7373u7nyyiv3+tqzn/3svO9976tvIQAAAAAAAAAAgF5i+vSqG9RST97WcFVyzDHFwKhMZ5+drFuXTJz4qG+ZPTtpayv32IFix45ky5aqWwAA1E/z478F6I127dqVt7zlLenu7t7r65/85CfT2tpa51a9wyc/+cksWbKk5uds3bq15mcAAAAAAAAAAAAHZtq0ZOTI/jcSeUp+ni8OfUuev+hfyg1++tOTZcuSv/7rx31rY2OydGny4IPJypXl1hgI1q1LxoypugUAQH0YLkEf9cEPfjB33333Xl/7+7//+/zt3/5tnRv1Hr/85S8f9ecGAAAAAAAAAAAYGBoaklmziguE+ovX5IZclbfmSTt+XW5wW1vyiU8khx++zx8ZNCi5/vrk1FONl/bXxo1VNwAAqJ/GqgsA++/uu+/Ohz70ob2+dthhh+VjH/tYnRsBAAAAAAAAAAD0PjNmJK2tVbc4eIflgXwuM3JDXpsnpcTR0vDhyXXXJZ///H6Nlh4xZEhyww3F7ol9t21b1Q0AAOrHcAn6mO7u7pxxxhnZtWvXXl//4Ac/mKc+9al1bgUAAAAAAAAAAND7HH543x/VvDjfyoYclRm5ttzgE08srv459dSDihk0KFm+PLn88qSlpaRu/dzOnVU3AACoH8Ml6GOWLFmS73znO3t9berUqXn7299e50YAAAAAAAAAAAC919y5fXNQ05KdWZhz8628JM/M/5QX3NqaLFmS/Ou/Jk97WimRjY3J+ecn69cnU6aUEtmvdXZW3QAAoH4Ml6AP+Z//+Z+8973v3etrzc3Nueqqq9LY6Lc1AAAAAAAAAADAI0aMSC65pOoW+2d81mddJubcfLTc4ClTinXR29+eNDSUm51k9Ohk9epk/vy+ORarFz83AMBA0lx1AWDfzZo1Kw899NBeX3v3u9+dY445ps6NeqcjjjgiY8aMqfk5W7duTad/9QUAAAAAAAAAAPR6556b3HBDcuutVTd5bE3Zkzm5PO/L+zI4u0vL7Wpszq4L5uWQ978naa7tt442Nydz5iSnnFIMmNrbk46Omh7Z5wwZUnUDAID6MVyCPuKLX/xivvrVr+71tWc961l5//vfX+dGvdc73vGOvOMd76j5OWPHjs3dd99d83MAAAAAAAAAAICD09ycLFuWTJiQ9NZ/V/FzszXX5o35y3y31NxNGZU3dl+bTYsnpe2Xydy5xS1UtTZiRHL11cmCBcny5cmSJcnmzbU/ty8YPrzqBgAA9dNYdQHg8f3mN7/J2Wef/aivf+ITn0hra2sdGwEAAAAAAAAAAPQto0cnl15adYu96ckZuTp35JjSR0sfy7tybG7LukxKR0dyzTXJ2LHJ5ZcnXV2lHvWohg1Lzjorufvu5Oabk3POSV70omQgf8vbuHFVNwAAqB83LkEfMHv27Nx///17fe2UU07JK1/5yjo3AgAAAAAAAAAA6Htmz07uuCNpb6+6SeHJ+UU+nbfklflaqbk/zZE5Pcvyzbz0T17r7CxuXfryl5OlS4tBVz00NCTTphVfSTGc2rIlWbcu2bgx2bYt+cUvkpUr69OnShMnVt0AAKB+DJegl/vmN7+ZZcuW7fW1ww47LFdccUV9CwEAAAAAAAAAAPRRjY3FWOfBB6sfyLw6X87VOTNPyq9LzW3P6/POfCLbM/wx37dmTTJhQnEL1ezZxc9NPTU1JWPGFF+P6OpKDjss6eiob5d6Gjo0GTmy6hYAAPVT53/MBPbHb3/727z1rW991Nc/8IEP5GlPe1odGwEAAAAAAAAAAPRtgwYl11+fnHRSNecflgeyNKfnyzml1NHSbzI8p+WLeUPaH3e09IjOzmTOnGTGjGT37tKqHLCmpmJM1Z9NmFA8JwDAQGG4BL3YvHnzsnXr1r2+NmXKlMyaNavOjQAAAAAAAAAAAPq+IUOSG25I2trqe+603Jw7c3ROz+dKzf23vDxHZUOuz2kH9Pn29uSUU5KdO0utdUAmT666QW319+cDAPhjhkvQS91222356Ec/utfXmpqactVVV6Wx3nfzAgAAAAAAAAAA9BODBiXLlyeXX560tNT2rJbszIKcl//IS/Ks/KS03I4cknfkE3lFbsq9OfKgslauTE47rfqbl6ZPr/b8WuvvzwcA8MesHqCXmjNnTrq6uvb62tlnn53x48fXtxAAAAAAAAAAAEA/09iYnH9+sn59MmVKbc44JrdnbSbnvCxMY3pKy701kzMh67Mk70jSUErmjTcmM2cm3d2lxB2QadOSkSOrO7+WRo1Kjj++6hYAAPXVXHUBYO9+9atf7fXHm5ub88xnPjOf/vSnSzvrO9/5zmO+/vOf//xxzzv22GNz7LHHltYJAAAAAAAAAACgXkaPTlavThYtSubNSzo7Dz6zMV05PwtySeZlcMq7xmhPmnJpLsoH897syaDSch/R3p6MH5+cd17p0fukoSGZNSs5++xqzq+lWbOK5wMAGEgaenp6ypvvQz/xox/9KM95znMe8z21/q0zfvz43HHHHTU9o0wXX3xx3ve+91Vdo67Gjh2bu++++09+fMyYMbnrrrsqaAQAAAAAAAAAABysrVuT+fOLAU9Hx4FlPCc/zPLMyIuyutRumzMyb8y1+X4ml5r7x1pailuoRo+u6TGPavv25MgjD/znvzdqbU3uvTcZNqzqJgBAVQbq9583Vl0AAAAAAAAAAAAAoLcYMSK5+upiZHLFFcmoUfvz6Z68OZ/OnTm69NHSx/POHJvbaj5aSoobp2bOTLq6an7UXh1+eNLWVs3ZtdLWZrQEAAxMhksAAAAAAAAAAAAAf2TYsOSss5K7705uvjk555zkRS8qbs7Zmz/PfVmR6fl0zsih2VFaj5/laXl5/i3vysfz2zzK4TWwZk2ycGHdjvsTc+cWNz/1By0txfMAAAxEzVUXAAAAAAAAAAAAAOitGhqSadOKr6S4hWjLlmTdumTjxmTbtmTMD76Sf/zeGTms81elnv2FvC7vyCezLU8sNXdfzZuXnHJKcQtVvY0YkVxySf8Y/FxySTU/hwAAvYHhEgAAAAAAAAAAAMA+ampKxowpvvLgg8m7353csrTUM7bl8MzKknwx/1Bq7v7q7Ezmz0+uvrqa8889N7nhhuTWW6s5vwxTpyazZ1fdAgCgOoZLAAAAAAAAAAAAQJ/W1ZVs3vx/b0HauTPZtSsZPDgZMiQZPjwZNy6ZNCkZObIYIB2UVauSGTOSH/+4lGd4xNfzsvxjPpuf5eml5h6o9vZkwYJk2LD6n93cnCxblkyYUIyo+pqWlmTp0hJ+rQEA9GGGS9BL3X777XU7a9myZZk5c+ajvj5t2rTcfPPNdesDAAAAAAAAAADwWHp6kltuSVasSNauTdavTzo69v3zQ4cm48cnkycn06cn06YlDQ37+OHOzuTCC5OFC4siJflthmROLs8n8470pLG03IPV0ZEsX56cdVY1548enVx6aTJnTjXnH4zLLiv6AwAMZL3nn2wBAAAAAAAAAAAAHsP27ckVVyRjxiQnnJAsXpysXr1/o6Uk2bGj+NzixUXOmDFF7vbtj/PBO+8s1k4f+Uipo6W1mZQJWZ9P5KxeNVp6xJIlpT7ufps9O2lrq+78A9HWlpx7btUtAACq1/v+6RYAAAAAAAAAAADgD2zdmpx5ZnLkkcnZZyebN5ebv3lzkXvkkcU5W7f+0Ru6upL585NJk5ING0o7d0+a8v7My1/mO9mSUaXllm3z5mTVqurOb2xMli5NTjqpug774+STi76NvksXAMBwCQAAAAAAAAAAAOid9uwp9kJjxybXXLP/Nyvtr46O4pyxY5PLLy/2SrnnnuTFL04uuCDZvbu0s36Q5+Uv8528L+/PngwqLbdWVqyo9vxBg5Lrr+/946WTT06uu67oCwCA4RIAAAAAAAAAAADQC23alBx3XLEX6uys79mdncncuT350PM+m65xRyff/nap+Z/MrEzI+qzNlFJza2nt2qobJEOGJDfckLS1Vd1k79raki99qegJAEDBcAkAAAAAAAAAAADoNbq7kwULkgkTkltvrabDEbk/X8mrcuE9b05Tx8Ol5d6bp+bE3JR35pPpyNDScuth/fr/vYGqYoMGJcuXFzditbRU3abQ0lL8ml2+3E1LAAB/zHAJAAAAAAAAAAAA6BV2705mzEjmzKn/LUuPODkrsjHjMj03lpp7XU7NUdmQr+fEUnPrZceOZMuWqlsUGhuT888vxlRTKr60aurUosd55xW9AAD4v5qrLgC1tmrVqvzgBz/Yr8/8+te/ftz3fPrTn97vLtOmTcvznve8/f4cAAAAAAAAAABAf7dzZ3LqqcnKldWcf2geyuK8O2/OZ0vN3Z5hmZUl+UL+IUlDqdn1tm5dMmZM1S1+b/ToZPXqZNGiZN68+o7dWlqSSy9Nzj03aWqq37kAAH2N4RL93mc/+9l87nOfKz33jDPO2O/PLF261HAJAAAAAAAAAADgj+zeXe1o6UX5z3wub8pzc0+pud/IX2dmluaneUapuVXZuLHqBn+qubm4oeuUU5L585P29qSjo3bntbYmbW3J3LnJiBG1OwcAoL9wKSUAAAAAAAAAAABQme7uZObMakZLg9OZD2dubsm0UkdLv82QnJ3FeXm+3m9GS0mybVvVDR7diBHJ1Vcn996bXHFFMmpUufmjRhW5995bnGO0BACwb9y4BAAAAAAAAAAAAANAV1eyeXOybl1xc862bcnOncmuXcngwcmQIcnw4cm4ccmkScnIkUlTU+17LVxY3JJTb0flzlybN+aY3Flq7rocmzfk89mc0aXm9gY7d1bd4PENG5acdVbyzncmq1YlK1Yka9cmt922fzcxDR2aTJiQTJ6cTJ+eHH980tBQu94AAP2V4RIAAAAAAAAAAAD0Qz09yS23/H64sX79/g83xo///XBj2rTyhxubNiUXXVRu5uNpTFfOzaJclgvTkl2l5XalMR/Me3NpLsruDC4ttzfp7Ky6wb5raCh+zU6bVvzfXV3Jli1/Otzr7ExaWv7vcG/ixPoN9wAA+jvDJQAAAAAAAAAAAOhHtm9Pli9PrryyuGHpQO3YkaxeXXwtXpyMGpW8/e3JjBnJ4YcffM89e5LTT6/vGOZZ+VGWZ0aOz3+WmvuLJ/xFXvXQtVmTF5Sa29u0tFTd4MA1NSVjxhRfAADUT2PVBQAAAAAAAAAAAICDt3VrcuaZyZFHJmeffXCjpb3ZvLnIPfLI4pytWw8ub9Gi5NZby+n2+Hpyepbmzhxd+mhp/Qvelktfc3u/Hy0lxa1EAACwP9y4RL+3bNmyLFu2rOoavdr48eNz8cUXP+rrz372s+tXBgAAAAAAAAAA2C979iQLFyYXX1yf24s6OpJrriludbrkkmT27OI2m/2xdWsyb15t+v2xI3J/rs6ZeVVWlJr78zwl/5jP5lvr/yYzjio1utcaPrzqBgAA9DWGS0DGjx+f8ePHV10DAAAAAAAAAADYT5s2JaefXs+bi36vszOZOzf58peTpUuT0aP3/bPz59dnZPXKrMyn85Y8OfeXmvulnJK35VP5dZ6UdCY/+EGp8b3WuHFVNwAAoK9prLoAAAAAAAAAAADA/8/evYdpWdf5A3/PDDAIGdKunaytlm05eiBEKk0657YJtbbaNkpSammaKyjYQSukbZGFNds0pULRqXS1Damt7bRpsQWIpILAtrQdVnc7Qm6OM8DM/P64119anLmf535m5vW6rrmEee7n833fzwxeDs57PsD+6elJFi5MJk6sprT0eKtWFTkWLixy7c22bUl7e20zPSn/m+tzdlZkWqmlpV/nyTkjy/KX+ceitPR/Vq0q7YiGNmlS1QkAAOhrbFwCAAAAAAAAAACAPmTHjmTmzNqXf/ZHV1cyZ05y773F9qXBg3d/7bJlSUdH7bIcn29nWWbkj/Ofpc79Rl6WM3NDfpI/+r3HOjuTIUOS7dtLPbKhDB+ejB5ddQoAAPoaxSUAAAAAAAAAAADoIzo7k1NPTVasqDrJrrW3Jw8/nNx6a1Fe2rQpWbs2Wb8+2bo1efTR5I47anP24GzPB/P+zM2CNKe3tLmdac278+F8JBemN827va6lpbQjG9LEif3/HgEAKJ/iEgAAAAAAAAAAAPQBO3Y0dmnpMStWJEccUZSsarlZ6fHGZ31uzuk5JveWOveeTMwZuSkPZPxer3300VKPbjiTJ1edAACAvmj31X8AAAAAAAAAAACgIfT0JDNnNn5p6TG/+lV9SktN6cmsLMraTCq1tNSd5nwo78kL8919Ki0NBNOnV50AAIC+yMYlAAAAAAAAAAAAaHCLFiXt7VWnaCx/lB/lxrwlL82dpc79j4zKjCzLd/Li/X7uIYf0z81LY8YkJ55YdQoAAPoixSUAAAAAAAAAAABoYBs3JpddVnWKRtKbGVmWj+aCPDn/W+rk63JOZmdRHsmTDuj53d2lxmkYhxySzJiRDB2ajByZTJiQHHtsMnp00tJSdToAABqZ4hIAAAAAAAAAAAA0qJ07kzPPTLq6qk7SGP4wP891eXv+Iv9U6tz/ydNyVj6RL+Z1BzVn+/b+uXVp3bri7XcNH54cc0wyeXIyfXoydWrS1FT3eAAANLDmqgMAAAAAAAAAAAAAu7Z4cbJ6ddUpGsOf5wu5P0eWXlr6XN6QI3P/QZeWHjNlSilj+oRHHklWrkyuuip52cuSceOSq69Otm2rOhkAAI3CxiUAAAAAAAAAAABoQFu2JJdfXnWK6g3Pb7Ios/P2XF/q3IdzaC7IR7MsM5KUtybo+c9PvvOdgbkla9Om5MILk3e/O2lrS+bOTUaNqjpV/XV3F6/F2rXJ+vXJ1q1JZ2exkWvIkGTo0GTkyGTChOTYY5PRo5OWlqpTAwDUhuISAAAAAAAAAAAANKAFCwZm+eXxXpR/y7LMyJ9kS6lzv5mpeUtuzI/znFLnPmbevKK0M1B1dCRLliTLlhWvxezZ/buY09ub3Hlnsnx5smZNsm5d8Rrsq+HDk2OOSSZPTqZPT6ZOTZrK69IBAFSqueoAAAAAAAAAAAAAwBNt25a0t1edojqDsz3z8958Ky8ptbTUlSGZnb/Ly/ONmpWWOjuTWbOS446ryfg+paurKHAdf3yycWPVacq3bVty9dXJuHHJy16WXHVVsnLl/pWWkuSRR4rnXXVVMWfcuGLutm3lZwYAqDfFJQAAAAAAAAAAAGgwy5btf/mhvxiXDfluXpj35m/Skp7S5n4vR+fY3J3FmZ3eGn77ZFdXMmhQcsMNSWtrzY7pU1atSiZOTBYuTHrK+5BWZsuW5JxzkiOOSC68MNm0qdz5mzYVc484ojhnS7kLxwAA6kpxCQAAAAAAAAAAABpIb29yzTVVp6i/pvTkr/P3WZtJeUHWlTa3J035cC7NlKzK+hxZ2tzdeaysNHZscsUVNT+uz+jqSubMSWbMSHbsqDrNgdm5M1mwIBk/PlmypPblwo6O4pzx45Mrr0y6u2t7HgBALSguAQAAAAAAAAAAQAO5885k8+aqU9TXs/PjfC2vzN9nVoamq7S5P8jzcmLuynvy4WxPfdYfDR3621/Pnp20tdXl2D6jvT055ZSks7PqJPtn48bk+OOTSy8tSlj11NWVzJ1bnL9xY33PBgA4WIpLAAAAAAAAAAAA0ECWL686QT315vTclPtzZF6efy118pKclaNzb1bmhFLn7s3Ikb/9dXNzsnRpcvLJdY3Q8FasSE47rW9sXurpSRYuTCZOTFavrjbLqlVFjoULi1wAAH2B4hIAAAAAAAAAAAA0kDVrqk5QH3+QX+Qf85e5KTMyIg+XNveneWqmZXnOyZL8JoeWNndfTZjwxN8PHpzceqvy0u+6445k5szGLuDs2JHMmJHMmVP/LUu709VV5Jkxo28UvwAAFJcAAAAAAAAAAACgQXR3J+vWVZ2i9k7Kl3J/jswbc3upc/8pr8+ErM+KTCt17v6YNOn33zd0aHL77UlbW/3zNLL29mTx4qpT7FpnZ3LKKUXGRtTeXuTr7Kw6CQDAnikuAQAAAAAAAAAAQIPYtCnp6Kg6Re0Mz29ybd6RL+W1eUb+p7S5D+fQnJml+Yt8Lr/I4aXN3V/DhyejR+/6scGDk2XLkiuvTFpb65urkb3vfcnGjVWneKIdO5JTT01WrKg6yZ6tWJGcdprNSwBAY1NcAgAAAAAAAAAAgAaxdm3VCWpnSr6bdZmYd+S6UufemRNzVO7LjTkzSVOps/fXxIlJS8vuH29uTi65pNiqddxx9cvVyLq6kpkzi21jjaCnp8jT6KWlx9xxR5G3p6fqJAAAu6a4BAAAAAAAAAAAAA1i/fqqE5RvUHZkXi7Lyhyf5+c/SpvblSG5OAvz8nwjP8pzS5t7MCZP3rfrxo5NVq5MFiywfSlJVq1KFi2qOkVh0aKkvb3qFPunvT1ZvLjqFAAAu6a4BAAAAAAAAAAAAA1i69aqE5RrbB7Id/PCXJb5aUl5K2HuzVGZnDVZlIvTkz2sOKqz6dP3/dpBg5I5c5ING5Kzz06GDatdrr7g8suTLVuqzbBxY3LZZdVmOFDve1+RHwCg0SguAQAAAAAAAAAAQIPo7Kw6QTma0pN35SO5Jy/IpNxT2tyeNOVvMzfHZXXuz1GlzS3DmDHJiSfu//NGjUquvz556KHk6quLOQNRV1exgaoqO3cmZ55Z5OiLurqSmTOT7u6qkwAAPJHiEgAAAAAAAAAAADSI7durTnDwnpWf5Ct5dT6Sv87QlNcC+c88N1NzZ96dv832tJY2tyznnZc0NR3480eMSC64IHnggeSb30wuuig54YSBtYmpvT359a+rOXvx4mT16mrOLsuqVcmiRVWnAAB4okFVBwAAAAAAAAAAAAAKQ4ZUneBg9ObN+XQ+lnfmsJTbPvlE3paL8vf5TQ4tdW5Zhg1LZswoZ1ZTUzJ1avGWFBt0Nm9O1q5N1q9Ptm4tNnPdf3/yve+Vc2aj6OhIli0rClz1tGVLcvnl9T2zVi6/PDnllGKTFwBAI1BcAgAAAAAAAAAAgAYxdGjVCQ7MU/LLXJtzc2r+sdS5P8vhOTtLckemlzq3bG1txcakWmhpScaNK94e09ubjB1bm/Oqds01yfnnH9z2qv21YEHSVd5ysEp1dRX3c/31VScBACg0Vx0AAAAAAAAAAAAAKIwcWXWC/feafDn358jSS0vLMy0Tsr7hS0utrcncufU98847iy1M/dGmTcldd9XvvG3bkvb2+p1XD+3tya/LXXoGAHDAFJcAAAAAAAAAAACgQUyYUHWCfTcsj+RjOS9fzp/lmfnv0ub+b56Ut+aTeX0+n5/nqaXNrZV585JRo+p75vLl9T2v3up5f8uWJR0d9TuvHjo6ivsCAGgEiksAAAAAAAAAAADQICZNqjrBvjkuq7IuE3Neri117rdyQo7KfVmatyZpKnV2LUyZksyeXf9z16yp/5n1VK/76+1NrrmmPmfV2zXXFPcHAFA1xSUAAAAAAAAAAABoEGPGJMOGVZ1i9wZlRz6Yy7Myx+dP8/3S5m7P4MzJgrw038wP87zS5tZSa2uydGnS0lLfc7u7k3Xr6ntmva1bV9xnrd15Z7J5c+3PqcKmTcldd1WdAgBAcQkAAAAAAAAAAAAaRktLMnFi1Sl2bUw25jt5US7PFRmU8lol9+XITM6aLMyc9KTOLaCDMH9+MnZs/c/dtCnp6Kj/ufX0yCP1KRQtX177M6rU3+8PAOgbFJcAAAAAAAAAAACggUyeXHWCJ2pKTy7I1bknL8ixWVva3J40ZWEuzuSsyX05urS59dDWlsyaVc3Za8v7EDS0etznmjW1P6NK/f3+AIC+QXEJAAAAAAAAAAAAGsj06VUn+K0j8l/5l7wmV+fCHJLO0ub+MM/JS/PNzMnCbE9raXPrYdq0ZOnSpLmi78Bcv76ac+ut1vfZ3Z2sW1fbM6q2bl1xnwAAVVJcAgAAAAAAAAAAgAYydWoyenTVKZI35TO5P0fmVflaqXM/lZk5KvflWzmx1Ln1MG1acsstyeDB1WXYurW6s+up1ve5aVPS0VHbM6r2yCPJ5s1VpwAABjrFJQAAAAAAAAAAAGggTU3JeedVd/7I/CqfyZvymbw5I7OttLk/zx/m9fmnvC2fyv/myaXNrZe2tuS225KhQ6vN0Vne4quGVuv7XLu2tvMbxUC5TwCgcSkuAQAAAAAAAAAAQIOZMSMZNqz+5746/5L7c2TelFtKnXtHTs6ErM/yvL7UufXQ2posXJgsW1btpqXHbN9edYL66Oqq7fz162s7v1EMlPsEABqX4hIAAAAAAAAAAAA0mMMOKzb81Msh6chHc37+JSfliDxU2tzfZHjOypJMz/L8LE8rbW69TJmSrFuXXHxx0twg33E5ZEjVCeqjtbW287dure38RjFQ7hMAaFwN8p/RAAAAAAAAAAAAwOPNnVv78kaSTM7qrMvEnJ+PlTr32zk+R+fefDJnJWkqdXattbYmV16ZrFyZjB1bdZonGjq06gT1Uev77Oys7fxGMVDuEwBoXIpLAAAAAAAAAAAA0IBGjUrmzavd/EHZkffnA/m3vDij8++lzd2ewbk0H87U3JkfZFRpc+th2LDk7LOTDRuSSy5JWlqqTvT7Ro6sOkF91Po+t2+v7fxG0dVVdQIAYKAbVHUAAAAAAAAAAAAAYNdmzUpuvz1ZvbrcuX+azbkpZ+S4rCl17vqMz+m5OffmmFLn1tqYMcl55yUzZiQjRlSdZs8mTKg6QX3U+j6HDKnt/EZRj61tAAB7orgEAAAAAAAAAAAADWrQoOSGG5KJE8vZnNKUnpyXa3Jl5mRYHj34gf+nJ01ZnFl5X+anK0NLm1srw4cXr+nkycn06cmJJyZNTVWn2jeTJlWdoD5qfZ9DG//TtBQD5T4BgMaluAQAAAAAAAAAAAANbOzY5IorkjlzDm7OM/NglmZmXp2vlhPs//wof5QZWZa7MrXUuWU49NDk9a8vyhsjRxZbfCZNSkaPTlpaqk53YMaMSYYNSzo6qk5SO8OHFx+jWho5srbzG8VAuU8AoHEpLgEAAAAAAAAAAECDmz07uffepL39wJ5/Wj6ba3JenpKtpea6IW/JhflIHs6IUueW5UMfSi64oOoU5WppKbZFrVxZdZLamTix9sWyCRNqO79RDJT7BAAaV3PVAQAAAAAAAAAAAIA9a25Oli5NTj55/553WLbm0/mrfDZ/VWpp6ef5w7whn8vM3NCwpaVhw5IZM6pOURuTJ1edoLbqcX+TJtX+jEYwUO4TAGhciksAAAAAAAAAAADQBwwenNx6676Xl16Zr+b+HJm/ymdLzfGF/HmOzP35fN5Q6tyytbUlIxqzU3XQpk+vOkFt1eP+xowpym392fDhyejRVacAAAY6xSUAAAAAAAAAAADoI4YOTW6/vSjl7M4h6chH8q58Na/Os/JgaWf/JsNzdq7PyVmRn+bppc2thdbWZO7cqlPUztSp/beQMmZMcuKJtT+npSWZOLH251Rp4sTiPgEAqqS4BAAAAAAAAAAAAH3I4MHJsmXJlVcWBZ3Hm5S7c09ekHflo6WeuTIvztG5N5/I2UmaSp1dC/PmJaNGVZ2idpqakvPOqzpFbZx3XnF/9TB5cn3OqUp/vz8AoG8YVHUAAAAAAAAAAAAAaCTd3cmmTcnatcn69cnWrUlnZ7J9ezJkSLH1aOTIZMKE5Nhji8039d5q0tycXHJJ8rrXJWeemaxdvTPvyd/kslyRwdlZ2jk7MiiXZ16uzJz0pG+sbpkyJZk9u+oUtTdjRvLudycdHVUnKc+wYcV91cv06clVV9XvvHqbPr3qBAAAiksAAAAAAAAAAAAMcL29yZ13JsuXJ2vWJOvW7V8ZZPjw5Jhjiu0m06cnU6fWb2PM2LHJyqX/np+ddEae+ZPVpc7ekHE5PTfne5lY6txaam1Nli6tf5GsCocdlrS1JUuWVJ2kPG1tyYgR9Ttv6tSieLh5c/3OrJcxY5ITT6w6BQBA0lx1AAAAAAAAAAAAAKjCtm3J1Vcn48YlL3tZsXll5cr932DzyCPF8666qpgzblwxd9u28jM/QW9vcs01GXTsMaWXlhZlViZlbZ8qLSXJ/PlFmWugmDu3KGv1B62txf3UU1NTct559T2zXs47r34FSgCAPVFcAgAAAAAAAAAAYEDZsiU555zkiCOSCy9MNm0qd/6mTcXcI44oztmypdz5SZKHHkr+7M+Sd74zefTR0sb+OM/Oy/KNXJxF6crQ0ubWQ1tbMmtW1Snqa9SoZN68qlOUY9684n7qbcaMZNiw+p9bS8OGFfcFANAIFJcAAAAAAAAAAAAYEHbuTBYsSMaPT5Ys2f/NSvuro6M4Z/z45Mork+7ukgbfemty5JHJv/xLSQMLN2ZGjsz9+WZelqQoPzzlKaUeUTPTpiVLlybNA/C7ImfNSo47ruoUB2fKlGT27GrOPuywovTWn7S1JSNGVJ0CAKAwAP8THQAAAAAAAAAAgIFm48bk+OOTSy9Nurrqe3ZXVzJ3bnH+xo0HMWjbtuT005PTTkt+9auy4uXhIX+Qq0+8LSvPvjHvmDMiy5YlGzYkDz+cPPhgcvLJpR1VE9OmJbfckgweXHWSagwalNxwQ9LaWnWSA9PaWpTOWlqqyzB3bt99/X5Xa2txPwAAjUJxCQAAAAAAAAAAgH6rpydZuDCZODFZvbraLKtWFTkWLixy7Zevf73YstTeXm6o1742T/7h/XnXnafk+uuLjVRnnJGMG1cUSYYOTW6/vXE30rS1JbfdVuQcyMaOTa64ouoUB2b+/CJ/lUaNSubNqzZDWebNK+4HAKBRKC4BAAAAAAAAAADQL+3YkcyYkcyZU/8tS7vT1VXkmTGjyLdXjz6a/PVfJ698ZfJf/1VekGHDko9/PPnCF5JnPGOPlw4enCxbllx5ZeNspWltLQpgy5YN3E1Lv2v27MYtmO1OW1sya1bVKQqzZiXHHVd1ioMzZUrxeQAA0EgUlwAAAAAAAAAAAOh3OjuTU04pf0FRWdrbi3ydnXu4aO3aZNKk5CMfKffwF74wuffe5O1vT5qa9ukpzc3JJZck69ZVX+6YMqXIcfHFRS4Kzc3J0qXJySdXnWTfTJtW5G2Uj+GgQckNNzROOW9/tbYWr2dLS9VJAACeqEH+cw8AAAAAAAAAAADKsWNHcuqpyYoVVSfZsxUrktNO28XmpZ07k/nzi4LRxo3lHThoUDH3W99K/uRPDmjE2LHJypXJggX1L3i0thZbn1auLHLw+wYPTm69tfHLS9OmJbfc0njbssaOTa64ouoUB2b+fH8uAIDGpLgEAAAAAAAAAABAv9HTk8yc2filpcfccUeRt6fn/97x/e8nL3lJctllRYGpLGPHJqtWJe99b1FgOgiDBiVz5iQbNiRnn50MG1ZSxt0YNqw4Z8OGYuuTjTJ7NnRocvvtSVtb1Ul2ra0tue22Imcjmj27cV+73WlrS2bNqjoFAMCuKS4BAAAAAAAAAADQbyxalLS3V51i/7S3J4sX9SYf/3hyzDHJd79b7gF//dfJ2rXJC15Q6thRo5Lrr08eeii5+upkzJhSx2fMmGLuQw8V54waVe78/mzw4GTZsmJDVb03Y+1Oa2uycGGRq9E2LT1ec3OydGnjb616zLRpRd5m3xEMADSopt7e3t6qQwD0RePHj88DDzzwe+8fN25cNmzYUEEiAAAAAAAAAICBbePGZOLEpKur6iT75+n57yxtfltO6vlSuYOf9azkhhuSV7yi3Lm70dub3HVXsnx5smZNcs89SUfHvj9/+PDi4zd5cjJ9enLiiUlTU+3yDhQbNyZnnpmsXl1dhilTinLN2LHVZdhfnZ3Jqac29va2adOSW25p3O1VAMATDdTvPz+4fa8AAAAAAAAAAADQAHbuLMoZfa20dEpuy3V5e/6g51flDj799OSjH00OO6zcuXvQ1JRMnVq8JUl3d7J5c7Hsaf36ZOvWogzS1VVs3xk6NBk5MpkwIZk0KRk9OmlpqVvcAWPs2GTlymTx4uTyy+v7Z6S1NbniimTWrL73sR06NLn99mTmzMbc4tbWVpTBGnl7FQBAorgEAAAAAAAAAABAP7B4cbUbZfbXiGzLR3NBzsjN5Q5+ylOSj388+cu/LHfuAWhpScaNK96o1qBByZw5ySmnJAsWFEWc/dmGtb+GDSuKNXPnJqNG1e6cWhs8OFm2LDn66OSyyxqjGNnamsyfX5TBmpurTgMAsHf+kwUAAAAAAAAAAIA+bcuWYpNMX/GyfCP35ajyS0snnZTcf39DlJZoTKNGJddfnzz0UHL11cmYMeXOHzOmmPvQQ8U5fbm09Jjm5uSSS5J165Ljjqs2y5QpRY6LL1ZaAgD6Dv/ZAgAAAAAAAAAAQJ+2YEFjbELZm6F5NItzUb6RV+SP8pPyBg8bllx7bfLP/5w885nlzaXfGjEiueCC5IEHkm9+M7noouSEE4pPpf0xfHjxvIsuKuY88EAxd8SIWqSu1tixycqVxb9vWlvre3Zra3LllcX5Y8fW92wAgIM1qOoAAAAAAAAAAAAAcKC2bUva26tOsXfHZF1uzukZnwfKHTxlSnLTTcnzn1/uXAaEpqZk6tTiLUm6u5PNm5O1a5P165OtW5POzqIY2NqaDB2ajByZTJiQTJqUjB6dtLRUew/1NGhQMmdOcsopRYGpvT3p6KjdecOGJW1tydy5/WN7FQAwMCkuAQAAAAAAAAAA0GctW1bb4sDBasnOzM2CfCAfyODsLG/woEHJ5Zcn73538WsoQUtLMm5c8cbujRqVXH99snBh8e+ga65JNm0qb/6YMcl55yUzZvTP7VUAwMDiqxUAAAAAAAAAAAD6pN7eojDQqEblP7IsM/LifKfcwWPGFFuWjj223LnAfhkxIrngguT885O77kqWL0/WrEnuuWf/CpXDhycTJyaTJyfTpycnnlhswwIA6A8UlwAAAAAAAAAAAOiT7rwz2by56hS70ptzcn0WZXaelEfKHf2udyV/+7fJIYeUOxc4YE1NydSpxVuSdHcX/25auzZZvz7ZujXp7Ey6upLW1mTo0GTkyGTChGTSpGT06GLbFQBAf6S4BAAAAAAAAAAAQJ+0fHnVCX7f0/I/+WTelj/PP5c7+FnPSpYuTV75ynLnAqVraUnGjSveAAAGuuaqAwAAAAAAAAAAAMCBWLOm6gRP9Be5PeszofzS0pvfnNx3n9ISAADQ5yguAQAAAAAAAAAA0Od0dyfr1lWdovDk/Do35C25PW/MH+aXpc39VUam59OfTdrbk5EjS5sLAABQL4pLAAAAAAAAAAAA9DmbNiUdHVWnSKbmm7kvR+UtWVbq3H/Jq3Nk7s+mo08rdS4AAEA9KS4BAAAAAAAAAADQ56xdW+35renM32V2vpGX5zn5cWlzO3JIzsvHclK+nIdyROX3CQAAcDAGVR0AAAAAAAAAAAAA9tf69dWdfUzW5aackQnZUOrc1ZmcM3JT/j2j///7qrxPAACAg2XjEgAAAAAAAAAAAH3O1q31P7M53bk0H86qTCm1tLQzLXl/PpDjs/IJpaWkmvsEAAAoi41LAAAAAAAAAAAA9DmdnfU974+zJcsyI8fn30qduymjc0Zuyt2ZvMvH632fAAAAZbJxCQAAAAAAAAAAgD5n+/Z6ndSbs7Ik9+bo0ktLH835eUHu2W1pKUm6uko9EgAAoK5sXAIAAAAAAAAAAKDPGTKk9mc8NT/NJ3JWTs4XSp37YJ6ZM3NDvpZX7fXa1tZSjwYAAKgrG5cAAAAAAAAAAADoc4YOre381+efsj4TSi8tfSZvypG5f59KS0nt7xMAAKCWFJcAAAAAAAAAAADoc0aOrM3cQ/NwPpWZ+af8RQ7PL0qbuzWH5U35TN6cz2RrnrLPz6vVfQIAANTDoKoDAAAAAAAAAAAAwP6aMKH8mSfmztyYt+S5+VGpc7+SV+Wt+VQezLP2+7m1uE8AAIB6UVwCAAAAAAAAAACgz5k0qbxZrenMFbkss7Mozektbe6jGZpLsjDX5Lz0pvmAZixfntx/f1FgOvbYZPTopKWltIgAAAA1pbgEAAAAAAAAAABAnzNmTDJsWNLRcXBzjsq9uTmn58isLyfY/1mTY3NGbsrmjDmoObff/sTfDx+eHHNMMnlyMn16MnVq0tR0UEcAAADUzIH9CAcAAAAAAAAAAACoUEtLMnHigT+/Od2ZkwVZk8mllpZ2piUfyPvz4vzbQZeWduWRR5KVK5Orrkpe9rJk3Ljk6quTbdtKPwoAAOCgKS4BAAAAAAAAAADQJ02efGDPe15+kG/mpVmQSzMkO0rLszl/mhfn3/LBfCA7M7i0uXuyaVNy4YXJEUck55yTbNlSl2MBAAD2ieISAAAAAAAAAAAAfdL06fv7jN68NZ/MvTk6L8m3S83yD3lnJmZd1uS4Uufuq46OZMmSZPz45Mork+7uSmIAAAA8geISAAAAAAAAAAAAfdLUqcno0ft27VPz0yzP9HwyZ+XQ/Ka0DA/lGXlNvpwL8g95NMNKm3ugurqSuXOT449PNm6sOg0AADDQKS4BAAAAAAAAAADQJzU1Jeedt/frpmV57s+RmZYVpZ5/S07NhKzPV/KaUueWYdWqZOLEZOHCpKen6jQAAMBApbgEAAAAAAAAAABAnzVjRjJsN4uODs3D+UTeluV5fZ6an5d25tYcljenPW/KZ7M1Tyltbtm6upI5c4rXaMeOqtMAAAADkeISAAAAAAAAAAAAfdZhhyVtbb///hPyrdybo/O2fKrU876WV+TI3J/P5M1JmkqdXSvt7ckppySdnVUnAQAABhrFJQAAAAAAAAAAAPq0uXOT1tbi10PSlb/N3NyZqXlefljaGY9maN6Vj+TV+UoezLNKm1svK1Ykp51m8xIAAFBfiksAAAAAAAAAAAD0aaNGJfPmJUfmvqzOcZmbK9Oc3tLm351JeUHuyUfzrvT24W+7u+OOZObMpKen6iQAAMBA0Xe/ggIAAAAAAAAAAIAk6e7O7N6Fubtpco7OfaWN3ZmWzMtleVG+k00ZW9rcKrW3J4sXV50CAAAYKBSXAAAAAAAAAAAA6Lv+8z+Tl788LZfOyZDe7aWN/X7+JCfk23l/5mVnBpc2txG8733Jxo1VpwAAAAaCQVUHAAAAAAAAAAAAgD3p7k42bUrWrk3Wr0+2bk06H+3Ni//9hpy57l05ZOdvSj3vmpybS7IwHRle6txG0dWVzJyZrFyZtLRUnQYAAOjPFJcAAAAAAAAAAABoKL29yZ13JsuXJ2vWJOvWJR0dv3388Pws1+ecvD7LSz33v/P0vDWfypfzZ6XObUSrViWLFiVz5lSdBAAA6M8UlwAAAAAAAAAAAGgI27Yly5Yl115bbFjalZNzR5bk7DwtPyv17Fvzlzk31+ZX+YNS5zayyy9PTjklGTWq6iQAAEB/1Vx1AAAAAAAAAAAAAAa2LVuSc85JjjgiufDCXZeWnpT/zZKclTsyvdTS0raMSFtuzmm5ZUCVlpKkqytZsKDqFAAAQH+muAQAAAAAAAAAAEAldu4sijPjxydLliQdHbu+7vh8O/fm6JyVT5Z6/tfz8hyZ+/PptCVpKnV2X9Henvz611WnAAAA+ivFJQAAAAAAAAAAAOpu48bk+OOTSy8tNv/sypB05cO5NHflxPxx/rO0szvTmgtzVV6Vr+a/8uzS5vZFHR3JsmVVpwAAAPorxSUAAAAAAAAAAADqpqcnWbgwmTgxWb1699eNz/qsypRcmgVpTm9p59+TiXlB7snVuTC9voUuSXLNNUlveS8xAADA/+erLgAAAAAAAAAAAOpix45kxoxkzpzdb1lqTndm5++yNpNyTO4t7ezuNGd+3psX5rvZmHGlze0PNm1K7rqr6hQAAEB/NKjqAAAAAAAAAAAAAPR/nZ3JqacmK1bs/po/yo9yY96Sl+bOUs/+j4zKGbkp382LSp3bnyxfnkydWnUKAACgv7FxCQAAAAAAAAAAgJrasWNvpaXevCU35P4cWXpp6eN5e47J95SW9mLNmqoTAAAA/ZGNSwAAAAAAAAAAANRMT08yc+buS0t/mJ/nurw9f5F/KvXc/8nT8rZ8Mv+cP9/v57a0JN3dpcZpeOvWFffc0lJ1EgAAoD9RXAIAAAAAAAAAAKBmFi1K2tt3/dif5wv5RM7K0/PTUs+8LafkHfl4fpk/PKDnd3cnF1+cHHVUsn59smVLcvvtpUZsOI88kmzenIwbV3USAACgP1FcAgAAAAAAAAAABpTu7mTTpmTt2qKUsnVr0tmZbN+eDBmSDB2ajByZTJiQHHtsMnq0LTQHauPG5LLLfv/9w/ObLM6snJMlpZ736zw55+cfcnNOT9J0ULM++tFiC9EZZyTLlvX/4lJS/JlQXAIAAMqkuAQAAAAAAAAAAPRrvb3JnXcmy5cna9YUZZSOjn1//vDhyTHHJJMnJ9OnJ1OnJk0H14kZEHbuTM48M+nqeuL7X5yVWZYZGZUflHrev+alOTM35Md5TinzurqSmTOTlSuLgttAMFDuEwAAqB/FJQAAAAAAAAAAoF/atq3YlHPttcWGpQP1yCNFeWXlyuSqq5IxY5Jzz01mzEgOO6yksP3Q4sXJ6tW//f3gbM8H8oHMzYK0pKe0czrTmnfnw/lILkxvmkubmySrViWLFhVbuQaCgXKfAABA/ZT7VRoAAAAAAAAAAEDFtmxJzjknOeKI5MILD660tCubNhVzjziiOGfLlnLn9wdbtiSXX/7b34/P+qzKlLwnHy61tLQux+TY3J2rclHppaXHXH558vOf12R0w+nsrDoBAADQ3yguAQAAAAAAAAAA/cLOncmCBcn48cmSJUlHR23P6+gozhk/PrnyyqS7u7bn9SULFiRdXUlTenJRFufuHJuJ+V5p87vTnL/JuzMlq7IhE0qbuytdXcn999f0iIbR1VV1AgAAoL9RXAIAAAAAAAAAAPq8jRuT449PLr20/uWLrq5k7tzi/I0b63t2I9q2LWlvT/4oP8rX84oszuwMTXkflC3545yYu/Le/E12ZEhpc/fkRz+qyzGVa22tOgEAANDfKC4BAAAAAAAAAAB9Vk9PsnBhMnFisnp1tVlWrSpyLFxY5Bqolt3Ym1M6luW+HJWX5Zulzr4+Z+eYfC//luNLnbs3A2Wb1tChVScAAAD6m0FVBwAAAAAAAAAAADgQO3YkM2cW230aRVdXMmdOcu+9ydKlyeDBVSeqr96f/yJj3vf2vCufK3XuT/PUvC2fzBfzulLn8kQjR1adAAAA6G9sXAIAAAAAAAAAAPqczs7klFMaq7T0eO3tRb7OzqqT1NEXv5gdoyfk1b8pt7T0ubwhE7JeaakOJkyoOgEAANDfKC4BAAAAAAAAAAB9yo4dyamnJitWVJ1kz1asSE47rcjbr/3mN8nb35687nUZsvWnpY19OIfmLbkhp+T2/CKHlzaX3Zs0qeoEAABAf6O4BAAAAAAAAAAA9Bk9PcnMmY1fWnrMHXcUeXt6qk5SI9/5TnLMMcn115c69s6cmKNyX5blLUmaSp3Nrg0fnoweXXUKAACgv1FcAgAAAAAAAAAA+oxFi5L29qpT7J/29mTx4qpTlGz79uS9701OOCHZsqW0sV0Zktn5u7ws/5of5bmlzWXvJk5MWlqqTgEAAPQ3iksAAAAAAAAAAECfsHFjctllVac4MO97X5G/X3jggeSFL0z+5m9KXSX1vRydY3N3Fmd2en1rW91Nnlx1AgAAoD/y1R0AAAAAAAAAANDwdu5Mzjwz6eqqOsmB6epKZs5MururTnIQenqSq65KXvCCZN268samKX+buZmSVVmfI0uby/6ZPr3qBAAAQH+kuAQAAAAAAAAAADS8xYuT1aurTnFwVq1KFi2qOsUB+vGPk1e9KrnoolLbYz/I83Ji7sq787fZntbS5rJ/xoxJTjyx6hQAAEB/pLgEAAAAAAAAAAA0tC1bkssvrzpFOS6/vLifPqO3N7n55uTII5NvfKPU0Z/I23J07s3KnFDqXPbfeeclTU1VpwAAAPojxSUAAAAAAAAAAKChLVhQ6pKfSnV1FffTJ/zyl8mppyZnnJE8/HBpY3+ap2ZalufsfCK/yaGlza2XlpaqE5Rr2LBkxoyqUwAAAP2V4hIAAAAAAAAAANCwtm1L2turTlGu9vbk17+uOsVefOlLyYQJyW23lTr285meI3N/VmRaqXPr6TnPqTpBudrakhEjqk4BAAD0V4pLAAAAAAAAAABAw1q2LOnoqDpFuTo6ivtqSI88kpx7bvLa1yb/8z+ljX04h2ZmPpU35J/y8zy1tLlVOOqopLW16hTlaG1N5s6tOgUAANCfKS4BAAAAAAAAAAANqbc3ueaaqlPUxjXXFPfXUL773eSYY5KPf7zUsXflJTk69+aGzEzSVOrsKhx+eDJvXtUpyjFvXjJqVNUpAACA/kxxCQAAAAAAAAAAaEh33pls3lx1itrYtCm5666qU/yfHTuSyy5Ljj8++Y//KG1sV4ZkThbkZfnX/DDPK21u1UaOTGbNSo47ruokB2fKlGT27KpTAAAA/Z3iEgAAAAAAAAAA0JCWL686QW01xP1t3Ji88IXJ/PlJT09pY+/LkZmcNVmYOelJS2lzG8GECcmgQckNNyStrVWnOTCtrcnSpUlL//rQAAAADWhQ1QEAAAAAAAAAAAB2Zc2aqhPUVi3ur7u72Oa0dm2yfn2ydWvS2Zls354MGZIMHVpsDJowriev3vzRPO2qS9PU2Vna+T1pysJcksszL9vTR1s9ezFpUvHPsWOTK65I5sypNs+BmD+/yA8AAFBriksAAAAAAAAAAEDD6e5O1q2rOkVtrVtX3OfBbL3p7U3uvLPY3rRmTTGzo2PPz3lWfpKlmZmn5+sHfvCusjz3uTnpv2/MV7tOLHVuIxk+PBk9+re/nz07uffepL29ukz7q60tmTWr6hQAAMBAobgEAAAAAAAAAAA0nE2b9l7A6eseeSTZvDkZN27/n7ttW7JsWXLttcVrtW9681f5TK7JeTksv97/Q/fkrW9N09//fTpe++RkZbmjG8nEiU8smjU3J0uXJg8/nKxYUV2ufTVtWpG3ubnqJAAAwEDhyw8AAAAAAAAAAKDhrF1bdYL62N/73LIlOeec5Igjkgsv3PfS0sj8Kp/Nm/LptJVbWjr88OTzn08++cnkyU/O5MnljW5Eu7q/wYOTW29NTj65/nn2x7RpyS23FHkBAADqRXEJAAAAAAAAAABoOOvXV52gPvb1PnfuTBYsSMaPT5Ys2b9tVK/Ov2R9JuS03HpgIXdn2rTiBqZP///vetwv+6Xd3d/QocnttydtbfXNs6/a2pLbbityAgAA1JPiEgAAAAAAAAAA0HC2bq06QX3sy31u3Jgcf3xy6aVJV9e+zx6WR/IPeWf+JSflmfnvAw/5u570pOQTnyg2LT31qU94aOrUZPTo8o5qJGPGJCeeuPvHBw9Oli1LrrwyaW2tX649aW1NFi4sctm0BAAAVEFxCQAAAAAAAAAAaDidnVUnqI893WdPT1E6mTgxWb16/+Yel1VZl4l5Z645uIC/47+ee0J61t2bvO1tSVPT7z3e1JScd16pRzaM887b5S0/QXNzcsklybp1yXHH1SfX7kyZUuS4+OIiFwAAQBV8OQIAAAAAAAAAADSc7durTlAfu9ugtGNHMmNGMmfO/m1ZGpQd+UDen5U5Pn+a75cTMsn2DM7c/G2e88NvZsYH/jg7duz+2hkzkmHDSju6IQwbVtzXvho7Nlm5MlmwoP7bl1pbi61PK1cWOQAAAKqkuAQAAAAAAAAAADScIUOqTlAfuyq1dHYmp5yStLfv36zR2ZR/y4vz/szLoHSXEzDJ/ZmQyVmTKzM3PWlJe3uRb3fbog47LGlrK+34htDWlowYsX/PGTSoKJ5t2JCcfXbty1zDhhXnbNhQbH1qaanteQAAAPtCcQkAAAAAAAAAAGg4Q4dWnaA+fvc+d+xITj01WbFi32c0pSfn56NZl4mZnLtLy9aTpizMxZmcNbkvRz/hsRUrktNOy243L82dW/9NQ7XS2lrcz4EaNSq5/vrkoYeSq69OxowpL1tSzLv66mL+9dcX5wEAADSKQVUHAAAAAAAAAAAA+F0jR1adoD4ef589PcnMmftXWnpmHszSzMyr89VSc/0wz8lbcmPuytTdXnPHHckb3pC88Y3JAw8kW7cWW5i2by82Zh11VLJmTamxKjFvXjlloBEjkgsuSM4/P7nrrmT58uL1ueeepKNj3+cMH55MnJhMnpxMn56ceGLS1HTw+QAAAGpBcQkAAAAAAAAAAGg4EyZUnaA+Hn+fixYl7e37/tw35TO5JudlZLaVmmlpzsyF+Uj+N0/e67Vf/GLx1l9NmZLMnl3uzKamZOrU4i1JuruTzZuTtWuT9et/WwDr6iq2PQ0dWhTcJkxIJk1KRo9OWlrKzQQAAFAriksAAAAAAAAAAEDDmTSp6gT18dh9btyYXHbZvj1nZH6Vj+Wd+at8ttQsP88f5pxcn8/nDaXO7ataW5OlS2tfEmppScaNK94AAAD6G8UlAAAAAAAAAACg4YwZkwwblnR0VJ2kdoYPL7bn7NyZnHlmsWFnb16Vr2RpZuaIPFRqlhV5Xc7Okvw0Ty91bl82f34ydmzVKQAAAPq25qoDAAAAAAAAAAAA/K6WlmTixKpT1NbEicV9Ll6crF6952sPSUeuzgX5Sl5TamnpNxmes7Ik03KH0tLjtLUls2ZVnQIAAKDvU1wCAAAAAAAAAAAa0uTJVSeorcmTky1bkssv3/N1x2ZN7skLckH+odTzV+bFOTr35pM5K0lTqbP7smnTkqVLk2bfXQcAAHDQfGkFAAAAAAAAAAA0pOnTq05QW9OnJwsWJF1du358UHbk8nww38mLMiabSzt3ewbn3fmbnJi78oOMKm1ufzBtWnLLLcngwVUnAQAA6B8GVR0AAAAAAAAAAABgV6ZOTUaPTjaX19lpGIcemlxzTfK5z+368efn33NTzsiUrC713A0Zl9Nzc76XiaXO7Q/a2opNS0pLAAAA5bFxCQAAAAAAAAAAaEhNTcl551Wdojb+93+TW29Ndu783Ud6c14+lu/lmFJLSz1pyqLMyqSsVVr6Ha2tycKFybJlSksAAABlU1wCAAAAAAAAAAAa1owZybBhVaeoj2fkoXwpf5aP5fwMy6Olzf1xnp1X5Ou5OIvSlaGlze0PpkxJ1q1LLr44afbddAAAAKXzpRYAAAAAAAAAANCwDjssaWurOkXtnZpbsj4TclL+pdS5N2ZGjsz9+WZeVurcvq61NbnyymTlymTs2KrTAAAA9F+KSwAAAAAAAAAAQEObO7comvRHh2Vrbk5bbsmb8pRsLW3uL/IHOSW35czcmIczorS5fd2wYcnZZycbNiSXXJK0tFSdCAAAoH9TXAIAAAAAAAAAABraqFHJvHlVpyjfK/K13J8j05ZPlzr3i3ltjsz9+VxOKXVuXzZmTHL11clDDyXXX198TgEAAFB7g6oOAAAAAAAAAAAAsDezZiW3356sXl11koM3NI/mb3NpLszVpc59JMNyUf4+S3J2kqZSZ/c1w4cnEycmkycn06cnJ56YNA3slwQAAKASiksAAAAAAAAAAEDDGzQoueGGoozS1VV1mgM3KXfnppyRsdlU6tx/y4syI8uyJX9S6txGddxxyejRxedCa2sydGgycmQyYUIyaVLxWEtL1SkBAABQXAIAAAAAAAAAAPqEsWOTK65I5sypOsn+a8nOvDsfzuWZl8HZWdrcHRmU9+eDuTJz0j2Avh3s3nuTT386GTWq6iQAAADsSXPVAQAAAAAAAAAAAPbV7NlJW1vVKfbPn+T7+XZOyBW5vNTS0oaMy5SsyofzngFVWkqKTUsLFlSdAgAAgL1RXAIAAAAAAAAAAPqM5uZk6dLk5JOrTrIvevOOXJvv5Zi8MKtKnfz3+escm7uzLi8odW5f0t6e/PrXVacAAABgTwbWj9kAAAAAAAAAAAAaUnd3smlTsnZtsn59snVr0tmZbN+eDBmSDB2ajByZTJiQHHts8pnPJH/1V8mKFVUn37Vn5KF8Mm/Ln+XLpc79cZ6dM3ND/jUvL3VuX9TRkSxbllxwQdVJAAAA2B3FJQAAAAAAAAAAoO56e5M770yWL0/WrEnWrSuKKPtq+PDkqKOSMWOKwlMjeWP+MR/PO/IH+VWpc2/K6bkgH82vc1ipc/uya65Jzj8/aWqqOgkAAAC7orgEAAAAAAAAAAAHYX83BY0enbS0VJ26Otu2FVtyrr324ApHjzySfOc7v/19U1NRhqrSiGzLP+T8nJ72Uuf+Mk/J23Ndbs8bS53bH2zalNx1VzJ1atVJAAAA2BXFJQAAAAAAAAAA2A9lbAo65phk8uRk+vSicDEQtsVs2ZIsWJC0t+/f67Wvqi4tvSzfyI15S56d/yp17pdyUt6aT+V/8oxS5/Yny5crLgEAADQqxSUAAAAAAAAAANgHZW4KWrmyeLvqqmTMmOTcc5MZM5LDDispbAPZuTNZtCh5//uTrq6q05RvaB7N3+Q9uShXlTr3kQzL7CzKdXl7kgHQbDsIa9ZUnQAAAIDdaa46AAAAAAAAAAAANLItW5JzzkmOOCK58MKDKy3tyqZNxdwjjijO2bKl3PlV2rgxOf745NJL+2dpaWLuydpMKr209N1MyTH5Xq7LO6K0tHfr1iXd3VWnAAAAYFcUlwAAAAAAAAAAYBd27kwWLEjGj0+WLEk6Omp7XkdHcc748cmVV/btIkZPT7JwYTJxYrJ6ddVpkqaSuz8t2Zn35ENZlSkZl42lzd2RQbks83JCvp3/yPNLm9vfPfJIsnlz1SkAAADYFcUlAAAAAAAAAAD4HVVuCurqSubOLc7fWF4npm527EhmzEjmzGmcLUu9vcU/x4wpXtdhww581qj8R76Vl+RDeV8GZ2c5AZNszJi8KN/J/FyW7gwqbe5AsXZt1QkAAADYFcUlAAAAAAAAAAD4P420KWjVqiLHwoVFrr6gszM55ZSkvb3qJLu2aVPylKckP/tZsmFDsmxZUbA6++zk9NOTQw/d07N7c06uy705Oi/Kd0vN9ZG8Ky/IPVmbY0udO5CsX191AgAAAHbFj+YAAAAAAAAAAIAUm4Jmzmys0k1XV1GsuffeZOnSZPDgqhPt3o4dyamnJitWVJ1kz1asSN785uS225Jx4377/m9+M7n55l0/5+n573wiZ+XP88+lZvlJnpWZWZqv55Wlzh2Itm6tOgEAAAC7YuMSAAAAAAAAAAADXqNvCmpvL/J1dladZNd6eorSV6OXlh5zxx1F3sdvslq+fNfX/kVuz/05svTSUnvenKNyn9JSSRr1zwYAAMBAp7gEAAAAAAAAAMCA1pc2BZ12WpG30Sxa1Lilr91pb08WL/7t79eseeLjT86vc2Nm5Pa8MX+YX5Z27q8yMqflszk97dmWkaXNHei6uqpOAAAAwK4oLgEAAAAAAAAAMGD1h01BVdu4MbnssqpTHJj3va/I392drFv32/e/NP+a+3JUZuSmUs/7l7w6R+b+3JrTSp1L0tpadQIAAAB2RXEJAAAAAAAAAIABqz9sCqrSzp3JmWf23W03XV1FEWzDhqSjI2lNZxZlVv41L89z8uPSzunIITkvH8tJ+XIeyhGlzeW3hg6tOgEAAAC7orgEAAAAAAAAAMCA1B82BVVt8eJk9eqqUxycVauSD30oOSbrcneOzaz8fanzV2dyJmZdrs15SZpKnc1vjRxZdQIAAAB2ZVDVAQAAAAAAAAAAqEZ3d7JpU7J2bbJ+fbJ1a9LZmWzfngwZUmwwGTkymTAhOfbYZPTopKWl6tTl6C+bglaurO5jsmVLcvnl1ZxdpuZ050/+8crclPdnSHaUNndnWnJFLsvf5D3ZmcGlzWXXJkyoOgEAAAC7orgEAAAAAAAAADBA9PYmd96ZLF+erFmTrFuXdHTs+/OHD0+OOSaZPDmZPj2ZOjVp6qMLZPrLpqBFi5I5c6o5f8GCvlv8eswfZ0uWZUaO7/23UuduyuickZtydyaXOpfdmzSp6gQAAADsSnPVAQAAAAAAAAAAqK1t25Krr07GjUte9rLkqquKTT37U1pKkkceKZ531VXFnHHjirnbtpWfuZb6y6agpLiPLVvqf+62bUl7e/3PLU9vzsqS3Jujc3zKLS19NOfnBblHaamOhg8vNsIBAADQeGxcAgAAAAAAAADop7ZsKbbitLfvf0lpX2zalFx4YfLudydtbcncucmoUeWfs7+6u4tsa9cm69cnW7cmnZ3J9u3JkCHFtqm+vinoMV1dxcf4+uvre+6yZbX5nKqHp+V/siRn5+R8odS5D+aZOTM35Gt5Valz2buJE5OWlqpTAAAAsCuKSwAAAAAAAAAA/czOncmiRcn731+fgk5HR7JkSVFmmTcvmT27viWC3t7kzjuT5cuLUtK6dX23VHMg2tuThQuTESPqc15vb3LNNfU5q2yvzz/l+pyTw/OLUud+Jm/KO/OxbM1TSp3LvplsuRUAAEDDaq46AAAAAAAAAAAA5dm4MTn++OTSS+u/Vairq9i6dPzxRY5a27YtufrqZNy45GUvS666Klm5cmCVlpLifpctq995d96ZbN5cv/PK8OT8OktzZv4pf1FqaWlrDsub8pm8OZ9RWqrQ9OlVJwAAAGB3FJcAAAAAAAAAAPqBnp5i687Eicnq1dVmWbWqyLFwYZGrbFu2JOeckxxxRHLhhcmmTeWf0ddcc02xCakeli+vzzllOTF35t4cnTNzY6lzv5JX5cjcn1vyplLnsn/GjElOPLHqFAAAAOyO4hIAAAAAAAAAQB+3Y0cyY0YyZ079tyztTldXkWfGjCJfGXbuTBYsSMaPT5YsGXiblfZk06bkrrvqc9aaNfU552C1pjNX5pL8a16W5+ZHpc19NENzfj6ak/LlPJhnlTaXA3PeeUlTU9UpAAAA2J1BVQcAAAAAAAAAAODAdXYmp56arFhRdZJda29PHn44ufXWZOjQA5+zcWNy5pnVb5NqZMuXJ1On1vaM7u5k3branlGGo3Jvbs7pOTLrS527JsfmjNyUzRlT6lwOzLBhRTkSAACAxmXjEgAAAAAAAABAH7VjR2OXlh6zYkVy2mkHtnmppydZuDCZOFFpaW/qsQlp06bG3nTVnO7MyYKsyeRSS0s705IP5P15cf5NaamBtLUlI0ZUnQIAAIA9sXEJAAAAAAAAAKAP6ulJZs5s/NLSY+64o8i7bFnSvI8/anfHjuI57e21zdZfrFtXbERqaandGWvX1m72wXpefpAb85a8JN8ude7m/GnOyE1Zk+NKncvBaW1N5s6tOgUAAAB7Y+MSAAAAAAAAAEAftGhR3yv0tLcnixfv27Wdnckpp/S9e6zSI48kmzfX9oz15S0xKlFv3ppP5t4cXXpp6WM5LxOzTmmpAc2bl4waVXUKAAAA9kZxCQAAAAAAAACgj9m4MbnssqpTHJj3va/Ivyc7diSnntp3tkk1klpvRNq6tbbz99dT89Msz/R8Mmfl0PymtLkP5Rl5Tb6c8/OxPJphpc2lHFOmJLNnV50CAACAfaG4BAAAAAAAAADQh+zcmZx5ZtLVVXWSA9PVlcycmXR37/rxnp7icaWlA1PrjUidnbWdvz+m5/O5P0dmWsr9ZLklp2ZC1ucreU2pcylHa2uydGnS0lJ1EgAAAPaF4hIAAAAAAAAAQB+yeHGyenXVKQ7OqlXJokW7fmzRoqS9vb55+pNab0Tavr228/fFoXk4n8xb8/m8IU/Nz0ubuzWH5c1pz5vy2WzNU0qbS7nmz0/Gjq06BQAAAPtqUNUBAAAAAAAAAADYN1u2JJdfXnWKclx+eXLKKcmoUb9938aNyWWXVZepP6j1RqQhQ2o7f29ekrtyY96S5+WHpc79Wl6RM3NDHsyzSp3bCFpakje+MentLbYVDR2ajByZjBuX3HZb8oUvVJ1w37W1JbNmVZ0CAACA/aG4BAAAAAAAAADQRyxYkHR1VZ2iHF1dxf1cf33x+507kzPP7D/3V5Vav35Dh9Z2/u4MSVfm5fJckoVpTm9pcx/N0MzNgvxDzk9vmkub20je+tbf/jn7XW9+c1EgXLGivpkOxLRpydKlSXP//DABAAD0W76MAwAAAAAAAADoA7ZtS9rbq05Rrvb25Ne/Ln69eHGyenW1efqD1tbazh85srbzd+XI3JfVOS5zc2WppaW7MykvyD35aN71e6WllpbSjqlUa2syd+7uHx88OLn11uTkk+uX6UBMm5bcckuRFwAAgL5FcQkAAAAAAAAAoA9Ytizp6Kg6Rbk6Oor72rIlufzyqtP0D7XeiDRhQm3nP15zunNxFmZNJufo3Ffa3J1pybxclhflO9mUsbu85o1vLO24Ss2bl4watedrhg5Nbr89aWurT6b91daW3HZbddu+AAAAODiDqg4AAAAAAAAAAMCe9fYm11xTdYrauOaa5L77kq6uqpP0D7XeiDRpUm3nP+a5+c/cmLfkxHyr1Lnfz5/kjNyUVXnhHq97z3uS//zPvr0FbMqUZPbsfbt28OCiRHj00clllzXGn8fW1mT+/GTWrKTZj+cGAADos3xJBwAAAAAAAADQ4O68M9m8ueoUtbFpU3LzzVWn6D9qvRFpzJhk2LBantCbM7M09+Wo0ktL1+TcHJPv7bW0NHx4Mn58csMNRXmmL2ptTZYuTVpa9v05zc3JJZck69Ylxx1Xu2z7YsqUIsfFFystAQAA9HW+rAMAAAAAAAAAaHDLl1edoLY6O6tO0H/UeiNSS0sycWJtZh+en+Wf8oYszVtzaH5T2tz/ztPzZ/nnvDPXpCPD93r9xInFfY4dm1xxRWkx6mr+/CL/gRg7Nlm5MlmwoP7FrdbW5Mori/MPND8AAACNRXEJAAAAAAAAAKDBrVlTdQL6guHDk9Gja3/O5Mnlzzw5d+T+HJnXp9yW3q35y0zI+nw5f7bPz3n8/c2enbS1lRqp5traklmzDm7GoEHJnDnJhg3J2WfXestWMf/ss4vzLrlk/zZFAQAA0NgUlwAAAAAAAAAAGlh3d7JuXdUp6Ase2xRUa9OnlzfrSfnfLMlZuSPT87T8rLS52zIibbk5p+WW/Cp/sF/Pffz9NTcnS5cmJ59cWrSamjatyNtc0neFjRqVXH998tBDydVXJ2PGlDP3MWPGFHMfeqg4Z9SocucDAABQPcUlAAAAAAAAAIAGtmlT0tFRdQr6glpsQtqVqVPL2ex0fL6de3N0zsonD37Y43w9L8+RuT+fTluSpv167pgxyYknPvF9gwcnt97a+OWladOSW24p8pZtxIjkgguSBx5IvvnN5KKLkhNO2P9NTMOHF8+76KJizgMPFHNHjCg/MwAAAI1hUNUBAAAAAAAAAADYvbVrq05AX1HmJqQ9aWpKzjsvufDCA3v+kHTlg3l/5uTKNKe3tFydac2l+dtcnXel9wB/nvN55xX397uGDk1uvz2ZOTNpbz/IoDXQ1lZsWqpFaenxmpqK4trUqcXvu7uTzZuLf0+tX59s3Zp0diZdXUlra/G6jRyZTJiQTJpUFN7qsRUMAACAxqG4BAAAAAAAAADQwNavrzoBfcGuNgXV0owZybvfvf/bwMZnfW7O6Tkm95aa555MzOm5ORsz7oBnDBtW3NfuDB6cLFuWHH10ctllRTmnaq2tyfz5yaxZSfOBdbUOSktLMm5c8QYAAAC7UsGXqwAAAAAAAAAA7KutW6tOQF+wu01BtXLYYcWWn33VnO7Mzt9lbSaVWlrqTnPm5715Yb57UKWlpLifESP2fE1zc3LJJcm6dclxxx3UcQdtypQix8UXV1NaAgAAgH3hS1YAAAAAAAAAgAbW2Vl1Ahrd3jYF1crcucXGn735o/woX88r8ne5JK3ZXtr5/5FROSHfzmWZnx0ZclCzWluL+9lXY8cmK1cmCxbs22tQptbW5Mori/PHjq3v2QAAALC/FJcAAAAAAAAAABrY9vJ6HvRT+7IpqBZGjUrmzdvTFb15S27I/TkyL82dpZ798bw9x+R7+W5eVMq8efOK+9kfgwYlc+YkGzYkZ59dFMhqadiw4pwNG4qtTy0ttT0PAAAAyqC4BAAAAAAAAADQwIYc3CIZ+rn93RRUtlmzkuOO+/33/2F+nttzSm7IzDw5/1vaef+Tp+XP84Wcm4/nkTyplJlTpiSzZx/480eNSq6/PnnooeTqq5MxY0qJ9f+NGVPMfeih4pz9LVgBAABAlQZVHQAAAAAAAAAAgN0bOrTqBDSyA9kUVKZBg5IbbkgmTky6uor3/Xm+kE/krDw9Py31rNtySt6Rj+eX+cPSZra2JkuXlrO9aMSI5IILkvPPT+66K1m+PFmzJrnnnqSjY9/nDB9evJ6TJyfTpycnnpg0NR18PgAAAKiC4hIAAAAAAAAAQAMbObLqBDSqg90UVJaxY5Mrrkg+OOc3WZxZOSdLSp3/6zw55+cfcnNOT1Jug2f+/CJ/mZqakqlTi7ck6e5ONm9O1q5N1q9Ptm5NOjuLoldra1FOHDkymTAhmTQpGT26nCIVAAAANALFJQAAAAAAAACABjZhQtUJaERlbgoqw+wXrsyMJ83I037zg1Ln/mtemjNzQ36c55Q6N0na2pJZs0of+3taWpJx44o3AAAAGGiaqw4AAAAAAAAAAMDuTZpUdQIaUS02BR2Q7duT97wnzS89sdTSUmdac1EW5xX5ek1KS9OmFcWvZt89BQAAADVl4xIAAAAAAAAAQAMbMyYZNizp6Kg6CY2iXpuC9mr9+uSMM5Lvfa/UsetyTM7ITdmQ2qwbmzYtueWWZPDgmowHAAAAHsfPDAEAAAAAAAAAaGAtLcnEiVWnoFE0xKagnp5k8eLk2GNLLS11pzkfynsyJatqVlpqa0tuuy0ZOrQm4wEAAIDfobgEAAAAAAAAANDgJk+uOgGNoCE2Bf3oR8krXpHMnp10dZU2dkv+OC/Jt/K+fCg7MqS0uY9pbU0WLkyWLbNpCQAAAOppUNUBgIPX3d2d73//+9mwYUPWr1+f9evX50c/+lG2bdv2/9+ampoydOjQjBgxIkcccUSe85zn5KijjsqkSZNywgknZPjw4VXfBgAAAAAAAAC7MX16ctVVVaegSm1txaalyko3vb3JTTclF1yQPPxwqaOvz9mZlcV5JE8qde5jpkwpXruxY2syHgAAANgDxSVI8sMf/jB33333/39bu3Zttm3btsfn9Pb21ifcbmzYsCHf+MY38vWvfz133nnnXvMmyfbt2/Pwww/nJz/5Sb773e/mlltuSZIMGTIkU6dOzYwZM3LKKafkkEMOqXF6AAAAAAAAAPbH1KnJ6NHJ5s1VJ6HeWluT+fOTWbOS5uaKQvziF8k73pHcfnupY/8nT8tZ+US+mNeVOvcxra3JFVcUr11LS02OAAAAAPZCcYkB57/+679+r6T0i1/8oupYe9Xb25tvf/vbufXWW/O5z30uDz30UGmzt2/fnq9+9av56le/mosvvjizZs3Ku971rgwdOrS0MwAAAAAAAAA4cE1NyXnnJRdeWHUS6qkhNgX98z8nb31r8tOfljr2c3lD3p7r8oscXurcJBk2rNhQNXduMmpU6eMBAACA/aC4RL/205/+NGvWrHlCUemnJf9FWq395Cc/yaJFi3LbbbflwQcfrPl5P/3pTzN37txcf/31ue666/KKV7yi5mcCAAAAAAAAsHczZiTvfnfS0VF1kvK0tiZdXVWnaDwNsSnoN79JLr44ue66cuceemg6Fnw0D+6YkT+8tim/2FTe6DFjioLfjBnJiBHlzQUAAAAOnOIS/dprXvOa3HvvvVXHOCgrV67MRz7ykbqfu2XLlrz61a/OZZddlve///1pamqqewYAAAAAAAAAfuuww4otMkuWVJ2kPGeckXzrW8nmzVUnaQwNsynoO98pPjhbtpQ7d+rU5IYbMuy5z80FSc6/ILnrrmT58mTNmuSee/avmDd8eDJxYjJ5cjJ9enLiicV2MgAAAKBxKC4Bu9XT05MPfvCD+fGPf5wlS5akpbIf4wQAAAAAAABAUhRali3rH1uKWluTSy9NjjwyufDCqtNUq2E2BW3fnsybl3z4w0lPT3lzhwxJ/uZvkosuSpqb//+7m5qKLtPUqcXvu7uLEtvatcn69cnWrUlnZ/H53tqaDB2ajByZTJiQTJqUjB5d4UYqAAAAYJ8oLkE/09TUlD/90z/NhAkT8tznPjdPe9rTMnz48OzcuTO//OUv87Of/Szf+c53ct9996W3t3efZi5dujStra259tpra5weAAAAAAAAgD0ZNarolcydW3WSgzdvXnE/M2Yk7373/m3a6esaclPQAw8kp5+erFtX7tyjj05uuqloqO1FS0syblzxBgAAAPQPikvQDzznOc/JySefnD/7sz/LCSeckCc/+cl7fc6vfvWrLFu2LIsXL85PfvKTvV7/8Y9/PEcddVTOPffcMiIDAAAAAAAAcIBmzUpuvz1ZvbrqJAduypRk9uzi14cdlrS1JUuWVBqpVGPGFKWkPrEpqKcnufrqYv1Vmau8mpqKht0HPlC8CAAAAMCApLgEv+O5z31u/vRP/zRf+cpXqo6yR4ccckje/OY35y1veUtOOOGENO3nj156ylOekr/+67/OO9/5zlxxxRX50Ic+lJ69rHm/5JJLctJJJ+V5z3vewUQHAAAAAAAA4CAMGpTccEOxsafMnkm9tLYmS5c+sbgzd26ybFnfvJ/f1dqafOELxTaphvfjHyczZybf+Ea5c5/3vOIDesIJ5c4FAAAA+pzmqgNAlZ797GfnDW94Q+bPn58vf/nL+cUvfpH//M//zHXXXVd1tN16xjOekYULF+bBBx/MJz7xibzkJS/Z79LS4w0ePDjz5s3Ll7/85QwbNmyP1z7yyCN5z3vec8BnAQAAAAAAAFCOsWOTK66oOsWBmT+/yP94o0Yl8+ZVk6ds8+b1gdJSb29y883JUUeVX1o666zk3nuVlgAAAIAkNi4xgDzzmc/Msccem2OPPTaTJk3K5MmTc/jhh1cda58985nPzHvf+9687W1vS2sNVqi/6lWvymc/+9m84Q1vSHd3926vu/XWWzNv3rw8//nPLz0DAAAAAAAAAPtu9uyiH9LeXnWSfdfWlsyatevHZs1Kbr89Wb26vpnKNGVK8XFpaL/8ZfKOdyS33Vbu3Kc+NfnEJ5KTTy53LgAAANCnKS7Rr11wwQV52tOelmOPPTZPf/rTq45zQJ785Cdn/vz5ueiii/a6EelgnXzyyXnve9+beXv4MVY9PT258cYbM3/+/JpmAQAAAAAAAGDPmpuTpUuThx9OVqyoOs3eTZtW5G1u3vXjgwYlN9yQTJyYdHXVNVopWluL+2tpqTrJHnzpS8nb3pb893+XO/f1r0+uvz7pQz9AFgAAAKiP3fxVEPQPb3vb2/K6172uz5aWkuS1r31t3vve99a8tPSYOXPm5JnPfOYer/n85z9flywAAAAAAAAA7Nngwcmttzb+kptp05Jbbiny7snYsckVV9QnU9nmzy/yN6RHHknOPTd57WvLLS0demjyqU8ln/uc0hIAAACwS4pLwBMMHz4855577h6v2bBhQ37+85/XKREAAAAAAAAAezJ0aHL77UlbW9VJdq2tLbnttiLnvpg9u3HvZXfa2pJZs6pOsRvf/W6xxurjHy937oknJvfdl8ycmTQ1lTsbAAAA6DcUl4Df87rXvW6v16xfv74OSQAAAAAAAADYF4MHJ8uWJVdembS2Vp2m0NqaLFxY5NrbpqXHa25Oli5t/C1Sj5k2rcjb3GjfhbNjR3L55cnxxyff/355c4cMKT6w3/hG8tznljcXAAAA6Jca7a9MgAZwzDHH5NBDD93jNT/4wQ/qlAYAAAAAAACAfdHcnFxySbJuXXLccdVmmTKlyHHxxQdW6Bk8OLn11sYvL02bltxyy/4Vs+pi48bkRS9Krrgi6ekpb+5RRyVr1hQf2JaW8uYCAAAA/ZbiErBLT3/60/f4+LZt2+oTBAAAAAAAAID9MnZssnJlsmBB/bcvtbYWW59WrixyHIyhQ5Pbb0/a2srJVra2tuS224qcDaOnJ7n66uQFL0jWri1vblNTMndusnp1UV4CAAAA2EeKS8AuHX744Xt8/NFHH61TEgAAAAAAAAD216BByZw5yYYNydlnJ8OG1fa8YcOKczZsKLY+lbWMZ/DgZNmyogxV7xLW7rS2JgsXFrkaatPST36SvPrVyYUXJp2d5c197nOTO+9M/vZvG+eDAAAAAPQZikvALnV0dOzx8aEN9SOjAAAAAAAAANiVUaOS669PHnqoWMQzZky588eMKeY+9FBxzqhR5c5Pkubmogy1bl1y3HHlz98fU6YUOS6+uMjVEHp7k09/OjnyyOTrXy939tveltx3X/KSl5Q7FwAAABgwBlUdAGhMP/nJT/b4+MiRI+uUBAAAAAAAAOD3dXcnmzYla9cm69cnW7cWS2a2b0+GDEmGDk1GjkwmTEiOPTYZPbq8LUB90YgRyQUXJOefn9x1V7J8ebJmTXLPPclefq7lEwwfnkycmEyenEyfnpx4YtLUVLvcjzd2bLJyZbJ4cXL55UlXV33OTYpFQ1dckcya1WCfR7/6VXLuucmtt5Y79/DDkyVLig8yAAAAwEFQXAJ+z49//OP88pe/3OM1o2rxY7IAAAAAAAAAdqO3N7nzzt8Wbtat2//CzTHH/LZwM3Vq/Qo3jaSpqbj3qVOL33d3J5s3/34BrKurKOs8vgA2aVL1BbBBg5I5c5JTTkkWLEja2/fv82B/DRuWtLUlc+fWZpvUQfmXf0lmzkz++7/LnTttWlFaeupTy50LAAAADEiKS8Dv+eIXv7jXa8aPH1+HJAAAAAAAAMBAt21bsmxZcu21xYalA/XII8W2npUrk6uuSsaMKRbVzJiRHHZYSWH7oJaWZNy44q0vGTUquf76ZOHC4vPjmmsO7vPjd40Zk5x3XvH5MWJEeXNL8cgjRXvrmmvKnfukJyUf+UhRhhqIrT4AAACgJpqrDgA0nk9/+tN7fHzcuHE5/PDD65QGAAAAAAAAGIi2bEnOOSc54ojkwgvLLaUkxbwLLyzmn3NOcR59z4gRyQUXJA88kHzzm8lFFyUnnFBsStofw4cXz7voomLOAw8UcxuutLRqVTJxYvmlpRNOSO67L3nrW5WWAAAAgFLZuAQ8wdq1a/Ptb397j9dMmzatTmkAAAAAAACAgWbnzmTRouT970+6ump/XkdHsmRJsbVn3rxk9uxiCxF9S1NTMnVq8ZYk3d3J5s3J2rXJ+vXJ1q1JZ2fxOdXamgwdmowcmUyYkEyalIwe3eAf9x07kvnzkw99qLi5sgweXMz1iQ8AAADUiOIS8ATvec979npNW1tbHZIAAAAAAAAAA83GjcmZZyarV9f/7K6uZO7c5HOfS5YuTcaOrX8GytPSkowbV7z1eZs2JWeckdx9d7lzjzwyuemm5Oijy50LAAAA8DjNVQcAGscXvvCFfOUrX9njNa961asyYcKEOiUCAAAAAAAABoKenmThwmTixGpKS4+3alWRY+HCIhdUpqcn+ehHi0/IMktLTU3JJZcka9YoLQEAAAA1Z+MSkCT59a9/nXe84x17ve6yyy6rQxoAAAAAAABgoNixI5k5M2lvrzrJb3V1JXPmJPfeW2xfGjy46kQMOA8+WPzB+OpXy537nOcky5YlJ55Y7lwAAACA3VBcApIk73znO/Pggw/u8Zq//Mu/zEte8pI6JTpwH/vYx3LNNdfU/JwtW7bU/AwAAAAAAADozzo7k1NPTVasqDrJrrW3Jw8/nNx6azJ0aNVpGDA+85nkvPOSbdvKnTtzZnLVVcmTn1zuXAAAAIA9UFwCcv3116d9Lz++7NBDD82iRYvqlOjg/PznP88DDzxQdQwAAAAAAABgD3bsaOzS0mNWrEhOOy257Tabl6ixX/0qeec7k89+tty5f/iHyZIlyetfX+5cAAAAgH3QXHUAoFp33313Lrzwwr1e9/d///d59rOfXYdEAAAAAAAAQH/X01Msf2n00tJj7rijyNvTU3US+q2vfCU58sjyS0snn5ysX6+0BAAAAFRGcQkGsIceeijTp09PZ2fnHq87+eST87a3va1OqQAAAAAAAID+btGipL296hT7p709Wby46hT0Ox0dyQUXJK95TfLQQ+XNHT682LK0fHnytKeVNxcAAABgPykuwQDV0dGR6dOn56G9/MXnc5/73Nx44411SgUAAAAAAAD0dxs3JpddVnWKA/O+9xX5oRRr1iQveEHyD/9Q7twXvzi5997krLOSpqZyZwMAAADsJ8UlGIB27tyZU089NXffffcerxs6dGj+8R//MSNHjqxTMgAAAAAAAKA/27kzOfPMpKur6iQHpqsrmTkz6e6uOgl92o4dyQc/mLzoRcnmzeXNHTw4+fCHk7vuSkaNKm8uAAAAwEEYVHUAoL56e3tz1lln5Ytf/OIer2tubs5NN92UY489tk7JynP44Ydn3LhxNT9ny5Yt6eqr/0cFAAAAAAAAKrB4cbJ6ddUpDs6qVcmiRcmcOVUnoU/avDk544xi21KZxo9Pbr45OeaYcucCAAAAHKSm3t7e3qpDQKP54Q9/mOc973l7vKav/tH567/+63zkIx/Z63XXXXddzjnnnDok6rvGjx+fBx544PfeP27cuGzYsKGCRAAAAAAAANC4tmwpuhX94WcDtrYmGzZYasN+6O1NrrkmueSS5NFHy5vb1JTMmpXMn58MHVreXAAAAKB0A/X7z5urDgDUzwc+8IF9Ki0tWLBAaQkAAAAAAAAo1YIF/aO0lBT3sWBB1SnoMx58MDnppOT888stLf3RHyXf+Ebyd3+ntAQAAAA0LMUlGCAWL16cD37wg3u97r3vfW/mzJlTh0QAAAAAAADAQLFtW9LeXnWKcrW3J7/+ddUpaHi33JIceWTyla+UO/ctb0nuuy956UvLnQsAAABQMsUlGACuv/76zJ49e6/XXXDBBZk/f34dEgEAAAAAAAADybJlSUdH1SnK1dFR3Bfs0tatyZvfnLzpTcWvy/IHf5Dcfntyww3JiBHlzQUAAACoEcUl6OduvvnmnHvuuXu97q1vfWs+8pGP1CERAAAAAAAAMJD09ibXXFN1itq45pri/uAJvva1YsvSZz5T7tzXvjZZvz75i78ody4AAABADSkuQT92++2358wzz0xPT88er3vTm96UJUuWpKmpqU7JAAAAAAAAgIHizjuTzZurTlEbmzYld91VdQoaxqOPJhdemLzqVcmDD5Y3d/jw5Lrrki98IXn608ubCwAAAFAHikvQT33xi1/MX/3VX6W7u3uP173+9a/PTTfdlOZm/zoAAAAAAAAAyrd8edUJaqu/3x/76O67kxe8ILn66nLnvuhFyfe+l5xzTuKHkQIAAAB9kKYC9ENf//rX88Y3vjE7duzY43UnnXRSbrnllgwaNKhOyQAAAAAAAICBZs2aqhPUVn+/P/Zi587kiiuKgtGmTeXNHTQo+dCHipVef/In5c0FAAAAqDNtBehnvv3tb2fatGnp7Ozc43UvfelL87nPfS5DhgypUzIAAAAAAABgoOnuTtatqzpFba1bV9xnS0vVSai7f//3ZMaMZNWqcueOG5fcdFOxwQkAAACgj7NxCfqRVatW5bWvfW06Ojr2eN2LXvSirFixIoccckidkgEAAAAAAAAD0aZNyV7+92Wf98gjyebNVaegrnp7k2uvTSZOLL+0dNFFyd13Ky0BAAAA/YaNS9BPrFu3LieddFL+93//d4/XveAFL8iXvvSlPOlJT6pTMgAAAAAAAGCgWru26gT1sXZtsSSHAeChh5K3vS358pfLnfvsZyc33JC8/OXlzgUAAAComI1L0A9s2LAhr371q7Nt27Y9XnfkkUfmK1/5SkaMGFGfYAAAAAAAAMCAtn591QnqY6Dc54D3j/+YHHlk+aWl009P7rtPaQkAAADol2xcgj7u+9//fl75ylfmF7/4xR6vGzNmTL72ta/lD/7gD+qUDAAAAAAAABjotm6tOkF9DJT7HLC2bUvOPz9pby937lOeklx3XfLGN5Y7FwAAAKCBKC5BH/bDH/4wL3/5y/M///M/e7zuj//4j/P1r389T33qU+uUDAAAAAAAACDp7Kw6QX0MlPs8WN3dyaZNydq1xZaqrVuL12779mTIkGTo0GTkyGTChOTYY5PRo5OWlopDf/3ryZlnJv/1X+XOPemk5FOfSp7xjHLnAgAAADQYxSXoox588MG84hWvyH/t5S9Hn/3sZ+cb3/hGnvnMZ9YpGQAAAAAAAEBh+/aqE9RHV1fVCRpTb29y553J8uXJmjXJunVJR8e+P3/48OSYY5LJk5Pp05OpU5OmpprFfaJHH03e/e7kIx8pd+6wYcmiRcnb317HmwEAAACojuIS9EE/+9nP8opXvCI/+MEP9njdM57xjHzjG9/Ic57znDolAwAAAAAAAPitIUOqTlAfra1VJ2gs27Yly5Yl115bbFg6UI88kqxcWbxddVUyZkxy7rnJjBnJYYeVFHZX7rknOf30ZOPGcudOmZLcdFPy/OeXOxcAAACggTVXHQDYP7/61a/yyle+Mps3b97jdYcffni+/vWv50/+5E/qlAwAAAAAAADgiYYOrTpBfQyU+9ybLVuSc85JjjgiufDCgyst7cqmTcXcI44oztmypdz52bkz+dCHioJRmaWlQYOSK65Ivv1tpSUAAABgwFFcgj7k4YcfzkknnZT7779/j9c95SlPyde+9rWMHTu2TskAAAAAAAAAft/IkVUnqI+Bcp+7s3NnsmBBMn58smRJ0tFR2/M6Oopzxo9Prrwy6e4uYeh//Efykpck73tfcUNlGTMm+e53i7mDBpU3FwAAAKCPUFyCPqKjoyOve93rsmbNmj1eN2LEiHzlK1/JUUcdVadkAAAAAAAAALs2YULVCepjoNznrmzcmBx/fHLppUlXV33P7upK5s4tzj/gBUm9vcl11yVHH10UjMr0rncl99yTTJpU7lwAAACAPsSPcoE+YPv27XnDG96Qb33rW3u87klPelK+9KUvZZK/9AQAAAAAAAAawED5X5cD5T4fr6cnWbQoueyy+heWfteqVcnEickVVySzZyfN+/pjfP/7v5Ozzkr++Z/LDfSsZyVLlyavfGW5c/9Pd3eyaVOydm2yfn2ydWvS2Zls354MGZIMHVpsAZswITn22GT06KSlpSZRAAAAAPZKcQka3M6dO3PaaaflK1/5yh6vO+SQQ/KFL3whL3rRi+qUDAAAAAAAAGDPxoxJhg1LOjqqTlI7w4cXxZCBZMeOZObMpL296iS/1dWVzJmT3Htv0RkaPHgvT7jttuQd70h++ctyg7z5zck//EPRHCpJb29y553J8uXJmjXJunX792dq+PDkmGOSyZOT6dOTqVOTpqbS4gEAAADskeIS/d5dd92Vf//3f9+v5/xyH/5i8hOf+MR+Z5k6dWqe//zn79dzLrroonz+85/f63XTp0/P97///Xz/+9/f71wH4tBDD81pp51Wl7MAAAAAAACAvqmlpdiEs3Jl1UlqZ+LEgbXNprMzOfXUZMWKqpPsWnt78vDDya23FpuHfs+vf51ccEFy003lHjxyZPLxjxcvTkm2bUuWLUuuvbbYsHSgHnmk+DO4cmVy1VVFofDcc5MZM5LDDispLAAAAMBuKC7R733qU5/KjTfeWPrcs88+e7+fs3Tp0v0uLt1///37dN1nP/vZfPazn93vTAfqOc95juISAAAAAAAAsFeTJ/fv4tLkyVUnqJ8dOxq7tPSYFSuS004rlio9YfPSN76RnHlm8pOflHvga16TfPKTyRFHlDJuy5ZkwYKihFWLbWWbNiUXXpi8+91JW1syd24yalT55wAAAAAkSXPVAQAAAAAAAACA/mv69KoT1FZ/v7/H9PQkM2c2fmnpMXfcUeTt6UmxJmrWrOQVryi3tHTIIcnHPpZ86UullJZ27iwKS+PHJ0uW1Ka09HgdHcU548cnV16ZdHfX9jwAAABgYFJcAgAAAAAAAABqZurUZPToqlPUxpgxyYknVp2iPhYtKjYA9SXt7cnNs9clkyYlf//35Q6fPDlZty4577ykqemgx23cmBx/fHLppUlXVwn59kNXV7F16fjjixwAAAAAZVJcAgAAAAAAAABqpqmp6Hb0RyV1Vhrexo3JZZdVnWL/tGRn3p2/yV9ddVzywAMlDm5JPvCBZOXKUhp5PT3JwoXJxInJ6tUHH+9grFpV5Fi48P82VQEAAACUQHEJAAAAAAAAAKipGTOSYcOqTlGuYcOK++rvdu5Mzjyz/luADsYfZ0vuyon5m7w3g7OzvMGjRyff+U7y/vcngwcf9LgdO4rPoTlzGuf17eoq8syYUeQDAAAAOFiKSwAAAAAAAABATR12WNLWVnWKcrW1JSNGVJ2i9hYvrn4T0L7rzdm5Pvfm6Lw43yl39PnnJ/fck0yeXMq4zs7klFOS9vZSxpWuvb3I19lZdRIAAACgr2vq7e3trToEQF80fvz4PPDAA7/3/nHjxmXDhg0VJAIAAAAAAIDGtWVLMn78/2Pv3sO0rOv8gb9nBhgWVKTSTCsrajkrhOiWJmXnTFjX0jaSJNOSNENUrJRK7YCkmZWWVCg220/TWqTsbEpLLiJiihxs2bLSzoEmxADD/P641zKFgRnuZ+45vF7XNVcwz/N8vu8vPOoVM28+XWezzO5obEzuvz8ZMqTqJLXVnX7Pnpnf5ot5Z96Yb5U7eP/9k2uuSV796tJGbtlSlIIWLixtZM1MnJjceGMpC6YAAACg1+ut339u4xIAAAAAAAAAUHNDhiQXXlh1inJceGHPLy0lyezZ3aO0dGy+nhUZVX5p6S1vSe67r9TS0rZtydSp3aO0lCQ331zk3bat6iQAAABAd6W4BAAAAAAAAAB0irPOSg49tOoUu+eww5IZM6pOUXvr1ydNTVWnaNteeSTzclK+nuPyjPypvMF775189avFx9OeVt7cJJde2vV/XZ+sqSm57LKqUwAAAADdleISAAAAAAAAANAp+vRJrrkmaWysOknHNDYm8+YlDQ1VJ6m9+fOTjRurTrFjE3Jb7s1BOSnXljv41a8utiy95S3lzk2yalVywQWlj+0U559f5AcAAABoL8UlAAAAAAAAAKDTDB+eXHRR1Sk65uKLi/w9XWtrcuWVVafYvsZsypycnVtzVA7ML8sb3L9/8pnPJN/5TvLsZ5c39/9s3ZqcdFLS3Fz66E7R3JxMnZq0tFSdBAAAAOhuFJcAAAAAAAAAgE41Y0YyeXLVKdpn8uTkrLOqTtE5br89WbOm6hRPdXDuydKMz9m5NPVpLW/wIYcky5cnp5+e1NfmW2kuuyy5886ajO40S5Ykl15adQoAAACgu1FcAgAAAAAAAAA6VX19Mm9ecswxVSfZNRMnFnlr1GnpchYsqDrBP6pPS2bmE7kzh2Z0VpQ3uKEhmTUr+clPkmHDypv7JGvXFsf0BLNmFfcBAAAA2FV9qg4AAAAAAAAAAPQMLS3J6tXJsmXJihXJunXJpk3J5s1Jv35J//7J4MHJqFHFkpuvfjX5939PFi6sOvmOTZyYXH990rdv1Uk6z9KlVSf4u+fnfzM/U3JEFpc7+J//ObnuuuTQQ8udux2zZyfNzTU/plM0Nxf3ufrqqpMAAAAA3YXiEgAAAAAAAAD0UO0tEg0dWiyh2VWtrcnttxcbepYuTZYvTzZu3PXXDxyYHHRQsexm9er236/WJk8uNi31ptJSS0vx+1i91pycL+XyvC97ZEOpk7/Q5z15512XpGHPAaXO3Z7165Omppof06mampI5c5JBg6pOAgAAAHQHiksAAAAAAAAA0EOUUSQaMyYZPz6ZNCmZMCGpq3vq89avT+bPT666avcKRxs2JHfc8fef19UVd6haY2Ny8cXJWWcl9fVVp+lcq1e37z1TC/vmd5mbUzIx5a7iejjPytTMy/e2vjYv+1UyYkSp47dr/vzqfz3LtnFjca8zzqg6CQAAANAdKC4BAAAAAAAAQDdXZpFo8eLi4/LLi01Ip52WTJmS7L13snZtMnt2sXGlFmWMrlBaOuywYsvS8OFVJ6nGsmXVnj8p/5m5OSX75I+lzr0+x+e0XJV1eVqS4p61Li61tiZXXlnbM6py5ZXJ6advv9gIAAAA8ES97O8FAgAAAAAAAICeY+3a5NRTkwMOSM48c/dKS9uzenUxd//9k0MPLYoec+f2vA0ySbFl6ZJLitJWby0tJcmKFdWcu2cezZczNf+ZY0stLa3L3nlrmvKW/L+/lZaSzrnn7bcna9bU/pwqrF6dLFpUdQoAAACgO7BxCQAAAAAAAAC6ma1bk0svTT70oaS5ufbn/fWvydKltT+nCgMGJJMnJzNnJkOGVJ2meuvWdf6ZL8uizM+UPC8Pljr3B3llTso1eSjPfspjnXHPBQtqf0aVFixIJkyoOgUAAADQ1SkuAQAAAAAAAEA3smpVctJJyZ13Vp2kc9XVJa2t5c0bNiyZNi2ZMiUZNKi8ud3dpk2dd1a/NOeiXJCz88nUp7zf3L+mf2Zmdj6b09Oa+u0+pzPu2VPLfo/r6fcDAAAAyqG4BAAAAAAAAADdwLZtxZalCy7onC1LXc3jpaVhw5KnPz1ZvjzZuHHXXz9wYDJ2bDJ+fDJpUnLkkUUZin+0eXPnnDM69+YreVsOyn2lzr0r43JirsvqDG/zebX+Z6ilpXiP9mTLlxf3bGioOgkAAADQlSkuAQAAAAAAAEAXt2VLMnVq0tRUdZLqrV6dHHNM8vvfJw8+mCxblqxYkaxbV2zRaW5OGhuT/v2TwYOTUaOSceOSoUMVLHZFv361nV+flszIpbkoF6Qx5bWktqYhH8sHclEuyNb03enzGxtLO3q7Vq9uX7GuO9qwIVmzJhkxouokAAAAQFemuAQAAAAAAAAAXdimTcnxxycLF1adpOtYuDB561uTG29Umihb//61m/28/DzX5u05Mj8ude7P8sKcmOuyJP+yy6+p5T2TolDXGyxb5p9BAAAAoG31VQcAAAAAAAAAALZvyxalpR25+eZiC9W2bVUn6VkGD67F1NZMzZdzbw4qvbR0ZU7LmNzTrtJSUqt7/t2KFbWd31X0lnsCAAAAHae4BAAAAAAAAABd0LZtRTFHaWnHmpqSyy6rOkXPMmpUufP2ye/zjRybL+fk7JnHSpv7m+yX1+eWvCdXZmMGtvv1Zd/zydatq+38rqK33BMAAADoOMUlAAAAAAAAAOiCLr20KObQtvPPT1atqjpFzzFuXHmzjsnNWZFR+dcsKG9okhvy5ozKinwnr+/wjDLvuT2bNtV2flfRW+4JAAAAdJziEgAAAAAAAAB0MatWJRdcUHWK7qG5udhM1dJSdZKeYdiwZMCA3ZuxR/6SL+bk3JxJ2Td/KCdYkvUZlMn5Sk7I9flznt7hOQMHJkOHlhZruzZvru38rqK5ueoEAAAAQFenuAQAAAAAAAAAXcjWrclJJykEtMeSJcWGKnZfQ0MydmzHX394/is/zcE5OV8uL1SSH+aojM59+Y9MTlK3W7PGji3uWUv9+tV2flfR2Fh1AgAAAKCrU1wCAAAAAAAAgC7kssuSO++sOkX3M2tWsnZt1Sl6hvHj2/+afmnOx3NeFuXIvCA/Ly3LX9M/Z+byvDrfz6/znFJmduR+7dW/f+3P6Ap6yz0BAACAjlNcAgAAAAAAAIAuYu3aooBD+zU3J7NnV52iZ5g0qX3PH5X7cmcOzXmZnfq0lpZjWV6ccVmWK3JmWkv8Fpf23q8jBg+u/RldQW+5JwAAANBxiksAAAAAAAAA0EXMnl0UcOiYpqbkkUeqTtH9TZiQDB268+fVpyUz8snclUNycO4t7fyW1OeinJ+X5I6syojS5ibJsGHJkUeWOnK7Ro2q/RldQW+5JwAAANBxiksAAAAAAAAA0AWsX18Ub+i4jRuT+fOrTtH91dUl06a1/ZwD84vcmqPyyZyTxmwu7ez/yZAckf/KrFyULelX2tzHTZtW3K/Wxo2r/RldQW+5JwAAANBxiksAAAAAAAAA0AXMn18Ub9g9V16ZtLZWnaL7mzIlGTBge4+05u25JvfmoEzIolLPvCrvzpjck//OS0qd+7gBA4p7dYZhw3b069dzDBy4a5u5AAAAgN5NcQkAAAAAAAAAKtbaWhRu2H2rVyeLyu3T9Ep7751MnvyPn3tG/pCbclyuydTslb+UdtZvsl/ekG9lWq7KhuxR2twnmzw5GTSoZuP/QUNDMnZs55xVlbFji3sCAAAAtEVxCQAAAAAAAAAqdvvtyZo1VafoORYsqDpBzzBzZtLYWPz46HwzKzIq/5ZvlHrGjTkuo3Nfvp03lDr3yRobi/t0pvHjO/e8zvbHPyannJKce26xMW7lyqSlpepUAAAAQFfTp+oAAAAAAAAAANDbKdqUa+nSqhP0DEOGJJ/44F8ycNZZOSVfLHX2I9krp+ez+UrelqSu1Nnbc+GFxX0606RJyeWXd+6ZnWn16uLjiQYOTMaMKUpbkyYlEyYkdbX/7QUAAAC6MBuXAAAAAAAAAKBiijblWr7c5pdSLF6cM68ZU3pp6da8IqNzX76SE9MZpaXDDktmzKj5MU8xYUIydGjnn1ulDRuSxYuLwtYrXpGMGJFccUWyfn3VyQAAAICqKC4BAAAAAAAAQIVaWoqiDeXZsCFZs6bqFN3Y5s3JBz6QHHlk6v73f0sbuymNmZ7L8qr8IL/Kc0ub25bGxmTevKShoVOO+wd1dcm0aZ1/bleyenVy5pnJAQckp56arF1bdSIAAACgsykuAQAAAAAAAECFVq9ONm6sOkXPs2xZ1Qm6qRUrihVFH/94sm1baWOXZ0zGZVkuz/S0duK3q1x8cTJ8eKcd9xRTpiQDBlR3flexcWMyd24ycmRyySU2ogEAAEBvorgEAAAAAAAAABVSsKmNFSuqTtDNbNuWXHZZcsghyT33lDa2JfX5aD6Qw7IkKzOytLm7YvLk5KyzOvXIp9h77yIHhebmZObM5PDDk1Wrqk4DAAAAdAbFJQAAAAAAAACokIJNbaxbV3WCbuTBB5NXvjKZMaNolpRkbV6Ql+XHOT8fzZb0K23urpg4MZk3L6nvAt8ZM3Nm0thYdYquZcmSZOzYZM6cUhd7AQAAAF1QF/jjGQAAAAAAAADovRRsamPTpqoTdAOtrcn8+clBByW33Vbq6C/k1Bycn+aOvLTUubti4sTk+uuTvn07/ejtGjIkufDCqlN0Pc3NybnnJlOmJFu2VJ0GAAAAqBXFJQAAAAAAAACokIJNbZS4OKhn+uMfkze9KXn725NHHy1t7G/zzLwxC/PufCEbskdpc3fV5MnJjTcm/ft3+tFtOuus5NBDq07RNTU1Jccd59+FAAAA0FMpLgEAAAAAAABAhTZvrjpBz9TYWHWCLuxb30pGjUq+/vVSx349x2Z07su38sZS5+6KxsZkzpxigVRX2bT0RH36JNdc4325IwsXJiecYPMSAAAA9ESKSwAAAAAAAABQoX79qk7QM3W1jTtdwmOPJe96V/LGNya/+11pYzfU75m355ocl5vyx+xT2txdddhhyfLlydlnJ/Vd+Dthhg9PLrqo6hRd1803J1OnJtu2VZ0EAAAAKFMX/uMaAAAAAAAAAOj5FGxqY/DgqhN0MXfckYwZk1x9dblzJ0xI4wP3ZeTst6exsa7c2TvR2JhcckmyeHFRCuoOZsxIJk+uOkXX1dSUXHZZ1SkAAACAMikuAQAAAAAAAECFFGxqY9SoqhN0EZs3Jx/8YHLEEcnateXN7dcv+eQnk1tvTZ8hB+bcc5P7709OOSUZMKC8Y7ZnwIDinPvvT845J2loqO15ZaqvT+bNS445puokXdf55yerVlWdAgAAACiL4hIAAAAAAAAAVEjBpjbGjas6QRewcmXyL/+SfOxjybZt5c09+OBk2bJifVD937/1ZMiQYqHTww8nV1yRDBtW3pFJMe+KK4r5V19dnNcd9e2b3HCD8tKONDcnU6cmLS1VJwEAAADKoLgEAAAAAAAAABVSsCnfwIHJ0KFVp6jQtm3J5ZcnL35xsnx5eXPr65PzzkuWLGmzcTdoUHLGGUVv6rbbkunTi4VP7d3ENHBg8brp04s5K1cWcwcN2q1bdAn9+yc33ZRMnlx1kq5pyZLk0kurTgEAAACUoU/VAQAAAAAAAACgNxs2rCh0bNxYdZKeY+zYpKGh6hQV+eUvi3U1t95a7twXvCCZPz85/PBdfkldXTJhQvGRFBt01qwpljWtWJGsW5ds2lRs2GlsLMo8gwcXnahx44ryWU/+fezbt/glPfjg5IILil8H/m7WrOS447rvZi0AAACgoLgEAAAAAAAAABVqaCiKNosXV52k5xg/vuoEFWhtTb7yleT005NHHy139jvfmVx2WbLnnrs1pqEhGTGi+KBQX5+cc07yxjcmJ52U3Hln1Ym6jubmZPbs5Oqrq04CAAAA7I76qgMAAAAAAAAAQG/XK4s2NTRpUtUJOtmf/pQcf3wyZUq5paV9901uvjmZO3e3S0u0bfjworw4e3axfYpCU1PyyCNVpwAAAAB2h+ISAAAAAAAAAFSs1xVtamjYsOTII6tO0Ym+/e1k1KjkxhvLnfuv/5qsWJEcc0y5c9mhPn2Sc89N7r8/OeWUZMCAqhNVb+PGZP78qlMAAAAAu0NxCQAAAAAAAAAqNmFCMnRo1Sl6hmnTkrq6qlN0gg0bktNOS97whuS3vy1v7p57JvPmJV//erLPPuXNZZcNGZJcfXXy8MPJFVcUZbze7Mork9bWqlMAAAAAHaW4BAAAAAAAAAAVq6srCjfsngEDkilTqk7RCf77v5MxY5LPf77cuUcemdx7b3LSSb2k/dW1DRqUnHFGsnJlctttyfTpyRFH9L5NTKtXJ4sWVZ0CAAAA6Kg+VQcAAAAAAAAAAIrCzfvfn2zcWHWS7mvy5KLs0WNt2ZJceGHysY8l27aVN7dfv+SjHy2aMQ0N5c2lFHV1xVa2CROKn7e0JGvWJMuWJStWJOvWJT/+cVHw6akWLPj7/QEAAIDuRXEJAAAAAAAAALqAvfcuijdz51adpHtqbExmzqw6RQ2tXJmceGJy993lzj3ooOS664r/pVtoaEhGjCg+HnfEEdXl6QxLl1adAAAAAOio+qoDAAAAAAAAAACFmTOLAg7td+GFyZAhVaeogW3bkssvT1784nJLS3V1xRvuzjuVlrq5lpZk+fKqU9TW8uXFPQEAAIDuR3EJAAAAAAAAALqIIUOKAg7tc9hhyYwZVaeogV/9Knn1q5Pp05Pm5vLmPu95ye23J5/4hKZcD7B6dbJxY9UpamvDhmTNmqpTAAAAAB2huAQAAAAAAAAAXchZZyWHHlp1iu6jsTGZNy9paKg6SYlaW5OmpmT06OTWW8udffLJyb33Ji97WblzqcyyZVUn6By95Z4AAADQ0yguAQAAAAAAAEAX0qdPcs01FuHsqosvToYPrzpFif70p+SEE5K3vS155JHy5u6zT/Kf/5l88YvJnnuWN5fKrVhRdYLO0VvuCQAAAD2N4hIAAAAAAAAAdDHDhycXXVR1iq5v8uRiQ1WP8Z3vFFuWvva1cudOnFi0PiZNKncuXcK6dVUn6By95Z4AAADQ0yguAQAAAAAAAEAXNGNGUcxh+yZOTObNS+p7wnc+bNiQTJuWvP71yW9+U97cPfZIvvSlYtPSvvuWN5cuZdOmqhN0jt5yTwAAAOhp+lQdAAAAAAAAAAB4qvr6opjz6KPJwoVVp+laJk5Mrr8+6du36iQlWLIkOfHE5Gc/K3fuEUck8+cnz39+uXPpcjZvrjpB52hurjoBAAAA0BE94e8dAgAAAAAAAIAeqW/f5IYbkmOOqTpJ1zF5cnLjjUn//lUn2U1btiSzZiWHH15uaalv32T27OS225SWeol+/apO0DkaG6tOAAAAAHSE4hIAAAAAAAAAdGH9+yc33VQUdnqzxsZkzpxiiVC337S0enXykpckF12UtLSUN3f06GTp0uTcc5OGhvLm0qV1+xLfLuot9wQAAICeRnEJAAAAAAAAALq4vn2Lws4ll/TOrSOHHZYsX56cfXZS352/02HbtuSKK5KxY5Nly8qbW1eXnHNOUVo6+ODy5tItDB5cdYLO0VvuCQAAAD1Nd/7jPAAAAAAAAADoNerri27K8uXJoYdWnaZzNDYWZa3Fi5Phw6tOs5t+/evkta9Nzjwz2bSpvLkHHpjcdlvvbbWRUaOqTtA5ess9AQAAoKdRXAIAAAAAAACAbmT48KLIM3t25/dU+vUrSlMDBtT2nAEDklNOSe6/vyhrNTTU9rya++pXk9Gjkx/8oNy5U6cm996bHHlkuXPpVsaNqzpB5+gt9wQAAICeRnEJAAAAAAAAALqZPn2Sc88tij2nnNJ5RaKVK5MlS5KHH06uuCIZNqzcc4YNK+Y+/HBy9dXJkCHlzu90f/5z8pa3JG99a7J+fXlzn/GM5OtfT7785WSvvcqbS7c0bFjt/x1QtYEDk6FDq04BAAAAdITiEgAAAAAAAAB0U0OGFAWfzi4SDRqUnHFGUWS67bZk+vTkiCPaX54YOLB43fTpxZyVK4u5gwaVe49KfO97xZal668vd+4xxyQrViTHHlvuXLqthoZk7NiqU9TW2LE9YPMaAAAA9FJ9qg4AAAAAAAAAAOyex4tEp5+eLFqULFiQLF2a3H13snHjrs8ZOLAoCIwfn0yalBx5ZFJXt+Pn19UlEyYUH0nS0pKsWZMsW1Z0a9atSzZtSpqbk8bGpH//ZPDgZNSoZNy4YoNKjysjbNxYrMP63OfKnTtwYHL55cnJJ7f9m0KvNH58snhx1SlqZ/z4qhMAAAAAHaW4BAAAAAAAAAA9RNVFooaGZMSI4qNXWro0edvbkgceKHfu4Ycn117795VX8CSTJhW9tp5q0qSqEwAAAAAdpbgEAAAAAAAAAD1Ury8SdZYtW5KPfjS5+OKiLVaWvn2TCy9MzjmnB66mokwTJhTFwzVrqk5SvmHDiu1vAAAAQPdUX3UAAAAAAAAAAIBua82aYiPSRz5Sbmlp5MjkzjuT885TWmKn6uqSadOqTlEb06YV9wMAAAC6J8UlAAAAAAAAAID2am1NPve5ZOzYZOnS8ubW1SUzZiR33ZWMGVPeXHq8KVOSAQOqTlGuAQOKewEAAADdl+ISAAAAAAAAAEB7PPRQ8rrXJaefnvz1r+XNfe5zk1tvTT75yaR///Lm0ivsvXcyeXLVKco1eXIyaFDVKQAAAIDdobgEAAAAAAAAALCrrr8+GT06+d73yp379rcn996bvPzl5c6lV5k5M2lsrDpFORobi/sAAAAA3ZviEgAAAAAAAADAzqxbl7z1rclb3lL8uCxPf3py003JNddYLcNuGzIkufDCqlOU48ILi/sAAAAA3ZviEgAAAAAAAABAW37wg2LL0le/Wu7co49OVqxI/u3fyp1Lr3bWWcmhh1adYvccdlgyY0bVKQAAAIAyKC4BAAAAAAAAAGzPxo3Je9+bvPrVyUMPlTd34MDkC19IFi5M9tuvvLmQpE+fYoFXY2PVSTqmsTGZNy9paKg6CQAAAFAGxSUAAAAAAAAAgCe7665k3LjkM58pd+5LXpL89KfJqacmdXXlzob/M3x4ctFFVafomIsvLvIDAAAAPYPiEgAAAAAAAADA47ZuTS68sCgYrV5d3tw+fZKPfjRZtCgZMqS8ubADM2YkkydXnaJ9Jk9Ozjqr6hQAAABAmfpUHQAAAAAAAAAAoEt44IFkypRkyZJy544YkXzlK8nYseXOhTbU1yfz5iWPPposXFh1mp2bOLHIW++vYQYAAIAexf/VBwAAAAAAAAB6t9bW5KqrkjFjSi8t/epN09N61zKlJSrRt29yww3JMcdUnaRtEycm119f5AUAAAB6FsUlAAAAAAAAAKD3evjh5A1vSKZNS/7619LG/jLPyStya55742UZ8eL+ueKKZP360sbDLuvfP7nppmTy5KqTbN/kycmNNxY5AQAAgJ5HcQkAAAAAAAAA6J1uuCEZPTr5zndKHTs/J+ag3Jvb8ookyerVyZlnJgcckJx6arJ2banHwU717ZvMn59ccknS2Fh1mkJjYzJnTpHLpiUAAADouRSXAAAAAAAAAIDeZf365G1vS044Ifnzn0sb+6c8LW/K1/L2zM8j2fspj2/cmMydm4wcWRRIWlpKOxp2qr4+OeecZPny5NBDq81y2GFFjrPPLnIBAAAAPZf/6w8AAAAAAAAA9B4//GGxZampqdSxt+T1GZUVuSlv2ulzm5uTmTOTww9PVq0qNQbs1PDhyeLFyezZnb99qbGxKO0tXlzkAAAAAHo+xSUAAAAAAAAAoOf761+T970vedWrkl//urSxGzIg78rnc3S+ld/mWe167ZIlydixyZw5ybZtpUWCnerTJzn33OT++5NTTkkGDKjteQMGFOfcf3+x9amhobbnAQAAAF2H4hIAAAAAAAAA0LMtW5aMG5d8+tOljr0j/5IxuSdX511J6jo0o7m5KJBMmZJs2VJqPNipIUOSq69OHn44ueKKZNiwcucPG1bMffjh4pwhQ8qdDwAAAHR9faoOAAAAAAAAAABQE1u3Jp/4RPKRjxQ/LsmW9MmH8+HMzsy0lPStF01NyaOPJjfckPTvX8pI2GWDBiVnnJGcfnqyaFGyYEGydGly993Jxo27PmfgwGKL2PjxyaRJyZFHJnUd6/QBAAAAPYTiEgAAAAAAAADQ8/zsZ8Uao//+71LHrszwnJjrcnfGlTo3SRYuTE44IbnxxqRv39LHw07V1SUTJhQfSdLSkqxZUywtW7EiWbcu2bSp2BTW2FiU7AYPTkaNKpaaDR2aNDRUewcAAACga1FcAgAAAAAAAAB6jtbW5POfT84+u32rYnbBp/K+fCAfy6b8U6lzn+jmm5OpU5P585P6+podA7ukoSEZMaL4AAAAAOgIxSUAAAAAAAAA6EQtLcnq1U/dYLJ5c9Kv3z9uMDnkEBtM2uU3v0lOPjn59rdLHfurPDsn5ZrcmleWOndHmpqSMWOK7hUAAAAAdGeKSwAAAAAAAABQQ62tye23JwsWJEuXJsuXt28R0MCBRYll/Phk0qRkwoSkrq5mcbuvr30tefe7kz//udSx1+VtOSOfySPZu9S5O3P++cnRRyfDh3fqsQAAAABQKsUlAAAAAAAAAKiB9euT+fOTq64qNix11IYNyeLFxcfllyfDhiWnnZZMmZLsvXdJYbuz9euTM85IvvKVUsf+KU/Lu/P53Jg3lzp3VzU3J1OnFr/vNm4BAAAA0F3VVx0AAAAAAAAAAHqStWuTU09NDjggOfPM3Sstbc/q1cXcAw4ozlm7ttz53cqttyYHHVR6aek7eW1G577KSkuPW7IkufTSSiMAAAAAwG5RXAIAAAAAAACAEmzdmsyenYwcmcydm2zcWNvzNm4szhk5MrnkkqSlpbbndSl//WsyfXryylcmv/pVaWM3ZEBOy5V5fb6d32T/0ubujlmzenk5DQAAAIBuTXEJAAAAAAAAAHbTqlXJ4Ycn552XNDd37tnNzcnMmcX5q1Z17tmVuPvu5JBDkssvL3XskhyasVmez+e0JHWlzt4dzc1FIQ4AAAAAuiPFJQAAAAAAAADooG3bkjlzkrFjkzvvrDbLkiVFjjlzilw9ztatyUc/mhx2WLJyZWljt6RPLsiFOTyL87P8c2lzy9TUlDzySNUpAAAAAKD9FJcAAAAAAAAAoAO2bEmmTEnOPbfztyztSHNzkWfKlCJfj/E//5MceWRy/vlFgakkqzIsL8kduTgXpCV9Sptbto0bk/nzq04BAAAAAO2nuAQAAAAAAAAA7bRpU3LcccUmnK6oqanIt2lT1Ul2U2tr8oUvJGPGJHfcUeroT+e9eXHuzrIcUurcWrnyyuKXAwAAAAC6E8UlAAAAAAAAAGiHLVuS449PFi6sOknbFi5MTjihG29e+u1vkze+MXn3u5MNG0ob++sckFfl+3lfPp1N+afS5tba6tXJokVVpwAAAACA9lFcAgAAAAAAAIBdtG1bMnVq1y8tPe7mm4u827ZVnaSdbropGTUqueWWUsc25a0Znfvyw7yq1LmdZcGCqhMAAAAAQPsoLgEAAAAAAADALrr00qSpqeoU7dPUlFx2WdUpdtEjjyRvf3vypjclf/pTaWP/nME5If8vb0tT1mdwaXM729KlVScAAAAAgPZRXAIAAAAAAACAXbBqVXLBBVWn6Jjzzy/yd2m33ZYcdFAyf36pY7+b12R07ssNOaHUuVVYvjxpaak6BQAAAADsOsUlAAAAAAAAANiJrVuTk05KmpurTtIxzc3J1KldtPSyaVMyY0Zy1FHJL39Z2tiN+ae8J5/N6/KdPJwDSptbpQ0bkjVrqk4BAAAAALtOcQkAAAAAAAAAduKyy5I776w6xe5ZsiS59NKqUzzJPfckhxxS/AK3tpY29s6Mz9gsz5V5T5K60uZ2BcuWVZ0AAAAAAHad4hIAAAAAAAAAtGHt2mTWrKpTlGPWrOI+lWtpST7+8eTQQ5P77y9t7NY05EP5cA7P4jyQoaXN7UpWrKg6AQAAAADsOsUlAAAAAAAAAGjD7NlJc3PVKcrR3Fzcp1L/+7/JhAnJBz6QbNlS2tjfDBqal+SOXJgPZWv6lja3q1m3ruoEAAAAALDrFJcAAAAAAAAAYAfWr0+amqpOUa6mpuSRRyo4uLU1mTs3OeigZPHicmeffnrOf/3duSvjy53bBW3aVHUCAAAAANh1iksAAAAAAAAAsAPz5ycbN1adolwbNxb36lS/+10ycWJy6qnJhg3lzd1//+S7300+85k8tm1AeXO7sJ6y/QsAAACA3kFxCQAAAAAAAAC2o7U1ufLKqlPUxpVXFvfrFP/5n8moUck3v1nu3Le8JbnvvuQ1r0mS9OtX7viuqrGx6gQAAAAAsOsUlwAAAAAAAABgO26/PVmzpuoUtbF6dbJoUY0PefTRZOrU5Nhjkz/+sby5e++d/Md/JF/9avK0p/3t0/37l3dEV9Zb7gkAAABAz6C4BAAAAAAAAADbsWBB1Qlqq6b3W7QoOeig5Jpryp376lcXW5b+/d+f8tDgweUe1VX1lnsCAAAA0DMoLgEAAAAAAADAdixdWnWC2qrJ/Zqbk3PPTV7+8uTBB8ub279/csUVyXe+kzz72dt9yqhR5R3XlfWWewIAAADQM/SpOgAAAAAAAAAAdDUtLcny5VWnqK3ly4t7NjSUNPDee5O3va3YiFSmQw5JrrsuGTaszaeNG1fusV1Vb7knAAAAAD2DjUsAAAAAAAAA8CSrVycbN1adorY2bEjWrClhUEtLMnt2UTAqs7TU0JDMmpX85Cc7LS0lxVMGDCjv+K5o4MBk6NCqUwAAAADArlNcAgAAAAAAAIAnWbas6gSdY7fv+fOfJy9/eXLeecmWLWVEKrzoRUVh6SMfSfr23aWXNDQkY8eWF6ErGju2xA1ZAAAAANAJFJcAAAAAAAAA4ElWrKg6Qefo8D1bW5Mvfzk56KDkv/6r1EyZNi1Zvjw59NB2v3T8+HKjdDU9/X4AAAAA9DyKSwAAAAAAAADwJOvWVZ2gc3Tonr//ffKv/5qcfHLy2GPlhXnWs5LvfCf53OeSgQM7NGLSpPLidEU9/X4AAAAA9DyKSwAAAAAAAADwJJs2VZ2gc7T7ngsWJKNGJTffXG6Q449P7rsvee1rd2vMhAnJ0KElZepihg1Ljjyy6hQAAAAA0D6KSwAAAAAAAADwJJs3V52gczQ37+ITH3202LD0r/+a/OEP5QUYNChpakr+3/9Lnv703R5XV5dMm1ZCri5o2rTifgAAAADQnSguAQAAAAAAAMCT9OtXdYLO0di4C0/68Y+Tgw9Ovvzlcg9/5SuLLUtvfWupjZwpU5IBA0ob1yUMGFDcCwAAAAC6G8UlAAAAAAAAAHiS/v2rTtA52rxnc3Myc2YyYULyi1+Ue+inP51873vJc55T3tz/s/feyeTJpY+t1OTJxXIqAAAAAOhuFJcAAAAAAAAA4EkGD646QefY4T3vvTc59NDkkkuS1tbyDhw3Llm2LHnve5P62n3LwsyZu7hNqhtobCzuAwAAAADdkeISAAAAAAAAADzJqFFVJ+gcT7lnS0syZ04yfnxRXipLfX1ywQXJHXckI0aUN3cHhgxJLryw5sd0igsvLO4DAAAAAN2R4hIAAAAAAAAAPMm4cVUn6Bz/cM+f/zx5xSuSc89NNm8u75AXvjBZvLho4PTtW97cnTjrrGJpVHd22GHJjBlVpwAAAACAjlNcAgAAAAAAAIAnGTYsGTCg6hS1NXBgMnRoktbWZN685KCDkh//uNxDTjstueee5F/+pdy5u6BPn+Saa5LGxk4/uhSNjcVvS0ND1UkAAAAAoOMUlwAAAAAAAADgSRoakrFjq05RW2PHJg1/+n1y7LHJO96RPPZYecP32y+55ZbkyiuLhlRFhg9PLrqosuN3y8UXF/kBAAAAoDtTXAIAAAAAAACA7Rg/vuoEtXXS025ORo9OFiwod/Cb3pSsWJG8/vXlzu2gGTOSyZOrTtE+kycnZ51VdQoAAAAA2H2KSwAAAAAAAACwHZMmVZ2gNvbIXzI378zJN09Kfv/78gYPGpRcd11yww3J059e3tzdVF+fzJuXHHNM1Ul2zcSJRd5639EBAAAAQA/gj7kAAAAAAAAAYDsmTEiGDq06RbkOz3/lpzk478yXyh181FHJffclb3tbUldX7uwS9O1b9Km6enlp4sTk+uuLvAAAAADQEyguAQAAAAAAAMB21NUl06ZVnaIc/dKcj+X9WZQj84L8vLzBjY3Jpz6VfP/7yXOeU97cGujfP7nppmTy5KqTbN/kycmNNxY5AQAAAKCnUFwCAAAAAAAAgB2YMiUZMKDqFLtnZFZkSQ7L+/OJ1Ke1vMFjxyZ33528731Jfff49oO+fZP585NLLik6V11BY2MyZ06Ry6YlAAAAAHqaPlUHAAAAAAAAAIAna2lJVq9Oli1LVqxI1q1LNm1KNm9O+vUrttIMHpyMGpUcckgydGjS0FB+jr33LjbhzJ1b/uxaq09LpudT+Wg+mMZsLnFwffL+9yezZhW/Gd1MfX1yzjnJG9+YnHRScued1WU57LBk3rxk+PB//HxXef8DAAAAwO5SXAIAAAAAAACgcq2tye23JwsWJEuXJsuXJxs37vrrBw5MxoxJxo9PJk1KJkxI6urKyTZzZrENp7m5nHmd4bl5MNfm7Xl5bi938JAhyXXXJS95SblzKzB8eLJ4cXLZZUUHqzN/fxsbk4suSs46qygcdeX3PwAAAADsjrrW1tYS98AD9B4jR47MypUrn/L5ESNG5P77768gEQAAAAAAQPezfn1RCrrqqmLDTFmGDUtOOy2ZMqXYmrS7LrmkKDB1fa15e67NFXlv9spfyh39rncln/xkssce5c7tAtauTWbPTpqa2lcYaq8BA4oNXjNnFh2w7vL+BwAAAGD39dbvP6+vOgAAAAAAAAAAvc/atcmppyYHHJCceWa5pY2kmHfmmcX8U08tztsdZ52VHHpoOdlq5Rn5Q27KcbkmU8stLT3zmck3v5l8/vM9srSUFCWiq69OHn44ueKKovhTpmHDirkPP1yck3Sv9z8AAAAAdJTiEgAAAAAAAACdZuvWYrPNyJHJ3Lm13W6TFPPnzi3Ou+SSpKWlY3P69EmuuSZpbCw1XmmOzjdzX0bn3/KNcgf/278lK1YkRx9d7twuatCg5IwzkpUrk9tuS6ZPT444otiU1B4DBxavmz69mLNyZTF34MDu+f4HAAAAgI7qU3UAAAAAAAAAAHqHVauSk05K7ryz889ubk5mzky+/vVk3rxk+PD2zxg+PLnoouTcc8vP11ED81guy1k5NXPLHbzXXslnPpOceGJSV1fu7G6gri6ZMKH4SIrCz5o1ybJlRY9r3bpk06bifdXYmPTvnwwenIwalYwblwwdmjQ0/OPM7v7+BwAAAICOUFwCAAAAAAAAoKa2bUsuvTS54IKiQFGlJUuSsWOLAtKMGUl9ffteP2NG8tOfJk1NtcnXHi/N4szPlAzJ/5Y7+OUvL9ZLHXhguXO7sYaGZMSI4qO9etL7HwAAAADayx9BAQAAAAAAAFAzW7YkU6YUW4qqLm08rrm5yDNlSpGvPerri401xxxTm2y7om8256P5QBblyHJLS42NRcPmhz9UWipJT3v/AwAAAEB7KS4BAAAAAAAAUBObNiXHHdc1thNtT1NTkW/Tpva9rm/f5IYbqikvjcyKLMlh+UA+noZsK2/wwQcnd92VnHWWNTwl6anvfwAAAABoD3/aCAAAAAAAAEDptmxJjj8+Wbiw6iRtW7gwOeGE9m+e6d8/uemmZPLk2uR6srpsy/RclrtySMbmnvIG19cn739/cuedyahR5c3t5Xr6+x8AAAAAdpXiEgAAAAAAAACl2rYtmTq165c2HnfzzUXebe1cYNS3bzJ/fnLJJUljY22yJclz8sv8IK/KZZmR/mkub/ALXpAsWpR87GNJv37lze3lesv7HwAAAAB2heISAAAAAAAAAKW69NKkqanqFO3T1JRcdln7X1dfn5xzTrJ8eXLooWWnas2JmZ/7MjpH5Ufljj7llOSee5LDDy93Lr3q/Q8AAAAAO6O4BAAAAAAAAEBpVq1KLrig6hQdc/75Rf6OGD48Wbw4mT27nO1LT88f87W8OfPz9gzKo7s/8HH77lusArr66mTPPcubS5Le+/4HAAAAgB1RXAIAAAAAAACgFFu3JiedlDQ3V52kY5qbk6lTk5aWjr2+T5/k3HOT++8vFhoNGNCxOa/PLbkvo/Om3NSxATty7LHJihXJG99Y7lySeP8DAAAAwPYoLgEAAAAAAABQissuS+68s+oUu2fJkuTSS3dvxpAhxUKjhx9OrrgiGTZs1143MI/lqrw7t+ToPCu/3b0QT7Tnnsk11yQ33ZTss095c/kH3v8AAAAA8FSKSwAAAAAAAADstrVrk1mzqk5RjlmzivvsrkGDkjPOSFauTG67LZk+PTniiO1vYvqX3JF7Mibvzhd2/+AnOvLI5N57k7e/PamrK3c2f+P9DwAAAADbp7gEAAAAAAAAwG6bPTtpbq46RTmam4v7lKWuLpkwodjI8+MfJ48+mtx/fzJ/fvL+GZvzzTHnZ3HdEXlhSmyL9OuXzJmT3Hpr8rznlTeX7fL+BwAAAIDtU1wCAAAAAAAAYLesX580NVWdolxNTckjj9RmdkNDMmJEcuK4lfnYj16So+/5aOpbt5V3wMEHJ3fdlZx9dnEYNeX9DwAAAAA7prgEAAAAAAAAwG6ZPz/ZuLHqFOXauLG4V01s25Zcfnny4hcnd99d3ty6umTmzGTJkmT06PLm0ibvfwAAAADYMcUlAAAAAAAAADqstTW58sqqU9TGlVcW9yvVL3+ZvPrVyfTpSXNzeXOf//xk0aLkE59IGhvLm0ubvP8BAAAAoG2KSwAAAAAAAAB02O23J2vWVJ2iNlavLrpApWhtTb7yleSgg5Jbby1p6P85+eTkpz9Njjii3LnslPc/AAAAALRNcQkAAAAAAACADluwoOoEtVXK/f70p+SEE5ITT0weeaSEgf9nn32KgF/8YrLnnuXNZZd5/wMAAABA2/pUHQAAAAAAAACA7mvp0qoT1NZu3+8730ne8Y7kN78pJc/fTJqUXH11su++5c6lXbz/AQAAAKBtNi4BAAAAAAAA0CEtLcny5VWnqK3ly4t7ttuGDcm0acnrX19uaWmPPZIvfzn5xjeUlirm/Q8AAAAAO6e4BAAAAAAAAECHrF6dbNxYdYra2rAhWbOmnS9asiQZOza56qpyw7zsZcm99yZTpyZ1deXOpt28/wEAAABg5xSXAAAAAAAAAOiQZcuqTtA5dvmeW7Yks2Ylhx+e/Oxn5QXo1y+ZPTv50Y+S5z+/vLnsFu9/AAAAANi5PlUHAAAAAAAAAKB7WrGi6gSdY5fuuWpVcuKJ5bc8Ro9OvvKV5KCDyp3LbvP+BwAAAICds3EJAAAAAAAAgA5Zt67qBJ2jzXtu25ZccUXy4heXW1qqq0vOOSdZulRpqYvy/gcAAACAnbNxCQAAAAAAAIAO2bSp6gSdY4f3/PWvk6lTkx/8oNwDn/e85NprkyOPLHcuper1738AAAAA2AU2LgEAAAAAAADQIZs3V52gczQ3b+eTX/1qMnp0+aWlqVOTn/5Uaakb6NXvfwAAAADYRTYuAQAAAAAAANAh/fpVnaBzNDY+4Sd//nMybVpy/fXlHrLPPsncucmkSeXOpWZ65fsfAAAAANpJcQkAAAAAAACADunfv+oEneNv9/zud5N3vCN5+OFyD5g4sSgt7btvuXOpqV73/gcAAACADqivOgAAAAAAAAAA3dPgwVUn6Bz77rExOf305HWvK7e0tMceyRe/mPznfyotdUO95f3fW+4JAAAAQG3YuAQAAAAAAABAh4waVXWC2hufO3POV09MfvtAuYOPOCK59trkBS8ody6dpje8/5Pec08AAAAAasPGJQAAAAAAAAA6ZNy4qhPUTp9syYfy4fwkL82gMktLffsmn/hEctttSkvdXE9+/z9Rb7knAAAAALVh4xIAAAAAAAAAHTJsWDJgQLJxY9VJyvXPWZOv5G0Zn7vKHTxqVPKVryQHH1zuXCrRU9//TzRwYDJ0aNUpAAAAAOjObFwCAAAAAAAAoEMaGpKxY6tOUabWvCefzfKMLbe0VFeXnH12snSp0lIP0vPe/081dmxxTwAAAADoKMUlAAAAAAAAADps/PiqE5Rj/zyU7+R1+WzOyID8tbzBBx6Y/OhHyZw5Sf/+5c2lS+gp7/8d6en3AwAAAKD2FJcAAAAAAAAA6LBJk6pOsPuOz/W5L6Pz2nyv3MEnnZTce28yYUK5c+kyesL7vy09/X4AAAAA1F6fqgMAAAAAAAAAvVNLS7J6dbJsWbJiRbJuXbJpU7J5c9KvX7GcZvDgZNSo5JBDkqFDk4aGqlPzZBMmFL83a9ZUnaT99s66fC7vyVvz1XIHP+MZydVXJ8ceW+5cupzu/P7fmWHDkiOPrDoFAAAAAN2d4hIAAAAAAADQKVpbk9tvTxYsSJYuTZYvTzZu3PXXDxyYjBmTjB9fbAGZMCGpq6tZXHZRXV0ybVpy5plVJ2mfV+X7mZepeXYeKnfwG9+YzJ2b7LdfuXPpkrrr+39XTJvm37EAAAAA7L76qgMAAAAAAAAAPdv69ckVVyQjRiSveEVy+eXJ4sXtKy0lyYYNxesuv7yYM2JEMXf9+vIz0z5TpiQDBlSdYtf8Uzbm03lvvp/XlFtaGjiw2LJ0881KS71Md3r/76oBA4p7AQAAAMDuUlwCAAAAAAAAamLt2uTUU5MDDii2kaxeXe781auLuQccUJyzdm2589l1e++dTJ5cdYqdG5e7sizj8t58ptzBL31p8tOfJqecYkVNL9Rd3v/tMXlyMmhQ1SkAAAAA6AkUlwAAAAAAAIBSbd2azJ6djByZzJ3b/s1K7bVxY3HOyJHJJZckLS21PY/tmzkzaWysOsX2NWRrLsiFuSMvyfCU2KDr2zf5+MeTRYuSIUPKm0u305Xf/+3V2FjcBwAAAADKoLgEAAAAAAAAlGbVquTww5Pzzkuamzv37Obm4pvtDz+8yEHnGjIkufDCqlM81YvyQBbn8FyYD6VvtpY3eOTI5M47izd7Q0N5c+mWuur7vyMuvFAPDwAAAIDyKC4BAAAAAAAAu23btmTOnGTs2KLLUaUlS4occ+YUueg8Z52VHHpo1Ske15rTcmXuyZgclhLflHV1xUXvuisZM6a8uXR7Xev93zGHHZbMmFF1CgAAAAB6EsUlAAAAAAAAYLds2ZJMmZKce27nb1nakebmIs+UKUU+OkefPsk11ySNjdXmeFYezrfz+lyZ92RA/lre4Oc+N7n11uTSS5P+/cubS4/QVd7/HdXYmMybZ4EYAAAAAOVSXAIAAAAAAAA6bNOm5LjjkqamqpNsX1NTkW/TpqqT9B7DhycXXVTd+W/ODbkvo/O6fLfcwVOmJPfem7z85eXOpUep+v2/Oy6+uMgPAAAAAGVSXAIAAAAAAAA6ZMuW5Pjjk4ULq07StoULkxNOsHmpM82YkUye3LlnDsr6XJe35YackKfnz+UNfvrTkxtvTK69Nhk0qLy59FhVvP931+TJyVlnVZ0CAAAAgJ5IcQkAAAAAAABot23bkqlTu35p6XE331zk3bat6iS9Q319Mm9ecswxnXPeUflh7svovC0lr/56wxuSFSuKtV2wizr7/b+7Jk4s8tb7DhIAAAAAasAfOwEAAAAAAADtdumlSVPJHZFaa2pKLrus6hS9R9++yQ031La80T9/zafyvvwwr8pz8uvyBg8cmHzhC8k3v5nst195c+k1OuP9X4aJE5Prry/yAgAAAEAtKC4BAAAAAAAA7bJqVXLBBVWn6Jjzzy/y0zn6909uuimZPLn82S/OsizLuLwvny538EtektxzT3LqqUldXbmz6VVq+f4vw+TJyY03FjkBAAAAoFYUlwAAAAAAAIBdtnVrctJJSXNz1Uk6prk5mTo1aWmpOknv0bdvMn9+csklSWPj7s9ryNacn4vy3/mXjEiJLbQ+fZKPfjRZtCh54QvLm0uvVvb7vwyNjcmcOUUum5YAAAAAqDXFJQAAAAAAAGCXXXZZcuedVafYPUuWJJdeWnWK3qW+PjnnnGT58uTQQzs+54X5Wf4rR+SizErfbC0v4IgRxRvjAx8oCkxQorLe/2U47LAix9lnF7kAAAAAoNb8MRQAAAAAAACwS9auTWbNqjpFOWbNKu5D5xo+PFm8OJk9u73bZ1rz7lyVezIm/5Il5YaaPj25667kxS8udy48Scff/7uvsbHY+rR4cZEDAAAAADqL4hIAAAAAAACwS2bPTpqbq05Rjubm4j50vj59knPPTe6/PznllGTAgLafv19+k2/l6FyVaRmYjeUFec5zkh/+sFgj9k//VN5caEN73/+7a8CA4pz77y+2PjU01PY8AAAAAHgyxSUAAAAAAABgp9avT5qaqk5Rrqam5JFHqk7Rew0Zklx9dfLww8kVVyTDhj31OW/K17Iio/KGfLvcw9/2tuTee5Ojjip3LuyiXXn/745hw4q5Dz9cnDNkSLnzAQAAAGBXKS4BAAAAAAAAOzV/frKxxGU3XcHGjcW9qNagQckZZyQrVya33ZZMn5687l/W5z8aTszXcnyenj+Xd9jTnpZ87WvJddcle+9d3lzooO29/484ov2bmAYOLF43fXoxZ+XKYu6gQbVIDQAAAAC7rk/VAQAAAAAAAICurbU1ufLKqlPUxpVXJqefntTVVZ2EurpkwoRkQsutyY0nJS2/KveA178++dKXkmc9q9y5UIK/vf8nFD9vaUnWrEmWLUtWrEjWrUs2bUqam5PGxqR//2Tw4GTUqGTcuGTo0KShodo7AAAAAMD2KC4BAAAAAAAAbbr99uIb6Hui1auTRYv+XhagQn/9a/KBDySXX17u3AEDkksvTd71Lg01uo2GhmTEiOIDAAAAALqz+qoDAAAAAAAAAF3bggVVJ6itnn6/buHuu5NDDim/tHTYYck99yTvfrfSEgAAAABABRSXAAAAAAAAgDYtXVp1gtrq6ffr0rZuTT760aJgtHJleXP79Ekuuij5r/9KXvSi8uYCAAAAANAufaoOAAAAAAAAAHRdLS3J8uVVp6it5cuLezY0VJ2kl/mf/0mmTEnuuKPcucOGJV/5SjJuXLlzAQAAAABoNxuXAAAAAAAAgB1avTrZuLHqFLW1YUOyZk3VKXqR1tbkC19Ixowpv7R05pnJ3XcrLQEAAAAAdBE2LgEAAAAAAAA7tGxZ1Qk6x7JlyYgRVafoBX772+Tkk5Nbbil37rOfncybl7zqVeXOBQAAAABgt9i4BAAAAAAAAOzQihVVJ+gcveWelbrppmTUqPJLS5MnJ/fdp7QEAAAAANAF2bgEAAAAAAAA7NC6dVUn6By95Z67q6UlWb262FC1YkXx67ZpU7J5c9KvX9K/fzJ4cNFPOuSQZOjQpOGxR5L3vjeZP7/cMIMHJ5//fHL88eXOBQAAAACgNIpLAAAAAAAAwA5t2lR1gs7RW+7ZXq2tye23JwsWJEuXJsuXJxs37vrrX9f/tsxrfXv2a/5lucFe+9rky19O9t+/3LkAAAAAAJRKcQkAAAAAAADYoc2bq07QOZqbq07QtaxfXyxIuuqqYsNSezVmUz6aD2b6pk+lPq3lBfunf0o++cnktNOSurry5gIAAAAAUBOKSwAAAAAAAMAO9etXdYLO0dhYdYKOa2kpykXLliUrViTr1hUbpDZvLn7/+vdPBg9ORo1KDjkkGTo0aWjY/qy1a5PZs5OmpvZtVnqiMVme63JiRuX+jl9qew49tGhTDR1a7lwAAAAAAGpGcQkAAAAAAADYof79q07QObrTPVtbk9tvTxYsSJYuTZYvb1/JaODAZMyYZPz4ZNKkZMKEovx06aXJhz7U8e1T9WnJubkkH8mH0i9bOjZkexoaklmzkg98IOnjS9wAAAAAAN2JP9UFAAAAAAAAdmjw4KoTdI7ucM/164uFQ1ddVWxY6qgNG5LFi4uPyy9Pnv/8ZNu25MEHOz7zBVmb+ZmSw/OTjg/ZnqFDk+uuK1pWAAAAAAB0O4pLAAAAAAAAwA6NGlV1gs7Rle+5dm0ye3bS1NS+zUq76uc/351Xt+ad+WI+lenZIxvKilQ444zkE59IBgwody4AAAAAAJ1GcQkAAAAAAADYoXHjqk7QObriPbduTS69NPnQh5Lm5qrTPNW++V2+mHfmmHyz1Ll//qf9s9dN16TP619d6lwAAAAAADpffdUBAAAAAAAAgK5r2LCev/Bm4MBk6NCqU/yjVauSww9Pzjuva5aW/jXfyIqMKr209NW8JS/86335t6tenU2bSh0NAAAAAEAFFJcAAAAAAACAHWpoSMaOrTpFbY0dW9yzK9i2LZkzp8h0551Vp3mqPfNovpyp+Ub+Lfvkj6XNXZe985Z8NW/NV7MuT8vChckJJyRbtpR2BAAAAAAAFVBcAgAAAAAAANo0fnzVCWqrq9xvy5ZkypTk3HO75palI3N77s1BmZprSp37vbw6o3Nfrs9b/uHzN9+cTJ1alLkAAAAAAOieFJcAAAAAAACANk2aVHWC2uoK99u0KTnuuKSpqeokT9WYTbkk5+RHeUWelwdLm/vX9M/p+Uxel+/koTx7u89pakouu6y0IwEAAAAA6GSKSwAAAAAAAECbJkxIhg6tOkVtDBuWHHlktRm2bEmOPz5ZuLDaHNtzUH6apRmfc/LJ1Ke1tLlLc0jGZnk+l9PTupMvW59/frJqVWlHAwAAAADQiRSXAAAAAAAAgDbV1SXTplWdojamTSvuV5Vt25KpU7teaak+LTk3s7M04zM6K0qbuzUN+Uhm5aX5SdZk2C69prm5+DVqaSktBgAAAAAAnURxCQAAAAAAANipKVOSAQOqTlGuAQOKe1Xp0kuTpqZqMzzZ8/O/uS0vz+ycl37ZUtrcB/KivDQ/yYfzkWxN33a9dsmS4tcKAAAAAIDupU/VAYDa2rp1a9auXZtf/OIX+ctf/pLHHnss/fv3z1577ZVnPetZGTp0aAb0tK8yAgAAAAAApdt772Ty5GTu3KqTlGfy5GTQoOrOX7UqueCC6s5/qta8I1/O5Xlf9sxjpU7+XKbl3FySjRnY4RmzZiXHHZcMGVJiMAAAAAAAakpxCXqg++67L1//+tdzyy235J577snmzZt3+Ny6urq86EUvyute97pMnDgxRx11VOrq6joxLQAAAAAA0F3MnJnMn580N1edZPc1Nhb3qcrWrclJJ3WdX8t987vMzSmZmIWlzn04z8rUzMv38trdntXcnMyenVx9dQnBtqOlJVm9Olm2LFmxIlm3Ltm0Kdm8OenXL+nfPxk8OBk1KjnkkGTo0KShoTZZAAAAAAB6CsUlSPKLX/wid911198+li1blvXr17f5mtbW1s4J1w7f/e5384lPfCK33XbbLr+mtbU1DzzwQB544IFcccUV+ed//udMnz49p5xyShp8pQUAAAAAAHiCIUOSCy+stvBTlgsvrHZzz2WXJXfeWd35TzQxCzI3p2Tf/KHUuTfkzTktV+XPeXppM5uakjlzytmU1dqa3H57smBBsnRpsnx5snHjrr9+4MBkzJhk/Phk0qRkwoTE3w8IAAAAAPCP6lq7YvsCaujXv/71U0pKf/zjH9s9pyv9o/PQQw/ljDPOyDe+8Y3SZh588MH5whe+kMMOO6y0mT3NyJEjs3Llyqd8fsSIEbn//vsrSAQAAAAAALW3dWty+OFdp3TTEYcdlixeXN22nLVrk5Ejq9+2tGcezacyPSfny6XOXZ9BeU8+l//IW5OU3+S54orkjDM6/vr164vNYVddVWxYKsuwYclppyVTpiR7713eXAAAAACgZ+it33+uuESP9rvf/S5Lly79h6LS7373u1Jmd5V/dH784x/nTW96U37/+9+XPrtv37759Kc/ndNOO6302T1Bb/0PBwAAAAAArFqVjB1bffGmIxobi806w4dXl+HUU5O5c6s7P0mOyI8zP1Py/Pyi1Lk/yCszNfPy6zyn1LlPNGxYsnJl+7cbrV2bzJ5dbG1qz2al9howIJk8udhMVuVWLwAAAACga+mt339eX3UAqKXXvva1OeaYY/KRj3wk3/rWt0orLXUVCxYsyCtf+cqalJaSZMuWLZk2bVrOO++8mswHAAAAAAC6p+HDk4suqjpFx1x8cbWlpfXri+JMVfqlOZ/IzNyeCaWWlv6a/jkzl+c1+V5NS0tJsSVp0aJdf/7WrUVhaeTIojBWy9JSUsyfO7c475JLkpaW2p4HAAAAANCVKS5BN/X9738/J5xwQrZs2VLzs2bPnp2LuutXHwEAAAAAgJqYMaPYKtOdTJ6cnHVWtRnmz699cWZHRufe3JlDMzOXpD6tpc1dlhfnxbk7V+TMtHbSl6AXLNi1561alRx+eHLeeZ2/Iay5udi6dPjhRQ4AAAAAgN5IcQm6oV/84hc5/vjj07wLX10ZPXp0Lrnkktxxxx354x//mC1btmT9+vW57777Mnfu3LzqVa9KXV3dTufMmjUrC3b1K0AAAAAAAECPV1+fzJuXHHNM1Ul2zcSJRd76Cr9C2tqaXHll559bn5acnTlZmvE5OPeWNrcl9bko5+cluSOr07lrrJYubfvxbduSOXOSsWOTO+/snEw7smRJkWPOnCIXAAAAAEBv0qfqAED7bN26NSeccELWr1/f5vOe+cxn5jOf+Uze/OY3P+WxQYMGZdCgQRk1alTe+c53ZunSpXn3u9+du+++u82ZU6dOzT333JPnPve5u3MFAAAAAACgh+jbN7nhhuT445OFC6tOs2MTJybXX1/krdLttydr1nTumc/Lz3Nt3p4j8+NS5/4sL8yJuS5L8i+lzt1Vy5cnLS1JQ8NTH9uyJZk6NWlq6vxcO9LcnJx7bvLTnxYFuqrfiwAAAAAAncXGJXiS5z3veXnNa15TdYwd+uxnP5s7d/LXwh188MG5++67t1ta2p7x48fnJz/5Sf793/+9zeetW7cu73vf+3Y1KgAAAAAA0Av075/cdFMyeRHBZXUAAQAASURBVHLVSbZv8uTkxhuLnFVbsKAzT2vNSZmXe3NQ6aWlq/LujMk9lZWWkmTDhu2XwDZtSo47rmuVlp6oqanIt2lT1UkAAAAAADqH4hK92nOe85wce+yxufjii/Od73wnf/zjH/Pzn/88X/jCF6qOtl1/+MMf8uEPf7jN57zwhS/M97///ey///7tmt3Y2JjrrrsukyZNavN53/jGN/KDH/ygXbMBAAAAAICerW/fZP785JJLksbGqtMUGhuTOXOKXF1lu83SpZ1zzj75fb6RYzMv78ieeay0ub/Jfnl9bsm0XJWNGVja3I5atuwff75lS9ff/pUU+U44ocgLAAAAANDT9ak6AHSW/fffP4ccckgOOeSQjBs3LuPHj88+++xTdax2+eQnP5lHHnlkh4/369cvN9xwQ4fv1dDQkGuvvTZjxozJL37xix0+b9asWXnVq17VoTMAAAAAAICeqb4+Oeec5I1vTE46KbnzzuqyHHZYMm9eMnx4dRmerKUlWb689ucck5szN6fkmfl9qXO/ljfltFyVP+UZpc7dHStW/P3H27YlU6d2/dLS426+ucg7f37xzw4AAAAAQE+luESPdsYZZ+SZz3xmDjnkkOy3335Vx9ktjz766E43Qb3vfe/L2LFjd+ucQYMG5dOf/nSbm5fuuOOO/PjHP87LXvay3ToLAAAAAADoeYYPTxYvTi67LJk1K2lu7ryzGxuTiy5KzjoraWjovHN3xerVycaNtZu/R/6Sy3JWTskXS537SPbKe/K5NGVykrpSZ++udev+/uNLL02amqrL0hFNTcmYMcnZZ1edBAAAAACgdvzdTfRoJ598ct74xjd2+9JSklx77bVtblvae++988EPfrCUsyZOnLjTUtIVV1xRylkAAAAAAEDP06dPcu65yf33J6eckgwYUNvzBgwozrn//mLrU1crLSXJsmW1m314/is/zcGll5ZuzSsyOvelKW9LVystJcmmTcX/rlqVXHBBtVk66vzzi/wAAAAAAD2V4hJ0E9ddd12bj5966qnZa6+9SjtvxowZbT6+cOHCNotUAAAAAAAAQ4YkV1+dPPxwcsUVybBh5c4fNqyY+/DDxTlDhpQ7v0wrVpQ/s1+a8/Gcl0U5Mi/Iz0ubuymNeV8+lVflB/lVnlva3LI1NydbtyYnndS5m73K1NycTJ2atLRUnQQAAAAAoDYUl6Ab+NnPfpalS5e2+ZxTTjml1DOPOeaYPOtZz9rh483NzbnppptKPRMAAAAAAOiZBg1KzjgjWbkyue22ZPr05Igj2r+JaeDA4nXTpxdzVq4s5g4aVIvU5Vq3rtx5I7MiS3JYzsvs1Ke1tLl3Z2zGZVk+nfeltYt/ObmxMbnssuTOO6tOsnuWLEkuvbTqFAAAAAAAtdGn6gDAzi1cuLDNx8eNG5cXvvCFpZ5ZX1+f448/Pp/+9KfbzPWOd7yj1HMBAAAAAICeq64umTCh+EiKLTNr1iTLlhUbidatSzZtKrbQNDYm/fsngwcno0Yl48YlQ4cmDQ3V3qGjNm0qZ059WjI9n8pH88E0ZnM5Q5O0pD4fz/tzYWZlS/qVNreWNm9OZs2qOkU5Zs1Kjjuua28NAwAAAADoCMUl6AZ+8IMftPn40UcfXZNzjz766DaLSz/60Y/S0tKShu76FUIAAAAAAKBSDQ3JiBHFR0+3uYSO0XPzYK7N2/Py3L77w57gfzIkUzI/d+Slpc6ttVWripJbT9DcnMyenVx9ddVJAAAAAADKVV91AKBtW7duzaJFi9p8zqte9aqanP2yl70s/fv33+HjjzzySJYuXVqTswEAAAAAAHqSfru1xKg1b881uS+jSy8tfT7vypjc0+1KS0myenXVCcrV1JQ88kjVKQAAAAAAyqW4BF3c/fffnw0bNuzw8b59++bQQw+tydn9+/fP2LFj23yO4hIAAAAAAMDOtfF3xbXpGflDbspxuSZTs1f+Ulqe3+aZOTrfzGn5fDZkj9LmdqYytlh1JRs3JvPnV50CAAAAAKBcikvQxd19991tPj5ixIg0NjbW7PxDDjmkzceXL19es7MBAAAAAAB6isGD2/+ao/PN3JfR+bd8o9QsN+XfMiorckuOLnVuZ6qrqzpBbVx5ZdLaWnUKAAAAAIDyKC5BF3fPPfe0+fhBBx1U0/N3Nl9xCQAAAAAAYOdGjdr15w7MY/lCTs03c0z2y+9Ky/BI9sqUXJs35cb8Kc8obW4Vemq5Z/XqZNGiqlMAAAAAAJRHcQm6uAceeKDNx1/0ohfV9PwXvvCFbT7+s5/9rKbnAwAAAAAA9ATjxu3a816axflpDs6pmVvq+bdlQg7KvbkuU5L00HVFPcSCBVUnAAAAAAAoj+ISdHE///nP23x8Z8Wi3bWz+Rs2bMgf/vCHmmYAAAAAAADo7oYNSwYM2PHjfbM5H80HsihHZkj+t7RzN6UxZ+XSHJVb88scWNpcamfp0qoTAAAAAACUR3EJurDW1tY8+OCDbT5n//33r2mG/fbbL/X1bf+rYmflKgAAAAAAgN6uoSEZO3b7j43MiizJYflAPp6GbCvtzHtycA7JXflUzkprD/rScF0PXxi1fHnS0lJ1CgAAAACAcvScP52GHmjdunXZtGlTm8/Zb7/9apqhT58+efrTn97mcx5++OGaZgAAAAAAAOgJxo//x5/XZVum57LclUMyNveUdk5L6vOxvD+H5s7cn1Glze0qWlurTlBbGzYka9ZUnQIAAAAAoByKS9CF/elPf9rpc/bdd9+a53jmM5/Z5uO7khMAAAAAAKC3mzTp7z9+bh7MD/PKXJYZ6Z/m0s5YmxfkyCzKB/OxbEm/0uZ2Ff163pW2a9myqhMAAAAAAJRDcQm6sD//+c87fc5ee+1V8xw7O2NXcgIAAAAAAPR2EyYkQ/+5NSdmfu7NQXlFbit1/tU5JWNyT36Sw0ud25UMG1Z1gs6xYkXVCQAAAAAAytGn6gDAjq1bt67Nx//pn/4pDQ0NNc+x5557tvl4Vysufe5zn8uVV15Z83PWrl1b8zMAAAAAAICeo+5Pf8w3+78rL8zXS537u+ybk/OlfCtvLHVuV9PYWBSX7r236iS1t5MvEwIAAAAAdBuKS9CFbdq0qc3HBw4c2Ck59thjjzYf31nOzvaHP/whK1eurDoGAAAAAADA391yS/KOd+SFv/tdqWO/nmPzrnwhf8w+pc7tii68MLnvvqpTdI4u9uU3AAAAAIAOq686ALBjmzdvbvPxPn06p3u4s3N2lhMAAAAAAKDXeuyx5N3vTo4+OimxtPRo9szbc02Oy029orR02GHJjBlJb/myVHNz1QkAAAAAAMph4xJ0YYpLAAAAAAAA3dgddyQnnpisXVvq2NtzZN6ea/Ngnlfq3K6qsTGZNy9paEj69as6TedobKw6AQAAAABAOWxcgi5s27ZtbT7e0NDQKTl2dk5LS0un5AAAAAAAAOgWNm9Ozj8/OeKIUktLzemXszMnR+XWXlNaSpKLL06GDy9+3L9/tVk6S2+5JwAAAADQ89m4BF3YzjYdbd26tVNy7Oycvn37dkoOAAAAAACALm/lyuRtb0uWLy917D05OCfmuqzI6FLndnWTJydnnfX3nw8eXF2WztRb7gkAAAAA9HyKS9CF9evXr83HO6u4tGXLljYf31nOzrbPPvtkxIgRNT9n7dq1aW5urvk5AAAAAABAN7BtW3LFFcl55yUlfv1gW+pySc7Nh/KRbE5jaXO7g4kTk3nzkvr6v39u1Kjq8nSm3nJPAAAAAKDnU1yCLmxnm4w2b97cKTm6W3HpPe95T97znvfU/JyRI0dm5cqVNT8HAAAAAADo4n75y2Tq1OTWW0sd+795fqZkfhbniFLndgcTJybXX588+ctl48ZVk6ez9ZZ7AgAAAAA9X/3OnwJUZY899mjz8ccee6xTcvzlL39p8/Gd5QQAAAAAAOiRWluTr3wlOeig0ktLX8zJOTg/7ZWlpcmTkxtvTPr3f+pjw4YlAwZ0fqbONHBgMnRo1SkAAAAAAMqhuARd2NOe9rQ2H9+yZUs2bdpU8xyPPvpom4/vLCcAAAAAAECP86c/Jccfn5x4YvLII6WN/X32ycQsyCn5Yh7LnqXN7Q4aG5M5c5L585+6aelxDQ3J2LGdm6uzjR1b3BMAAAAAoCdQXIIu7OlPf/pOn7N+/fqa59jZGbuSEwAAAAAAoMf49reT0aOLtUAl+u9nTsqorMjCTCx1bndw2GHJ8uXJ2Wcn9Tv5Kvb48Z2TqSo9/X4AAAAAQO+iuARd2DOe8YydPue3v/1tzXPs7AzFJQAAAAAAoFfYsCE57bTkDW9IfvOb8ubusUfy5S9n3C+/kddM3re8ud1AY2NyySXJ4sXJ8OG79ppJk2qbqWo9/X4AAAAAQO+iuARd2IABA3ZaCvrd735X0wwbN27MX/7ylzafc+CBB9Y0AwAAAAAAQOX++7+TsWOTz3++3Lkve1ly773J1Knp268u8+cXRZ7GxnKP6WoGDEhOOSW5//7knHOShoZdf+2ECcnQobXLVqVhw5Ijj6w6BQAAAABAeRSXoIt73vOe1+bjDz74YE3P35X5O8sIAAAAAADQbW3ZksyalRx+ePKzn5U3t1+/ZPbs5Ec/Sp7//L99ur6+KPIsX54cemh5x3XEgQcmL3hBuTOHDUuuuCJ5+OHk6quTIUPaP6OuLpk2rdxcXcW0acX9AAAAAAB6CsUl6OKe/4QvVG3Pz8r8Atl2/M///E+bjz/zmc/MgAEDapoBAAAAAACgEqtWJS95SXLRRcm2beXNHT06Wbo0OffcHa4aGj48Wby46DZ19valxsZi69Patcn//E9y223J9OnJEUcUm5LaY+DA4nXTpxdzVq5MzjgjGTRo9zJOmdL+LF3dgAHFvQAAAAAAepI+VQcA2jZy5MjceOONO3x8zZo1NT1/Z/NHjhxZ0/MBAAAAAAA63bZtyWc/m8ycmWzaVN7Y1OXbI87ONw+5KHt+pTGjRiWHHJIMHbr9/lKfPkW36bjjigJTU1OycWNpcZ5iwIBk8uTi2k/chDRhQvGRJC0tyZo1ybJlyYoVybp1xS9Rc3NReOrfPxk8OBk1Khk3bsd32117711knTu3/NlVmTx59wtdAAAAAABdjeISdHEvfvGL23x8+fLlNT3/7rvvbvPxsWPH1vR8AAAAAACATvWrXyVTpyY//GGpY3+e5+XtuTY/XnlksvIfHxs4MBkzJhk/Ppk0qSgJ1dX9/fEhQ5Krr07mzEnmz0+uvDJZvbq8bMOGJdOmFdt+dlacaWhIRowoPqo2c2bx69HcXHWS3dfYWNwHAAAAAKCnqa86ANC2nRWXfv3rX+f3v/99zc5ftmxZm48rLgEAAAAAAD1Ca2vyH/+RjB5demnpy5mag/PT/DhHbvfxDRuSxYuTyy9PXvGKohR0xRXJ+vX/+LxBg5IzzkhWrkxuuy2ZPj054ohiU1J7DBxYvG769GLOypXF3O627WfIkOTCC6tOUY4LL/zHLVcAAAAAAD2FjUvQxT372c/OgQcemAcffHCHz7ntttty/PHHl372ww8/nAceeKDN5xxxxBGlnwsAAAAAANCp/vzn5LTTkhtuKHXs77NPTsnc3JxJ7Xrd6tXJmWcm739/MnlysYnniaWWurpiK9OECcXPW1qSNWuSZcuSFSuSdeuSTZuKTUSNjUn//sngwcmoUcm4ccnQocXmpJ7grLOSm25K7ryz6iQdd9hhyYwZVacAAAAAAKgNxSXoBl71qlflS1/60g4f//73v1+T4tIPfvCDNh9/0YtelAMPPLD0cwEAAAAAADrNd7+bTJ2a/OY3pY69OcfklMzN7/PMDs/YuDGZOzeZP7/YyDNjxvYLRw0NxZamESN2I3A31adPcs01ydixRVGru2lsTObN6zlFMgAAAACAJ6uvOgCwc69+9avbfPzmm29OS0tL6efeeOONbT7+mte8pvQzAQAAAAAAOsWGDcl73pO87nWllpb+kj1ycr6YSVmwW6WlJ2puLrYuHX54smpVKSN7lOHDk4suqjpFx1x8cZEfAAAAAKCnUlyCbuDoo4/OgAEDdvj473//+51uR2qvP//5z/nud7/b5nPe/OY3l3omAAAAAABAp7jzzuTFL06uvLLUsf+Vw3Nwfpov5+QkdaXOTpIlS4rNQnPmJNu2lT6+W5sxI5k8ueoU7TN5cnLWWVWnAAAAAACoLcUl6Ab22GOPTJw4sc3nfOYznyn1zM9//vPZvHnzDh9/znOekyOPPLLUMwEAAAAAAGpqy5bkQx9KXvrS5IEHShu7OX0zM5/IhNyen+cFpc3dnubm5NxzkylTiutQqK9P5s1Ljjmm6iS7ZuLEIm+9r9gDAAAAAD2cPwaFbuId73hHm4/fcsstueeee0o567HHHttpEWrKlCmpqyv/bwoEAAAAAACoidWri8LShRcmLS2ljb0vozI+S3NJZmZbGkqbuzNNTclxxyWbNnXakV1e377JDTd0/fLSxInJ9dcXeQEAAAAAejrFpd3wxS9+MRdffHF+85vfVB2FXuDVr351DjrooB0+3tramve9732lnPXxj388v/3tb3f4eGNjY84444xSzgIAAAAAAKipbduSz3wmGTs2ueuu8samLnNydsZnae7NwaXNbY+FC5MTTrB56Yn6909uuimZPLnqJNs3eXJy441FTgAAAACA3kBxaTc89NBDmTVrVg488MAce+yx+fa3v53W1taqY9GDzZw5s83Hb7/99nzqU5/arTN+8pOf5JJLLmnzOSeddFKe+cxn7tY5AAAAAAAANffQQ8nrXpe8972lrib6RQ7MK/KjnJs5aU61DZSbb06mTi36WRT69k3mz08uuSRpbKw6TaGxMZkzp8hl0xIAAAAA0JsoLpVg69atufnmm/PGN74xz3/+83PRRRfloYceqjoWPdC///u/Z/z48W0+Z+bMmVm4cGGH5v/sZz/Lm970pmzdunWHz9lzzz3z4Q9/uEPzAQAAAAAAOs1Xv5qMGpV8//uljp2Xk3JQ7s2iTCh17u5oakouu6zqFF1LfX1yzjnJ8uXJoYdWm+Www4ocZ59d5AIAAAAA6E38sWgJ6urq0tramtbW1vzyl7/Mhz/84Tz/+c/PpEmT8q1vfcsWJkpTV1eXz372s6mrq9vhc7Zs2ZI3v/nN+eIXv9iu2YsXL86ECRPym9/8ps3nfehDH8p+++3XrtkAAAAAAACd5s9/Tv7935O3vjVZv760sX/IM3Jsvp53ZF7+kr1Km1uW889PVq2qOkXXM3x4snhxMnt2529famwstj4tXlzkAAAAAADojfpUHaCneGKRpLW1NVu3bs03v/nNfPOb38wBBxyQk08+OSeffHKe/exnV5iyd1q0aFEeeOCBdr3mT3/6006f095iUJJMmDAhL3rRi9r9uic69NBD8/73vz8f+9jHdvic5ubmnHLKKbnpppty4YUXtrml6cEHH8zs2bMzd+7cNjctJUX+973vfR2NDgAAAAAAUFvf+14ydWry8MOljl2YN+aUzM3v0nX/crfm5uLqixcnDQ1Vp+la+vRJzj03Oe64osDU1JRs3Fi78wYMSCZPTmbOTIYMqd05AAAAAADdQV2rdUAd9pGPfCQf+chH/rZxKXlqgelxdXV1qa+vz+te97qceuqpOfroo1Nfb+FVZzjppJNy7bXXVh0jSTJv3rycdNJJuz2npaUlRx11VBYtWrRLzx82bFhe9rKX5UUvelH22muvbNiwIb/61a+yZMmS/Pd///cubQXbd999s3z58uy///67G7/HGDlyZFauXPmUz48YMSL3339/BYkAAAAAAKCX2rixaIl89rOljn0sA/O+XJ4v5eQkdTt9flcwe3ZR0mHHHnkkmT8/ufLKZPXq8uYOG5ZMm5ZMmZIMGlTeXAAAAACgZ+it339u41LJnlhgenKJqaWlJbfccktuueWW7L///nnHO96Rk08+Oc997nOriks31dDQkP/8z//MK17xivz0pz/d6fNXr16d1bvxVZe999473/3ud5WWAAAAAACArmfp0uTEE5M1a0oduzgvzZTMz/+me63MmTWr2Cxk08+ODRqUnHFGcvrpyaJFyYIFxdvo7rvbt4lp4MBk7Nhk/Phk0qTkyCOTuu7RbwMAAAAA6DSKSyV5cknpyduWHn/88c8/9NBDufjii/Oxj30sr371q/Oud70rxxxzjC1M7LLBgwfn+9//ft7whjfkrrvuqtk5++67bxYuXJgxY8bU7AwAAAAAAIB227Il+djHkosuSlpaShu7OX0zKxdmTs7JtjSUNrezNDcXW5euvrrqJF1fXV0yYULxkRRvozVrkmXLkhUrknXrkk2bil/Txsakf/9k8OBk1Khk3Lhk6NCkofu9RQAAAAAAOpXi0m5473vfmz333DNf+tKXsmrVqiTbLyntbAvTd7/73Xz3u9/Nfvvtl3e84x155zvfmQMPPLCTb0N3tM8+++THP/5x3vWud2X+/Pmlzx8/fnxuuummPOc5zyl9NgAAAAAAQIetWVNsWVq6tNSxKzIyJ+a63JOxpc7tbE1NyZw5xWYhdl1DQzJiRPEBAAAAAEA5rPfZDYMHD85ZZ52V+++/P4sWLcrb3va29O/f/28blx4vKj2xyPTEbUyPP/b4537zm9/kYx/7WIYMGZLXve51+cY3vpGWEv92OHqm/v3759prr803v/nNvOAFLyhl5p577pnLLrssd9xxh9ISAAAAAADQdbS2Jp/7XDJ2bKmlpW2py6U5K4fkrm5fWkqSjRuTGvyddwAAAAAA0G6KSyU54ogjMn/+/Dz00EP59Kc/ndGjR2+3pPS47T32eIlp27Zt+f73v583velNec5znpMPfvCD+fnPf17Jveg+jj766KxevTrXXXddxo8f36EZBx54YD7+8Y/nF7/4RaZPn56GhoaSUwIAAAAAAHTQww8nr399cvrpyV//WtrYh/o8N0fl1pydS9Oc/qXNrdqVVxY9LwAAAAAAqFJda6s/rq6VJUuW5Atf+EK+9rWvZcOGDUnylPLSE+3oscdLTUcddVTe9a53ZdKkSenTp0+N09Pd/epXv8q3v/3tLF26NCtXrsyDDz6YRx99NBs3bkxjY2P23HPPPOtZz8rw4cMzZsyYvPa1r83BBx9cdexuZeTIkVm5cuVTPj9ixIjcf//9FSQCAAAAAIAe6vrrk9NOS9atK3Xsb18zJUO/d0UezaBS53YVt92WTJhQdQoAAAAAAJLe+/3nikud4C9/+Uu+8pWv5Itf/GKWL1+eZNcLTE98/PHP77PPPpk6dWre+c53ZsiQIbWMDrSht/6HAwAAAACq0tKSrF6dLFuWrFhR9Bc2bUo2b0769Uv6908GD05GjUoOOSQZOjSxWB66uXXrig1L//Ef5c59+tOTL3wh0//ruFx+ebmju5Lp05PLLqs6BQAAAAAASe/9/nPFpU62bNmyXH311fl//+//5S9/+UuS3dvC9PKXvzzvete7cuyxx9rCBJ2st/6HAwAAAAA6S2trcvvtyYIFydKlyfLlycaNu/76gQOTMWOS8eOTSZOKrSNP+rvDgK7sBz9ITjopeeihcue+4Q3Jl76U7LdfjjgiWby43PFdyRFHJD/+cdUpAAAAAABIeu/3nysuVWTDhg356le/mrlz52bp0qVJdm8L0zOe8YycdNJJOeWUU/LCF76wltGB/9Nb/8MBAAAAALW2fn0yf35y1VXFhqWyDBuWnHZaMmVKsvfe5c0FSvbXvybnnZdccUW5cwcOLNYPnXJKUleXlpZkr73aV4jsbgYOTB55xPY5AAAAAICuoLd+/3l91QF6q4EDB+ad73xnlixZknvuuSennXZa9tprr7S2tqa1tfVvG5UeLyY9/vknFpbq6ur+9rk//OEP+eQnP5mhQ4fmqKOOyvXXX58tW7ZUeUUAAAAAAGiXtWuTU09NDjggOfPMcktLSTHvzDOL+aeeWpwHdDF33ZW8+MXll5Ze8pLknnuKf/j/7+tvq1f37NJSkmzYkKxZU3UKAAAAAAB6M8WlLuCggw7K5z73uTz88MP58pe/nJe+9KXbLSk9bnuPPbHEdPvtt+etb31rDjjggJxzzjl54IEHKrkXAAAAAADsiq1bk9mzk5Ejk7lza18k2LixOGfkyOSSS5KWltqeB+yCrVuTiy4qCkZlthb79Ek++tFk0aLkhS/8h4eWLSvvmK6st9wT+P/s3Xt81nX9//HHTmxuJuChNPTbYdoGTGQhUEGQVqap8OtL6bemAzI1SeXLQcBSLNQSCERSNFCh2SpJLSQ7fD2CzgScUxgwqnWW7KADjbmLse33xycKlcMOn+v6XIfH/XbbTd31uV7v5xumfzCfe0mSJEmSJEnJyeJSEjnssMOYMGECTz31FPX19Vx55ZX07du321uY/vGPf7Bw4UL69+/PRz7yEb7//e+ze/fuKK8oSZIkSZIkSdIbbN0KI0bArFkQiyX27FgMZs4Mzt+6NbFnS9rHr38NI0fC7NlBgSksAwbAunXw5S8HBaY3qa8P76hklin3lCRJkiRJkiQlJ4tLSWrAgAEsWrSIF198kaqqKkaNGnXATUvwxhLT/rYwPfnkk1xwwQX069ePadOm0RDmT6qTJEmSJEmSJKmL2tth/nwoL4f166PNsm5dkGP+/CCXpATp6IDbb4fBg4N/EcM0ZQo8+yy8//0HfKSpKdwjk1Wm3FOSJEmSJEmSlJwsLiW5/Px8LrjgAp544gkaGhqYOnUqRx111H5LTHsdbAvTyy+/zKJFixg4cCCjRo2iurqaWKJ/hKUkSZIkSZIkKaO1tkJlJcyYkfgtSwcSiwV5KiuDfJLibPt2+OQnYdIkaG4Ob+4JJ8Cjj8LChXDYYQd9tKUlvGOTWabcU5IkSZIkSZKUnCwupZD3ve99fPOb3+TFF1/k+9//PqeffjrAG0pK+zrUFqaamhoqKyt55zvfydSpU93CJEmSJEmSJEmKu5YWGDcOqqujTrJ/1dVBPv9HfymOfvhDOPlk+PnPw517wQWwcSP863toh7J7d7jHJ6tkKYhKkiRJkiRJkjKTxaUUlJeXx/nnn88jjzzCr3/9a2bMmMHb3/72fxeU9udgW5iampq45ZZbGDhwIGeeeSb/93//l8jrSJIkSZIkSZIyRGsrnHcerF4ddZKDW70azj/fzUtS6HbsCMpF550Hr7wS3twjjwzKUPfcA336dPptvXqFFyGZ5edHnUCSJEmSJEmSlMksLqW49773vdx4443cfPPNHHXUUcBbNy/t61BbmB5++GHOOusshg0bxk9/+tNEXUOSJEmSJEmSlOba22HixOQvLe314INB3vb2qJNIaeKxx4ItS2GvWzvrLKivh09/ustvLSgIN0qyypR7SpIkSZIkSZKSk8WlFNbY2MjVV1/N8ccfT0VFBa+88sobNisdysG2MD377LOce+65fPSjH6WhoSGe15AkSZIkSZIkZYAFC8LvK8RbdTUsXBh1CinFvf46TJkCH/0o/PnP4c0tLITbb4eHHoLjjuvWiL59w4uTzDLlnpIkSZIkSZKk5JQbdQB1TWtrKw888ADLli3jiSee6HRR6UBbmN78/r3P7f38448/zuDBg7nxxhuZNm1aOJeQJEmSJEmSJGWUrVvh2mujTtE911wDZ58N/ftHnURKjLY2aGiA2tpgkVFTE7S0wO7d0KtXsL2nb18oK4NTT4WSEsjJOcCw556DCy4I/iMQpuHD4Z574KSTejSmrCykPEkuU+4pSZIkSZIkSUpOFpdSxK9+9SuWLl1KVVUVL7/8MsAbtiXt9eYS06Fe27eotL+ZHR0d7N69mxkzZvDcc89xzz33kJ3toi5JkiRJkiRJUufs2QMTJkAsFnWS7onFYOJEqKk5SDlDSmEdHbBmDaxaBRs2QF0dNDd3/v1FRTB4MAwdCmPHwujRkNW2B+bOha9+NfiPQFhyc+G662DWrODve2jIkBAypYBMuackSZIkSZIkKTlZXEpiu3fv5oc//CFLly7lqaeeAtjvdqTOfP6oo45iwoQJTJw4keeff54777yTNWvW0NHR0ekC0w9+8AN69+7NkiVL4nFdSZIkSZIkSVIaWrgQ1q+POkXPrFsHCxbAjBlRJ5HCs2MHVFXB7bcHG5a6a9euoNhXUwOLFsEZ7/0NK9ov5LjfPxNW1EBpKXz3u6G2cEpLobCwa0WtVFNUFGzFkiRJkiRJkiQpKq7OSUJbtmzhf//3f3nnO99JZWUlTz31FB0dHW8oGe1bKNq3ZPTmz3/oQx/innvu4cUXX2T+/PkMGDCAz33uczz22GP86le/YubMmRxzzDFvmb/XvrM7Ojr49re/zcMPP5zgXxFJkiRJkiRJUipqbITZs6NOEY7Zs4P7SKmusREuuQT69YPJk3tWWnqjDi7h2zzw21PCLy1deSU891zoq4NycqC8PNSRSae83G1xkiRJkiRJkqRoWVxKEi0tLXznO99hxIgRnHzyyXzrW9/ilVde2W+haO/n3lxk2vu5ww8/nEmTJrFx40aeeuopKioq6NWr11vOLC4u5hvf+AZ/+tOfqK6uZvDgwW/ZtLT3vL2f6+joYNasWQn4FZEkSZIkSZIkpbq5cyEWizpFOGKx4D5SqtqzJ/gaHjgQli0Ld8vQsfyFn3AO3+aLFBHi4OOPh4cfhltugcMOC2/uPoYOjcvYpJHu95MkSZIkSZIkJT+LSxHbuHEjl19+Occddxyf//zneeaZZw5aSjrYdqXBgwfz7W9/m+3bt3PrrbdSVlbWqQx5eXl89rOf5bnnnuNHP/oR73nPe/59/l57zwV4/vnneeaZkH9SniRJkiRJkiQprezYAdXVUacIV3U17NwZdQqp67ZuhREjYNas8MuE/839bOJkzuan4Q6uqIBNm+BjHwt37puMHRvX8ZFL9/tJkiRJkiRJkpKfxaUINDc3c+eddzJ8+HDKy8u5/fbb2blz50G3KwFvKDLtfa2goIAJEybwzDPP8Nxzz3HxxRdTVFTU7Wxjx46lvr6eiRMnvqW8tK+HHnqo22dIkiRJkiRJktJfVVW4G12SQXNzcC8pVbS3w/z5UF4O69eHO/sIdvIdKrmfT3M0L4c3uG9fuPde+O53oU+f8OYewOjRUFIS92MiUVoKo0ZFnUKSJEmSJEmSlOlyow6QSWpra1m6dCk/+MEP+Oc///mGLUYH2m50oNdKS0u59NJLGT9+PH1C/qZNQUEBd911F6+//jo/+MEP/r3xaV/r1q0L9UxJkiRJkiRJUvro6IAlS6JOER9LlsDll8MBfu6XlDRaW2HixPhsPvsIj7OCCbyLP4Y7+BOfgLvvhne+M9y5B5GVBZMmweTJCTsyYSZN8r9VkiRJkiRJkqTouXEpzl577TXuuOMOhgwZwrBhw7jzzjt57bXX3rJFCQ69XSk3N5fzzjuPxx57jC1btjB58uTQS0v7uuWWW+jVq9e/8+z9a0dHB7/+9a/jdq4kSZIkSZIkKbWtWQPbtkWdIj4aGmDt2qhTSAfX0gLjxoVfWsqnhQVM5XFOD7e0dNhhcNtt8LOfJbS0tFdlJRQWJvzYuCosDO4lSZIkSZIkSVLU3LgUJ8888wzLli1j5cqVNDc392i70rve9S4uueQSLrroIt7+9rfHOfl/HHPMMXz84x/noYceekMugB07diQshyRJkiRJkiQptaxaFXWC+Fq1CkaPjjqFtH+trXDeebB6dbhzB1PHPVxIGZtDnds+dBjZ370H3ve+UOd2RZ8+UFEBy5ZFFiF0FRXQu3fUKSRJkiRJkiRJcuNSqHbu3Mm3vvUtBg0axIgRI1ixYgW7du3q1nalrKwszjnnHH7yk5/w29/+lquvvjqhpaW9Tj311P1+/rXXXktwEkmSJEmSJElSqtiwIeoE8ZXu91Pqam+HiRPDLS1l08YsvsE6hodaWtpDDrP5GhNOrKH9xOhKS3vNnAn5+VGnCEd+fnAfSZIkSZIkSZKSgRuXQvDUU0+xdOlS7r//flpaWnq0XenYY4/loosu4pJLLuGEE06Ic/JDO+aYY/7993sLVXv/XpIkSZIkSZKkN2trg7q6qFPEV11dcM+cnKiTSG+0YAFUV4c37700UkUlI3g6vKFAAyVcwHep5VT4Pgx6P0yfHuoRXVZcDHPmpEfhZ86c4D6SJEmSJEmSJCUDNy71wMMPP8yAAQMYPXo01dXVvP7664fcrrS/1wBOP/10Vq5cyR//+Eeuv/76pCgtAeSny4+WkyRJkiRJkiQlREMDNDdHnSK+du2CbduiTiG90datcO21YU3r4Ass4wVOCb20tJgreD/PBaWlf7nmmiB/1KZOhWHDok7RM8OHw7RpUaeQJEmSJEmSJOk/3LjUA08//TQNDQ3//ueublc68sgjGT9+PF/84hc56aST4pxWkiRJkiRJkqT4q62NOkFi1NbCgAFRp5ACe/bAhAkQi/V81jt4iWVczLn8pOfD9vFn+jGR5TzCx9/yWiwGEydCTU20m8xyc2HFCigvD+fXMtHy82H5crfBSZIkSZIkSZKSixuXQtCV7UodHR184AMfYMWKFbz44ossWLAgZUpL+5avJEmSJEmSJEnan/r6qBMkRqbcU6lh4UJYv77ncz7FA9RTFnpp6Xt8lpPZtN/S0l7r1sGCBaEe2y39+8P110edontuuCHIL0mSJEmSJElSMnHjUkjeXFZ68+cPP/xwKioquOyyyxg0aFDC8/XUmzdISZIkSZIkSZK0P01NUSdIjEy5Zyppa4OGhmAbVn198HvU0gK7d0OvXlBQAH37QlkZnHoqlJSkx2aaxkaYPbtnM45gJ7cwmQl8J5xQ/9JEHy7jdu7lfzr1/OzZMG4cFBeHGqPLpk2DF16A6upoc3RFRQVMnRp1CkmSJEmSJEmS3sriUoj2V1gaNGgQl112GRUVFRx++OFRReu20aNHs3z58qhjSJIkSZIkSZJSREtL1AkSI1Pumcw6OmDNGli1CjZsgLo6aG7u/PuLimDwYBg6FMaOhdGjYZ9v9aSMuXMhFuv++0exhioqeRd/DC8U8AvO4PPczXb6dfo9sVhwn6VLQ43yb10pt111FezcCT8Jd/lUXIwZA8uXQ3Z21EkkSZIkSZIkSXori0sh2Vta6ujooKCggM985jNcdtllfOADH4g4Wc+ceOKJnHjiiVHHkCRJkiRJkiSliN27o06QGD0piqhnduyAqiq4/faghNJdu3ZBTU3wsWgRlJbCZZdBZSX06RNS2DjbsaP7W4HyaeEGrmEqC8mmI7RMzRzGVcxnCZOArjfBqqth/nzo3bvnWXpabissDIpMybxhbcwYuPdeyMuLOokkSZIkSZIkSftncSkEe7crve997+PSSy9lwoQJ9O3bN+JUkiRJkiRJkiQlXq9eUSdIjPz8qBNknsbGYBtPdXXXyied1dAAkyfD1VdDRQXMnAnFxeGfE6aqqu79WpzC89zDhZxMfah51jOUC7mHX1HS7RnNzcG9rrii+znCKrc1N8fnay0sFRXBpiVLS5IkSZIkSZKkZJYddYBUl5uby7hx43jkkUdoaGhgypQplpYkSZIkSZIkSRmroCDqBImRKfdMBnv2BIWlgQNh2bL4F0mam4NzBg6EefOgrS2+53VXRwcsWdK192TTxkxuYj3DQi0t7SGH6/gqI6jpUWlpryVLgvt1VWMjXHIJ9OsXlNB6UlpKZvn5wVaqqipLS5IkSZIkSZKk5OfGpR4YO3Ysl156Kccee2zUUSRJkiRJkiRJSgqZ8rO9MuWeUdu6FSZMgPXrE392LBZsXXrggWCrTf/+ic9wMGvWwLZtnX/+PfyWKioZSU2oObbxPi7kHjYwLLSZDQ2wdi2MHt255/fsgQUL4Lrrgt+3dDZ8eHJ+PUqSJEmSJEmSdCBuXOqBwYMHW1qSJEmSJEmSJGkfZWVRJ0iMTLlnVNrbg40y5eXRlJb2tW5dkGP+/CBXsli1qrNPdnARd/ICp4ReWvoWl1NOXailpb06e7+tW2HECJg1K71LS/n5wQawmhpLS5IkSZIkSZKk1OLGJUmSJEmSJEmSFJohQ6JOkBiZcs8otLbCxIlQXR11kv+IxWDGDHjhhWDbTV5e1Ilgw4ZDP/N2/soyLmYMq0M9+0XeyUSW8zBnhDp3X4e6X3t7sGXp2mvTu7BUWAgVFcH2r+LiqNNIkiRJkiRJktR1FpckSZIkSZIkSVJoSkuD/9G+uTnqJPFTVAQlJVGnSE8tLXDeebA63J5NaKqr4dVXYeVKKCiILkdbG9TVHfyZsfyYpVzC2/l7qGf/gPOZxBKaODLUuW9WVxfcMyfnra8lY7ktbKWlMGkSVFZC795Rp5EkSZIkSZIkqfuyow4gSZIkSZIkSZLSR04OlJdHnSK+ysv3X6ZQz7S2Jndpaa/Vq+H884O8UWloOHA58G28yl18nh/zqVBLS0304bN8j8/yg7iXlgB27YJt2976+ZYWGDcuuUtLRx4ZFDi7oqgIRo6EKVPgiSdgyxa44gpLS5IkSZIkSZKk1OfGJUmSJEmSJEmSFKqhQ6GmJuoU8TN0aNQJ0k97e7BBJ9lLS3s9+GCQt6oKsiP4MYG1tfv//IdZy3cYz3v4fajnPczHmMhyXuT4UOceSm0tDBjwn39OlXLbK6/AuefC9dfDxo1QXw9NTUHpKhaD/PxgY1ffvlBWBkOGBFvcLERKkiRJkiRJktKRxSVJkiRJkiRJkhSqsWNh0aKoU8TP2LFRJ0g/CxYk9wad/amuhsGDYfr0xJ9dX//Gf+5FjOu5lul8k2w6QjvndQqYwTxu40t0kPiG1r73TLVy2+rVcMQR0ZXbJEmSJEmSJElKFv4xuSRJkiRJkiRJCtXo0cH2kHRUWgqjRkWdIr1s3QrXXht1iu655pogf6I1Nf3n709mIxsYygzmh1paepYhlFPHrVwRSWkJ3njPVC23LVwYdQpJkiRJkiRJkqJlcUmSJEmSJEmSJIUqKwsmTYo6RXxMmhTcT+HYswcmTIBYLOok3ROLBVuA2toSe25LC2TTxlXM41lOZRCbQpu9hxy+xmw+yC/ZRmloc7ujpSX4q+U2SZIkSZIkSZJSV27UASRJkiRJkiRJUmpqa4OGBqithfr6YDtKSwvs3h28npsbFFPSRWEhVFZGnSK9LFwI69dHnaJn1q0LtgHNmJG4M3u/8jseZzyjeDLUub/iJC7kHtYzPNS53RWLpU+5raYGcnKiTiNJkiRJkiRJUuJZXJIkSZIkSZIkSZ3S0QFr1sCqVbBhA9TVQXNz1KkSp6ICeveOOkX6aGyE2bOjThGO2bNh3DgoLo7zQR0dsHw58/9vMofxz1BHL+EyrmI+zRSFOrcn8vMtt0mSJEmSJEmSlOosLkmSJEmSJEmSpIPasQOqquD224MNS5koPx9mzow6RXqZOzd1t+i8WSwW3Gfp0jge8re/wSWXwKpVHBbi2O0cx+e5m19wZohTw7F7t+U2SZIkSZIkSZJSXXbUASRJkiRJkiRJUnJqbAx6Ev36weTJmVtaApgzx8JBmHbsgOrqqFOEq7oadu6M0/AHH4SysmDdWYhW8hlOZlNSlpYAtm5Nv3KbJEmSJEmSJEmZxuKSJEmSJEmSJEl6gz17gv/BfuBAWLYMmpujThSt4cNh2rSoU6SXqqr0+7pqbg7uFarXXoOLLoKxY+Hvfw9t7A56U8F3OZ97eYWjQpsbtnQrS8a13CZJkiRJkiRJUpKyuCRJkiRJkiRJkv5t61YYMQJmzUqfTSc9kZ8Py5dDTk7USdJHRwcsWRJ1ivhYsiS4XyieegpOOQXuvjukgYFHOZ2T2cT3qACyQp0dtt27o04QrriU2yRJkiRJkiRJSnIWlyRJkiRJkiRJEu3tMH8+lJfD+vVRp0keN9wA/ftHnSK9rFkD27ZFnSI+Ghpg7doeDonFYOZMGDUKfve7UHIBvE4Bk1nEx3mYP3NCaHPjJSu5O1XdFmq5TZIkSZIkSZKkFGBxSZIkSZIkSZKkDNfaCpWVMGOGW5b2VVEBU6dGnSL9rFoVdYL46tH9Nm2CYcNg3rxQ2y21vJ8h1LKYyXSkyLcH07XcE0q5TZIkSZIkSZKkFJIa35mQJEmSJEmSJElx0dIC48ZBdXXUSZLLmDGwfDlk+52U0G3YEHWC+OrW/dra4JvfhFNPhY0bQ8vSRjY38BU+yC/ZyoDQ5qpn0r28J0mSJEmSJEnSvnKjDiBJkiRJkiRJkqLR2grnnQerV0edJLmMGQP33gt5eVEnST9tbVBXF3WK+KqrC+6Zk9PJN/z+9zB+fOhreH7NiVRSxTN8MNS56rl0L+9JkiRJkiRJkrQvf06gJEmSJEmSJEkZqL0dJk60tPRmFRVw331QUBB1kvTU0ADNzVGniK9du2Dbtk482NEBK1bAoEGhl5bu4FLKqUvZ0lJWVtQJ4mtvuU2SJEmSJEmSpExgcUmSJEmSJEmSpAy0YAFUV0edInnk58P8+VBV5aaleKqtjTpBYhzynn//O4wbF7QHX3sttHP/wrF8koe4jDvYxeGhzU20jo6oE8RXp8ttkiRJkiRJkiSlAYtLkiRJkiRJkiRlmK1b4dpro06RPIYPDzagTJ8O2X7nJK7q66NOkBgHvedPfgJlZfCjH4V65v38NyeziZ/xyVDnJlqvXlEnSIxMKfFJkiRJkiRJkuS33yRJkiRJkiRJyiB79sCECRCLRZ0kevn5MG8e1NRA//5Rp8kMTU1RJ0iM/d7ztdfg4ovh3HPhb38L7aydHMGFVPFp7uNljg5tblRKS6NOkBiZUuKTJEmSJEmSJCk36gCSJEmSJEmSJClxFi6E9eujThGtwkKoqICZM6G4OOo0maWlJeoEifGWe9bUQGUl/Pa3oZ7zOB9hPN/hT/xXqHOjkp8fFJc2bow6SfxlSolPkiRJkiRJkiQ3LkmSJEmSJEmSlCEaG2H27KhTRKe0FBYvhu3bYelSS0tR2L076gSJ8e+NZrt3w5e/DKNGhVpaaiGfKSzkozyaNqUlgDlzoFevqFMkRqaU+CRJkiRJkiRJcuOSJEmSJEmSJEkZYu7cfQoVGaCoCMrLYehQGDs26I5kZUWdKrNlSiklPx+or4cLL4Tnnw91dh2DuYDvsoWBoc6N2vDhMG0afO5zUSdJjEz6b7EkSZIkSZIkKbNZXJIkSZIkSZIkKQPs2AHV1VGnCFdODnz609DRERRFCgqgb18oK4MhQ6CkJHhGyaOgIOoE8ZdFO+f8ahGc+uVQ2yltZHMTs/ga19FKejXA8vNh+fLg39eMKrdJkiRJkiRJkpQBLC5JkiRJkiRJkpQBqqqguTnqFOFqa4MRI+CKK6JOos7q2zfqBPH1X/yBFUzgtHVPhDq3kfdyIffwSz4U6txkccMN0L9/8PeZUG6DzLmnJEmSJEmSJEnZUQeQJEmSJEmSJEnx1dEBS5ZEnSI+liwJ7qfUUFYWdYJ46eBCqtjIIE7jiVAnL+ViTuGFtC0tVVTA1Kn/+ed0L7ftlSn3lCRJkiRJkiTJ4pIkSZIkSZIkSWluzRrYti3qFPHR0ABr10adQp01ZEjUCcJ3FP/gPj5NFePpzauhzX2Jd3AOq7mUpezi8NDmJpMxY2D5csje5zuW6Vtue6NMuackSZIkSZIkSRaXJEmSJEmSJElKc6tWRZ0gvtL9fumktBQKC6NOEZ6z+Cn1lDGOB0Kd+wCf4mQ28RDnhDo3mYwZA/feC3l5b/x8Opbb9idT7ilJkiRJkiRJksUlSZIkSZIkSZLS3IYNUSeIr3S/XzrJyYHy8qhT9FwR/+QOLuWnnM2x/DW0ua/yNsazgnHczz84JrS5yaaiAu67DwoK3vpaupXb9qeoCEpKok4hSZIkSZIkSVJiWFySJEmSJEmSJCmNtbVBXV3UKeKrri64p1LD0KFRJ+iZD/BLnmcwl7I01LlPMJqT2UQV44GsUGcni/x8mD8fqqreumlpr3Qptx1MeXlwT0mSJEmSJEmSMoHFJUmSJEmSJEmS0lhDAzQ3R50ivnbtgm3bok6hzho7NuoE3ZPHbm7gKzzFSE6kMbS5MXoxjW9yOo/xR94V2txkM3x4UDKcPh2yD/EdylQvtx1Kut9PkiRJkiRJkqR9WVySJEmSJEmSJCmN1dZGnSAxMuWe6WD0aCgpiTpF1/RnC8/wAb7C18mhPbS5z3MKQ6hlIdPoSNNv2+Xnw7x5UFMD/ft37j2pWm7rrHS/nyRJkiRJkiRJ+8qNOoAkSZIkSZIkSYqf+vqoEyRGptwz1bS1BVu/amuD36OmJmhpgcMOizpZ52TRzpUs5iZmUUAstLltZDOPGXyVr7Kb/NDmJpPCQqiogJkzobi4a+/dW25Lx01qpaUwalTUKSRJkiRJkiRJShyLS5IkSZIkSZIkpbGmpqgTJEam3DPZdXTAmjWwahVs2AB1ddDcHHWq7jmBP7KciXyUx0Kd28h7qaSKpxkR6txkUVoKkyZBZSX07t29GVlZwYzJk8PNlgwmTQruJ0mSJEmSJElSprC4JEmSJEmSJElSGmtpiTpBYmTKPZPVjh1QVQW33x5sWEptHVRQzW18id68GurkZXyBqSzkn7wt1LlRKiqC8nIYOhTGjg22CYVRzKmshKuvTt3i2/4UFgb3kiRJkiRJkiQpk1hckiRJkiRJkiQpje3eHXWCxIjFok6QmRobYe5cqK5Oj4LJkbzMHXyRz3BfqHP/ytv5AnfyE84NdW6i9e8PI0dC375QVgZDhkBJCeTkhH9Wnz5QUQHLloU/OyoVFd3fQiVJkiRJkiRJUqqyuCRJkiRJkiRJUhrr1SvqBImRnx91gsyyZw8sWADXXZc+pbEz+Rl383mO46VQ5/6I/8clLOUfHBPq3CgcdRQsXZq482bODDZ5pcPXWH5+cB9JkiRJkiRJkjJNdtQBJEmSJEmSJElS/BQURJ0gMTLlnslg61YYMQJmzUqPQkkhu1jCZfyMT4ZaWnqVtzGB5fw3D6RFaQmgrg7a2hJ3XnExzJmTuPPiac6c4D6SJEmSJEmSJGUai0uSJEmSJEmSJKWxvn2jTpAYmXLPKLW3w/z5UF4O69dHnSYcw3mG5xnMZdwR6tw1jGIQG/kOE4CsUGdHadcu2LYtsWdOnQrDhiX2zLANHw7TpkWdQpIkSZIkSZKkaFhckiRJkiRJkiQpjZWVRZ0gMTLlnlFpbYXKSpgxIz22LOXSyhyupYYRnMRvQpsboxfTmc/pPMYfeHdoc5NJbW1iz8vNhRUrID8/seeGJT8fli+HnJyok0iSJEmSJEmSFA2LS5IkSZIkSZIkpbEhQ6JOkBiZcs8otLTAuHFQXR11knCUspVn+ADXcgM5tIc2d/sxgxjKBhYwnXbSt6VSX5/4M/v3h+uvT/y5YbjhhiC/JEmSJEmSJEmZyuKSJEmSJEmSJElprLQUCgujThFfRUVQUhJ1ivTU2grnnQerV0edpOeyaOdKbuE53s8QngtxcBbMnMn156xnE4PCm5ukmpqiOXfaNKioiObs7qqogKlTo04hSZIkSZIkSVK0LC5JkiRJkiRJkpTGcnKgvDzqFPFVXh7cU+Fqb4eJE9OjtHQ8f+L/OINb+F8OoyW8we9+N6xZAzfdxD9b88Obm8RaQvzl64rsbFi+HM49N5rzu2rMmCBvtt+NlSRJkiRJkiRlOP+oXJIkSZIkSZKkNDd0aNQJ4ivd7xeVBQugujrqFD3VweeoZhMn8zEeDXf0RRfBxo3w4Q8DsHt3uOOTVSwW3dl5ebByZfKXl8aMgXvvDfJKkiRJkiRJkpTpLC5JkiRJkiRJkpTmxo6NOkF8pfv9orB1K1x7bdQpeqYvr/AD/odqLqAPO8MbfMwx8OMfw513wtve9u9P9+oV3hHJLD/ixVIFBXD//VBREW2OA6mogPvuC3JKkiRJkiRJkiSLS5IkSZIkSZIkpb3Ro6GkJOoU8VFaCqNGRZ0ivezZAxMmRLtZp6fO4BfUU8b5rAx38JgxUF+/37ZcphRVkuGeeXlQVQXz5kVfpNorPx/mzw9yuWlJkiRJkiRJkqT/sLgkSZIkSZIkSVKay8qCSZOiThEfkyYF91N4Fi6E9eujTtE9heziVr7ELziTd/KX8AYffjjcdVewaentb9/vI337hndcMkuWe2Znw1VXQV0dDBsWbZbhw4Mc06cHuSRJkiRJkiRJ0n/4R+eSJEmSJEmSJGWAykooLIw6RbgKC4N7KTyNjTB7dtQpumcY66ijnC+xJNzBI0fCCy/A5z9/0JZcWVm4xyarZLtn//5QUwNz5yZ++1J+frD1qaYmyCFJkiRJkiRJkt7K4pIkSZIkSZIkSRmgTx+oqIg6RbgqKqB376hTpJe5cyEWizpF1+TSyle5jhpG8D5+Hd7gvLzgF+SJJ+C97z3k40OGhHd0MkvGe+bmwowZsHkzXHxx/EuahYXBOZs3B1ufcnLie54kSZIkSZIkSanM4pIkSZIkSZIkSRli5szEbySJl/z84D4Kz44dUF0ddYquKaGBp/kQ1zGHXNrCG3zyybBhQ9CG6WQrpbQ0/baavVlREZSURJ3iwIqLYelS2L4dFi8Ofk/CVFoazN2+PTinuDjc+ZIkSZIkSZIkpSOLS5IkSZIkSZIkZYjiYpgzJ+oU4Zgzx9JA2KqqoLk56hSdk0U7l/Mt6ihnKM+GODgrWKGzYQOcckqX3pqTA+Xl4UVJRuXlqbFdqHdvuOIK2LIlWJg1ZQqMHNn1YllRUfC+KVOCOVu2BHPd9CZJkiRJkiRJUuflRh1AkiRJkiRJkiQlztSpcP/9sH591Em6b/hwmDYt6hTppaMDliyJOkXn9OPPLGciH+eRcAe/613wne/A6NHdHjF0KNTUhJgpyQwdGnWCrsnKCn479/6WtrXBtm1QWwv19dDUBC0tEIsFW9wKCqBvXygrgyFDgu1SqVDUkiRJkiRJkiQpmVlckiRJkiRJkiQpg+TmwooVweaUWCzqNF2Xnw/Ll1smCNuaNUGhI9n9D99nCZPoy45wB0+YALfcAkcc0aMxY8fCokWhJEpKY8dGnaBncnJgwIDgQ5IkSZIkSZIkJUZ21AEkSZIkSZIkSVJi9e8P118fdYruueGGIL/CtWpV1AkOri+v8H3+h+/zuXBLS0cfDQ88ELThelhagmCzT0lJCLmSUGkpjBoVdQpJkiRJkiRJkpRqLC5JkiRJkiRJkpSBpk2DioqoU3RNRQVMnRp1ivS0YUPUCQ7sDH7BJk7mf7g33MHnnAP19fCpT4U2MisLJk0KbVxSmTQpuJ8kSZIkSZIkSVJXWFySJEmSJEmSJCkDZWcHS2bOPTfqJJ0zZkyQN9vvbISurQ3q6qJO8VaH0cy3uJxfcCb92B7e4KIiWLYMHnwQ3vGO8Ob+S2UlFBaGPjZShYXBvSRJkiRJkiRJkrrKb+9JkiRJkiRJkpSh8vJg5crkLy+NGQP33hvkVfgaGqC5OeoUb3QqG6ijnMu5LdzBH/oQvPACfOELcVsf1KdP6m0zO5SKCujdO+oUkiRJkiRJkiQpFVlckiRJkiRJkiQpgxUUwP33J2/RoqIC7rsvyKn4qK2NOsF/5NLKdXyVX/JBSvhVaHN3k8dzn/kGrF0LxcWhzT2QmTMhPz/uxyREfn5wH0mSJEmSJEmSpO6wuCRJkiRJkiRJUobLy4OqKpg3L3nKFvn5MH9+kMtNS/FVXx91gsD72EYNI/gqXyOXttDm1jOQYazn3vfMgpyc0OYeTHExzJmTkKPibs6chHS9JEmSJEmSJElSmrK4JEmSJEmSJEmSyM6Gq66CujoYNizaLMOHBzmmTw9yKb6amqJO0MGXuJU6yhnGhtCmtpPFAqZyKs/yAoMTfs+pU6P/d6mnhg+HadOiTiFJkiRJkiRJklKZ3+6TJEmSJEmSJEn/1r8/1NTA3LmJ376Unx9sfaqpCXIoMVpaojv7nbzIzzmTW7mCQl4Pbe4f+C9O5zGms4AYBUDi75mbCytWJM8Ws67Kz4flyxO2pEqSJEmSJEmSJKUpi0uSJEmSJEmSJOkNcnNhxgzYvBkuvhgKC+N7XmFhcM7mzcHWJ4sSibV7dzTnnse9bOJkPsH/hTr3O1QyiI2s4SNv+HwsFuoxndK/P1x/feLPDcMNN1gglCRJkiRJkiRJPWdxSZIkSZIkSZIk7VdxMSxdCtu3w+LFUFoa7vzS0mDu9u3BOcXF4c5X5/Tqldjz+tBENZ/jXv6HI2kKbe4/OIpx3McEvsOr9H7L61FtPpo2DSoqojm7uyoqYOrUqFNIkiRJkiRJkqR0kBt1AEmSJEmSJEmSlNx694YrroDLL4e1a2HVKtiwAZ57DpqbOz+nqAjKy2HoUBg7FkaNgqys+OVW5xQUJO6sj/Ewy5nI8bwY6tyH+CQXcRd/5dgDPpPIe+4rOxuWL4dXX4XVq6PJ0BVjxgR5s/3xh5IkSZIkSZIkKQQWlyRJkiRJkiRJUqdkZcHo0cEHQFsbbNsGtbVQXw9NTdDSArFYsN2moAD69oWyMhgyBEpKICcn2jvorfr2jf8Zh9HMTcziSr4V6tx/UsRUFrKMi4GDt+AScc8DycuDlSvhvPOSu7w0Zgzce2+QV5IkSZIkSZIkKQwWlyRJkiRJkiRJUrfk5MCAAcGHUldZWXznD+FZvssFlLIt1LlP80EqqaKREzv1fLzveSgFBXD//TBxIlRXR5tlfyoqgk1LlpYkSZIkSZIkSVKYsqMOIEmSJEmSJEmSpOgMGRKfuTns4Vrm8Es+GGppqZVcvsyNjGJtp0tLEL97dkVeHlRVwbx5wVayZJCfD/PnB7ksLUmSJEmSJEmSpLBZXJIkSZIkSZIkScpgpaVQWBjuzJP4FTWMYA7Xkcee0OZuZgDDWcc3+DJt5Hb6fUVFUFISWoweyc6Gq66CujoYNizaLMOHBzmmTw9ySZIkSZIkSZIkhc1vQUiSJEmSJEmSJGWwnBwoLw9rWgeXsYTnGcxw1oc1FICb+V9O5VnqeH+X31teHtwzmfTvDzU1MHdu4rcv5ecHW59qaoIckiRJkiRJkiRJ8WJxSZIkSZIkSZIkKcMNHdrzGcexnZ9xFkv4EoW83vOB//JHTuB0HmUqN9PCYd2aEcb94iE3F2bMgM2b4eKLw9989WaFhcE5mzcHW5+SrcwlSZIkSZIkSZLSj8UlSZIkSZIkSZKkDDd2bM/e/xlWsomTOZNfhBPoX+7hAgaxkcc5vUdzenq/eCsuhqVLYft2WLwYSkvDnV9aGszdvj04p7g43PmSJEmSJEmSJEkHkht1AEmSJEmSJEmSJEVr9GgoKYFt27r2vt7s4FYu5wKqQ83zMkdyKd/mfj7d41mlpTBqVAihEqB3b7jiCrj8cli7Flatgg0b4LnnoLm583OKiqC8PNg0NXZscP+srPjlliRJkiRJkiRJOhCLS5IkSZIkSZIkSRkuKwsmTYLJkzv/ntN5lBVM4AT+HGqWn3Emn+duXuK4UOZNmpR6pZ2srKBMNnp08M9tbUGprLYW6uuhqQlaWiAWg/x8KCiAvn2hrAyGDAlKaDk50d5BkiRJkiRJkiQJLC5JkiRJkiRJkiQJqKyEq68+9GafAl7nG1zN/3JLqOfvopBpLODbXAqE0zQqLAzulepycmDAgOBDkiRJkiRJkiQplWRHHUCSJEmSJEmSJEnR69MHKioO/sz7qaWWIaGXlp5hOIN5nm/zRcIqLUFwn969QxsnSZIkSZIkSZKkLrK4JEmSJEmSJEmSJABmzoT8/Ld+Poc9fIUbeIYPMICtoZ3XSi7XMoeRPMVvOCm0uRDcY+bMUEdKkiRJkiRJkiSpiywuSZIkSZIkSZIkCYDiYpgz542fO5Ff8yQf5gauJY89oZ21lVI+wDPcwLW0kRva3L3mzAnuI0mSJEmSJEmSpOhYXJIkSZIkSZIkSdK/TZ0Kw4YBdHApd/A8g/kgz4R6xi1cyft5jucYEurcvYYPh2nT4jJakiRJkiRJkiRJXRD+j6+TJEmSJEmSJElSysrNhe/O/wuNp13Eme0/C3X2nzieiSznUT4W6tx95efD8uWQkxO3IyRJkiRJkiRJktRJFpckSZIkSZIkSZL0H/ffz0mXXspJ7S+HOraaz3E5t7KDvqHOfbMbboD+/eN6BABtbdDQALW1UF8PTU3Q0gK7d0OvXlBQAH37QlkZnHoqlJRYppIkSZIkSZIkSZnH4pIkSZIkSZIkSZJg50644gq4555Qx75CX77IHfyQ80Kduz8VFTB1anxmd3TAmjWwahVs2AB1ddDc3Pn3FxXB4MEwdCiMHQujR0NWVnyySpIkSZIkSZIkJQuLS5IkSZIkSZIkSZnu8cdh/Hj4059CHftzPsFF3MV2+oU6d3/GjIHlyyE7O9y5O3ZAVRXcfnuwYam7du2CmprgY9EiKC2Fyy6Dykro0yeksJIkSZIkSZIkSUkm5G/dSJIkSZIkSZIkKWW0tAQrik4/PdTSUjOHMYnbOIufJay0dO+9kJcX3szGRrjkEujXDyZP7llpaX8aGoK5/foF5zQ2hjtfkiRJkiRJkiQpGVhckiRJkiRJkiRJykR1dTBkCNx8c6hj1zGMcuq4nUlAVqiz96eiAu67DwoKwpm3Zw/MnQsDB8KyZdDcHM7cA2luDs4ZOBDmzYO2tvieJ0mSJEmSJEmSlEgWlyRJkiRJkiRJkjLJnj3w9a/D8OGwZUt4Y8lhNl9jBDX8ipLQ5h5Ifj7Mnw9VVeFtWtq6FUaMgFmzIBYLZ2ZnxWIwc2Zw/tatiT1bkiRJkiRJkiQpXiwuSZIkSZIkSZIkZYrGRhg1Cr7yFWhtDW1sAyV8kF9yPbNpIze0uQcyfHiwMGr6dMgO4btd7e1BCaq8HNav7/m8nli3Lsgxf36QS5IkSZIkSZIkKZVZXJIkSZIkSZIkSUp3HR2wdCmccgr88pehjl7MFbyf53iWoaHO3Z/8fJg3D2pqoH//cGa2tkJlJcyYkfgtSwcSiwV5KitD7ZdJkiRJkiRJkiQlXPx/5J0kSZIkSZIkSZKi89JL8IUvwEMPhTu3Xz+237ic+pqPk1UNNIc7fl+FhVBRATNnQnFxeHNbWuC882D16vBmhqm6Gl59FVauhIKCqNNIkiRJkiRJkiR1nRuXJEmSJEmSJEmS0tUDD0BZWfilpc9+FjZt4p3jP87SpbB9OyxeDKWl4R5TWhrM3b49WBgVZmmptTW5S0t7rV4N55/v5iVJkiRJkiRJkpSaLC5JkiRJkiRJkiSlm507YcIEGDcOXn45vLl9+sD3vw/f+x707fvvT/fuDVdcAVu2wBNPwJQpMHJksCmpK4qKgvdNmRLM2bIlmNu7d3hXAGhvh4kTk7+0tNeDDwZ529ujTiJJkiRJkiRJktQ1uVEHkCRJkiRJkiRJUoieeALGj4c//jHcuR//OCxfDv36HfCRrCwYPTr4AGhrg23boLYW6uuhqQlaWiAWg/x8KCgI+k9lZTBkCJSUQE5OuLH3Z8ECqK6O/zlhqq6GwYNh+vSok0iSJEmSJEmSJHWexSVJkiRJkiRJkqR00NIC11wDCxdCR0d4cw87DObNg0mTIDu7S2/NyYEBA4KPZLF1K1x7bdQpuueaa+Dss6F//6iTSJIkSZIkSZIkdU7XvrskSZIkSZIkSZKk5PP88zB0aLBKKMzS0tChUFcHl1/e5dJSMtqzByZMCDY+paJYDCZODDZZSZIkSZIkSZIkpYLU/w6TJEmSJEmSJElSpmprg5tugmHDoL4+vLk5OXDddVBTAyUl4c2N2MKFsH591Cl6Zt26oJ8mSZIkSZIkSZKUCiwuSZIkSZIkSZIkpaLf/hZGj4arr4bW1vDmvu998PTT8NWvQl5eeHMj1tgIs2dHnSIcs2cH95EkSZIkSZIkSUp2FpckSZIkSZIkSZJSSUcH3HknDBoUbEQK05e+BHV1wQanNDN3LsRiUacIRywW3EeSJEmSJEmSJCnZWVySJEmSJEmSJElKFX/9K4wdCxdfDLt2hTf3uOPg5z+HW2+FwsLw5iaJHTugujrqFOGqroadO6NOIUmSJEmSJEmSdHAWlyRJkiRJkiRJklLBj38MJ58Mq1eHO/f886G+Hj7xiXDnJpGqKmhujjpFuJqbg3tJkiRJkiRJkiQlM4tLkiRJkiRJkiRJyezVV+Hzn4dPfQr+/vfw5vbpA9/7HvzgB3DkkeHNTTIdHbBkSdQp4mPJkuB+kiRJkiRJkiRJycrikiRJkiRJkiRJUrJauxZOOQWWLw937sc+Bps2wWc/G+7cJLRmDWzbFnWK+GhoCL5EJEmSJEmSJEmSkpXFJUmSJEmSJEmSpGQTi8GMGfCRj8Dvfx/e3IICWLwYfvELOP748OYmsVWrok4QX+l+P0mSJEmSJEmSlNpyow4gSZIkSZIkSZKkfWzcCBdcEGxECtOQIXDPPdC/f7hzk9yGDVEniK90v58kSZIkSZIkSUptblySJEmSJEmSJElKBm1tMG8enHpquKWlnByYPRt++cuMKy21tUFdXdQp4quuLrinJEmSJEmSJElSMnLjkiRJkiRJkiRJUtR+9zsYPx6efDLcuSedFGxZGj483LkpoqEBmpujThFfu3bBtm0wYEDUSSRJkiRJkiRJkt7KjUuSJEmSJEmSJElR6eiAu++GQYPCLy1ddlmwjidDS0sAtbVRJ0iMTLmnJEmSJEmSJElKPW5ckiRJkiRJkiRJisLf/gaXXAKrVoU797jjgjLUmWeGOzcF1ddHnSAxMuWekiRJkiRJkiQp9bhxSZIkSZIkSZIkKdEefBDKysIvLX3mM7Bpk6Wlf2lqijpBYmTKPSVJkiRJkiRJUuqxuCRJkiRJkiRJkpQor71Gx+cvgrFj4e9/D29u797w3e/CvffCUUeFNzfFtbREnSAxMuWekiRJkiRJkiQp9eRGHUCSJEmSJEmSJCkTvPazp2i/sJLeL/8u1Lm/LDydrVNW8N9nn0CfrFBHp7zdu6NOkBixWNQJJEmSJEmSJEmS9s+NS5IkSZIkSZIkSXHUuCXGz0+ZSdEnR4VaWnqdAiaziBHND3PRV0+gXz+45BJobAztiJTXq1fUCRIjPz/qBJIkSZIkSZIkSftncUmSJEmSJEmSJCkO9uyBu6ZsYlfZMM7cOI9sOkKbXcv7GUIti5lMx7++3dPcDMuWwcCBMG8etLWFdlzKKiiIOkFiZMo9JUmSJEmSJElS6smNOoAkSZIkSZIkpbq2NmhogNpaqK+HpiZoaYHdu4NtHwUF0LcvlJXBqadCSQnk5ESdWlI8ba1v4+FP3sylf/oK+ewObW4b2XydL3M919LK/tcJxWIwcyY88AAsXw79+4d2fMrp2zfqBImRKfeUJEmSJEmSJEmpx+KSJEmSJEmSJHVRRwesWQOrVsGGDVBXF2w66ayiIhg8GIYOhbFjYfRoyMqKW1xJCdTeDsu+8nsGzB3PlR1rQ539a06kkiqe4YOden7dOigvh+uvh2nTIDs71Dgpoaws6gSJkSn3lCRJkiRJkiRJqcfikiRJkiRJkiR10o4dUFUFt98ebFjqrl27oKYm+Fi0CEpL4bLLoLIS+vQJKaykhGvd3cHdo7/DZ5+5kiN4LdTZd3Ap0/kmuzi8S++LxWDGDHjhhWD7Ul5eqLGS3pAhUSdIjEy5pyRJkiRJkiRJSj0Z+LP1JEmSJEmSJKlrGhvhkkugXz+YPLlnpaX9aWgI5vbrF5zT2BjufEnx1/Knv/Psu/6bS5+ZGGpp6S8cyyd5iMu4o8ulpX1VV8O4cdDSElq0lFBaCoWFUaeIr6IiKCmJOoUkSZIkSZIkSdL+WVySJEmSJEmSpAPYswfmzoWBA2HZMmhuju95zc3BOQMHwrx50NYW3/MkhWPPj39Cy4llfPClH4c69z7GcTKb+BmfDGXe6tVw/vnQ2hrKuJSQkwPl5VGniK/y8uCekiRJkiRJkiRJycjikiRJkiRJkiTtx9atMGIEzJoFsVhiz47FYObM4PytWxN7tqQueO01Or5wMbmfOpc+u/8W2tidHMGFVPEZfsjLHB3aXIAHH4SJE6G9PdSxSW3o0KgTxFe630+SJEmSJEmSJKU2i0uSJEmSJEmStI/2dpg/P9hgsX59tFnWrQtyzJ+fWSUDKSXU1MDgwWTddWeoYx/jNE5mE9/lQiAr1Nl7VVfDwoVxGZ2Uxo6NOkF8pfv9JEmSJEmSJElSasuNOoAkSZIkSZIkJYvW1mATSXV11En+IxaDGTPghRdg+XLIy4s6kZJdWxs0NEBtLdTXQ1MTtLTA7t3QqxcUFEDfvlBWBqeeCiUlkJMTdeoUsns3XHcdzJsXaqOwhXyu5hvcwmQ6EvBz5665Bs4+G/r3j/tRkRs9Ovg637Yt6iThKy2FUaOiTiFJkiRJkiRJknRgFpckSZIkSZIkiaDYcd55sHp11En2r7oaXn0VVq4MiifSXh0dsGYNrFoFGzZAXR00N3f+/UVFMHgwDB0abG4ZPRqy4rPoJ/XV18OFF8Lzz4c69jnKuZB72MLAUOceTCwWFDVratK/uJaVBZMmweTJUScJ36RJ/vsqSZIkSZIkSZKSW/x/ZJ8kSZIkSZIkJbnW1uQuLe21ejWcf36QV9qxAxYvhgED4LTTYNGioITSldISwK5dwfsWLQrmDBgQzN2xI/zMKau9HRYuhCFDQi0ttZHNjXyZD/BMQktLe61bBwsWJPzYSFRWQmFh1CnCVVgY3EuSJEmSJEmSJCmZuXFJkiRJkiRJUkZrbw+2jiR7aWmvBx8M8lZVQbY/miojNTbC3LnBFq6ulpQ6o6Eh2Exz9dVQUQEzZ0JxcfjnpIw//AEmTIAnngh17G8oppIqfsmHQp3bVV/+MtTWQq9esHt38NeCAujbF8rK4NRToaQk9bcy9ekTfD0vWxZ1kvBUVEDv3lGnkCRJkiRJkiRJOjiLS5IkSZIkSZIy2oIFQQEklVRXw+DBMH161EmUSHv2BF+v110HsVj8z2tuDkoeVVUwZw5Mm5b65ZUu6eiAe+6BK66AV18NdfS3uYRpLGAXh4c6tzva2mDlyoM/U1QU/Ddn6FAYOxZGj4asrITEC9XMmcHXcyL+/Ym3/PzgPpIkSZIkSZIkScnOn8cpSZIkSZIkKWNt3QrXXht1iu655pogvzLD1q0wYgTMmpX40kUsFhQkRozIoK+5f/wDPv1pGD8+1NLSS7yDs/kJX+TbSVFa6qxdu6CmBhYtgtNOgwEDYPFi2LEj6mRdU1wclPDSwZw5Gb4JTZIkSZIkSZIkpQyLS5IkSZIkSZIy0p49MGFC6m7eiMVg4sRgW4rSV3s7zJ8P5eWwfn20WdatC3LMnx/kSlsPPQRlZfDAA6GOvZ//pox6fsrZoc6NQkMDTJ4M/frBJZdAY2PUiTpv6lQYNizqFD0zfHiwAU2SJEmSJEmSJCkVWFySJEmSJEmSlJEWLoy+CNJT69bBggVRp1C8tLZCZSXMmJE8BbtYLMhTWRnkSyv//Cdceimccw789a+hjd3JEVTyHT7NfbzM0aHNTQbNzbBsGQwcCPPmpUaRMjcXVqyA/Pyok3RPfj4sXw45OVEnkSRJkiRJkiRJ6hyLS5IkSZIkSZIyTmMjzJ4ddYpwzJ6dWttO1DktLTBuHFRXR51k/6qrg3wtLVEnCcnTT8PgwbB0aahjn2A0g9jIPVQCWaHOTiaxGMycCSNGwNatUac5tP794frro07RPTfcEOSXJEmSJEmSJElKFRaXJEmSJEmSJGWcuXOTZ4NNT8ViwX2UPlpb4bzzYPXqqJMc3OrVcP75Kb55afdu+MpX4MMfDrUB2EI+U1nA6TzGH3lXaHOT3bp1UF4O8+dDe3vUaQ5u2jSoqIg6RddUVMDUqVGnkCRJkiRJkiRJ6hqLS5IkSZIkSZIyyo4dybvFpruqq2HnzqhTKAzt7TBxYvKXlvZ68MEgb7KXVPZr82b4wAfg618P9QLPcwqn8iw3M5WODPw2TCwGM2ZAZWVyl9qys2H5cjj33KiTdM6YMUHe7Mz7kpIkSZIkSZIkSSnOb29IkiRJkiRJyihVVdDcHHWKcDU3B/dS6luwIPWKddXVsHBh1Cm6oL0dbr4ZhgyBurrQxraRzde5mmGsZzNloc1NVdXVMG4ctLREneTA8vJg5crkLy+NGQP33hvklSRJkiRJkiRJSjUWlyRJkiRJkiRljI4OWLIk6hTxsWRJcD+lrq1b4dpro07RPddcE+RPen/8I3zsYzB1arAaKCS/5T2MZg1f4eu00iu0ualu9Wo4//zk3rxUUAD33w8VFVEn2b+KCrjvviCnJEmSJEmSJElSKrK4JEmSJEmSJCljrFkD27ZFnSI+Ghpg7dqoU6i79uyBCRNC7dIkVCwGEydCW1vUSQ6gowPuuQdOPhkefzzU0Uu5mFN4gRpGhjo3XTz4YPC10d4edZIDy8sLttbNmwf5+VGnCeTnw/z5QS43LUmSJEmSJEmSpFRmcUmSJEmSJElSxli1KuoE8ZXu90tnCxfC+vVRp+iZdetgwYKoU+zHyy/DeedBZSW8+mpoY//K2zmXB7mUpfyTt4U2Nx1VVwdf48ksOxuuugrq6mDYsGizDB8e5Jg+PcglSZIkSZIkSZKUyvx2hyRJkiRJkqSMsWFD1AniK93vl64aG2H27KhThGP27OA+SeNnP4OyMrjvvlDH/oj/Rxn1/IRzQ52bzq65BrZujTrFofXvDzU1MHdu4rcv5ecHW59qaoIckiRJkiRJkiRJ6cDikiRJkiRJkqSM0NYWbLBIZ3V1wT2VWubOhVgs6hThiMWC+0Ru1y647DL45CfhpZdCG/sqb2MCy/lvHuAfHBPa3EwQi8HEianx36jcXJgxAzZvhosvhsLC+J5XWBics3lzsPUpJye+50mSJEmSJEmSJCWSxSVJkiRJkiRJGaGhAZqbo04RX7t2wbZtUadQV+zYAdXVUacIV3U17NwZYYBnnoHBg+GOO0Idu+WYUQxiI99hApAV6uxMsW4dLFgQdYrOKy6GpUth+3ZYvBhKS8OdX1oazN2+PTinuDjc+ZIkSZIkSZIkScnA4pIkSZIkSZKkjFBbG3WCxMiUe6aLqqr0K9Q1Nwf3SrjWVrj2WhgxAn7zm/Dm9uoF8+dz08cf4w+8O7y5GWr2bGhsjDpF1/TuDVdcAVu2wBNPwJQpMHJk1zcxFRUF75syJZizZUswt3fveKSWJEmSJEmSJElKDrlRB5AkSZIkSZKkRKivjzpBYmTKPdNBRwcsWRJ1ivhYsgQuvxyyErWYaMsWuPBCeO65cOcOGgTf/S6cfDL5F4c7OlPFYjB3brBhKNVkZcHo0cEHQFtbsOWutjb4b29TE7S0BHfMz4eCAujbF8rKYMgQKCmBnJxo7yBJkiRJkiRJkpRoFpckSZIkSZIkZYSmpqgTJEam3DMdrFkTlB7SUUMDrF37n4JH3LS3w7e+BTNnBm2RsGRlwYwZ8LWvBQ0UggKKwlFdDfPnp/6moZwcGDAg+JAkSZIkSZIkSdL+ZUcdQJIkSZIkSZISoaUl6gSJkSn3TAerVkWdIL7ifr8//QnOOAP+93/DLS29+91Bq+ymm/5dWoJga47C0dwMVVVRp5AkSZIkSZIkSVIiWFySJEmSJEmSlBF27446QWKE2d9QfG3YEHWC+Irb/To6gpU9J58Mjz4a7uyLLoKNG+HDH37LS0OGhHtUpluyJPitlCRJkiRJkiRJUnqzuCRJkiRJkiQpI/TqFXWCxNhnQYySWFsb1NVFnSK+6uqCe4bq5Zfh/PPhggtg587w5h5zTLAi6s474W1v2+8jpaVQWBjekZmuoQHWro06hSRJkiRJkiRJkuLN4pIkSZIkSZKkjFBQEHWCxMiUe6a6hgZobo46RXzt2gXbtoU48Oc/D7Ys/fCHIQ4Fxo6F+noYM+agj+XkQHl5uEdnulWrok4gSZIkSZIkSZKkeLO4JEmSJEmSJCkj9O0bdYLEyJR7prra2qgTJEYo99y1CyZNgrPOgr/8JYSB/3L44XDXXfCjH8Hb396ptwwdGt7xgg0bok4gSZIkSZIkSZKkeLO4JEmSJEmSJCkjlJVFnSAxMuWeqa6+PuoEidHje65bF6w5uv32UPL824c/DBs3wuc/D1lZnX7b2LHhxsh0dXXQ1hZ1CkmSJEmSJEmSJMWTxSVJkiRJkiRJGWHIkKgTJEam3DPVNTVFnSAxun3P1laYPRtGjIBf/zq8QHl5MHcuPP44vOc9XX776NFQUhJenEy3axds2xZ1CkmSJEmSJEmSJMWTxSVJkiRJkiRJGaG0FAoLo04RX0VFlipSRUtL1AkSo1v3bGiAD34Qrr8+3HU8J58MGzbAjBmQk9OtEVlZMGlSeJEEtbVRJ5AkSZIkSZIkSVI8WVySJEmSJEmSlBFycqC8POoU8VVe3u0+hhJs9+6oEyRGLNaFh9vbYfHi4As5zDZLVhZcdVVQWjrllB6Pq6xM/xJkItXXR51AkiRJkiRJkiRJ8WRxSZIkSZIkSVLGGDo06gTxle73Sye9ekWdIDHy8zv54J//DJ/4BEyeHO46qne9C554AubN60KYg+vTByoqQhkloKkp6gSSJEmSJEmSJEmKp9yoA0iSJEmSJElSoowdC4sWRZ0ifsaOjTpB6mhrg4aGYLFPfX1QnmhpCTYh9eoFBQXQty+UlcGpp0JJSbjbrAoKwpuVzDp1z+9/HyZNgh07wj184sTgX/gjjgh3LjBzJlRVdXGjlPYrzJ6aJEmSJEmSJEmSko/FJUmSJEmSJEkZY/TooICybVvUScJXWgqjRkWdInl1dMCaNbBqFWzYAHV10Nzc+fcXFcHgwcFWq7Fjg6+lrKzu5+nbt/vvTSUHvecrrwSFpXvvDffQo4+GZcvg//2/cOfuo7gY5swJCkzqGctfkiRJkiRJkiRJ6S076gCSJEmSJEmSlChZWUFPIh1NmtSzIk262rEDFi+GAQPgtNOCBTw1NV0rLQHs2hW8b9GiYM6AAcHc7i4JKivr3vtSzQHv+YtfwMknh19aOvfcYIVWHEtLe02dCsOGxf2YtJefH3UCSZIkSZIkSZIkxZPFJUmSJEmSJEkZpbISCgujThGuwsLgXvqPxka45BLo1w8mT4aGhnDnNzQEc/v1C85pbOza+4cMCTdPsnrLPZub4fLL4cwzYfv28A4qKgq2LK1aBe94R3hzDyI3F1assHjTUwUFUSeQJEmSJEmSJElSPFlckiRJkiRJkpRR+vSBioqoU4SrogJ69446RXLYswfmzoWBA4MeS1c3K3VVc3NwzsCBMG8etLV17n2lpelXoHuzoiIoKdnnE+vXQ3k53HZbuAeNGAEvvABf+ELC14717w/XX5/QI9NO375RJ5AkSZIkSZIkSVI8WVySJEmSJEmSlHFmzkyfLSn5+cF9BFu3Bh2WWbMgFkvs2bFY8PswYkSQ41BycoIOTzorLw/uSWsrfPWr8KEPwa9+Fd4BeXnwjW/AmjVQXBze3C6aNi39ypCJVFYWdQJJkiRJkiRJkiTFk8UlSZIkSZIkSRmnuBjmzIk6RTjmzIm0s5EU2tth/vygKLN+fbRZ1q0LcsyfH+Q6mKFDE5MpKkOHAtu2BYWlr32t8+uoOmPgwOA3e9asf7WjopOdDcuXw7nnRhojZQ0ZEnUCSZIkSZIkSZIkxZPFJUmSJEmSJEkZaepUGDYs6hQ9M3x4sO0lk7W2QmUlzJiR+C1LBxKLBXkqK4N8BzJ2bOIyJVoW7VzWdmvQ4nr22RAHZwVf9M8+C4MHhze3h/LyYOVKy0tdVVQEJSVRp5AkSZIkSZIkSVI8WVySJEmSJEmSlJFyc2HFCsjPjzpJ9+TnB1teIl42E6mWFhg3Dqqro06yf9XVQb6Wlv2/Pnp0epY23smLPFl4JictvgJefz28wf/1X/DYY/DNb0JBQXhzQ1JQAPffDxUVUSdJHeXlmf3fMEmSJEmSJEmSpExgcUmSJEmSJElSxurfH66/PuoU3XPDDUH+TNXaCuedB6tXR53k4FavhvPP3//mpawsmDQp8Zni6Xx+wCZOZkTzw+EOHj8eNm6Ej3wk3Lkhy8uDqiqYNy91S5GJNHRo1AkkSZIkSZIkSZIUbxaXJEmSJEmSJGW0adNSb0NKRQVMnRp1iui0t8PEiclfWtrrwQeDvO3tb32tshIKCxOfKWx9aOJ7fJYf8FmOpCm8wUcdFawxWrECevcOb24cZWfDVVdBXR0MGxZ1muQ2dmzUCSRJkiRJkiRJkhRvuVEHkCRJkiRJkqQoZWfD8uXw6qupUYQZMybIm53BP5ZqwQKoro46RddUV8PgwTB9+hs/36dPUERbtiyKVOH4GA+znIkcz4vhDj77bLjzTjj22HDndlJbGzQ0QG0t1NdDUxO0tMDu3dCrFxQUQN++UFYGp54KJSWQk/Of9/fvDzU1sHAhzJ4NsVgk10hapaUwalTUKSRJkiRJkiRJkhRvFpckSZIkSZIkZby8PFi5Es47L7nLS2PGwL33Bnkz1datcO21UafonmuuCbo4/fu/8fMzZ0JVVeoVWw6jmZuYxZV8K9zBRUVB2+fiiyErK9zZB9HRAWvWwKpVsGFDsDGpubnz7y8qCsppQ4cGm4RGj4bcXJgxA8aNg7lzgwJbV2ams0mTEvrbK0mSJEmSJEmSpIhk8M/klCRJkiRJkqT/KCiA++8Ptt8ko4oKuO++IGem2rMHJkxIvYLPXrEYTJwYbPLZV3ExzJkTTabuOpUNPMf7wy8tffCD8PzzcMklCWu17NgBixfDgAFw2mmwaFGwKamrBaNdu4L3LVoUzBkwIJi7Y0fwe7x0KWzfHnyutDT8e6SSwkKorIw6hSRJkiRJkiRJkhLB4pIkSZIkSZIk/UteXrD5Zt48yM+POk0gPx/mzw9yZfKmJQiW8KxfH3WKnlm3DhYseOvnp06FYcMSn6erctjDtczhl3yQUraFNzg3F268EdauhRNPDG/uQTQ2Bv2ofv1g8mRoaAh3fkNDMLdfv+Ccxkbo3RuuuAK2bIEnnoApU2DkyKDIk0kqKoJfC0mSJEmSJEmSJKW/rI6Ojo6oQ0hSKho4cCBbtmx5y+cHDBjA5s2bI0gkSZIkSZLCtHVrsN0nyqLM8OGwfDn07x9dhmTR2AgDB6butqV95efD5s3BFp59bd0K5eXJe8eT+BX3cCHDCflfigED4J574P3vD3fuAezZE5THrrsusb/W+fnBZq1p0yAn542vtbXBtm1QWwv19dDUBC0tQb78fNi9O9i49uZtXanoQF//kiRJkiRJkiRJ6S5T///z3KgDSJIkSZIkSVIy6t8famqCLT+zZye+4HD99cEWnjcXHDLV3LnJW+jpqlgsuM/SpW/8fP/+we/7jBnR5DqwDi7jdr7JdAp5PdzRU6bA178OBQXhzj2AKAuJsRjMnAkPPPDWQmJOTtDfGjDgwO+fNy94f6qbM8fSkiRJkiRJkiRJUibJjjqAJEmSJEmSJCWr3NygRLJ5M1x8MRQWxve8wsLgnM2b4aqrLC3ttWMHVFdHnSJc1dWwc+dbPz9tGlRUJD7PgRzHdn7KJ1nCl8ItLZ1wAjz6aNAMTEBpqb0d5s8PNlpFuUUNYN26IMf8+UGuzpo6FYYNi1+uRBg+PPgalyRJkiRJkiRJUuawuCRJkiRJkiRJh1BcHGzH2b4dFi+G0tJw55eWBnO3bw/OcRvJG1VVQXNz1CnC1dwc3OvNsrODbTznnpv4TG/2GVZSTxln8fNwB194IWzcCKefHu7cA2hthcrKoISYLFu7YrEgT2VlkK8zcnNhxYpgI1sqys8PvrYtZEqSJEmSJEmSJGUWi0uSJEmSJEmS1Em9e8MVV8CWLfDEEzBlCowc2fVNTEVFwfumTAnmbNkSzO3dOx6pU1tHByxZEnWK+FiyJLjfm+XlwcqV0ZWX+tDEPVzASs7nSJrCG3zkkfDDHwaNrT59wpt7EC0tMG5c8m7sqq4O8rW0dO75/v3h+uvjmylebrghyC9JkiRJkiRJkqTMkht1AEmSJEmSJElKNVlZMHp08AHQ1gbbtkFtLdTXQ1NTUESIxYItIwUF0LcvlJXBkCFQUuLWkc5asyb4tU1HDQ2wdu1/vo72VVAA998PEycmtnRzOo/yHcZzPC+GO/iss+Cuu+C448KdexCtrXDeebB6dcKO7JbVq+H88+G++4LS2qFMmwYvvJC8Zaz9qaiAqVOjTiFJkiRJkiRJkqQoWFySJEmSJEmSpB7KyYEBA4IPhWvVqqgTxNeqVfsvLkFQYqmqglNOgWuvDYpw8VLA63yDq/lfbgl3cGEhLFgAl14aNP4SpL09KH0le2lprwcfDPJWVUF29sGfzc6G5cvh1VdT435jxgR5D3UvSZIkSZIkSZIkpSe/TSRJkiRJkiRJSlobNkSdIL4Odb/sbLjqKqirg2HD4pPh/dRSy5DwS0sf+AA8/zx88YsJLS1B0JVKpY1EEORduLBzz+blwcqVcO658c3UU2PGwL33dm6TlCRJkiRJkiRJktKTxSVJkiRJkiRJUlJqawsKO+msri6456H07w81NTB3LuTnh3N2Dnv4CjfwDB9gAFvDGQqQmwvXXw9PPgknnRTe3E7aujXYUJWKrrkmyN8ZBQVw//1QURHfTN1VUQH33RfklCRJkiRJkiRJUuayuCRJkiRJkiRJSkoNDdDcHHWK+Nq1C7Zt69yzubkwYwZs3gwXXwyFhd0/90R+zZN8mBu4ljz2dH/Qm/XvD888EzRwcnPDm9tJe/bAhAkQiyX86FDEYjBxYufKbBBsMqqqgnnzwiu09VR+PsyfH+Ry05IkSZIkSZIkSZIsLkmSJEmSJEmSklJtbdQJEqOr9ywuhqVLYft2WLwYSku78u4OLuUOnmcwH+SZrh18KJMnB5cZMiTcuV2wcCGsXx/Z8aFYtw4WLOj889nZcNVVwfauYcPil6szhg8PckyfHuSSJEmSJEmSJEmSEv/jDiUlVGtrK7///e/5y1/+wt///ndef/11Wltb6dWrF4cddhhHH300xx13HO9+97vJ88dfSpIkSZIkKYnU10edIDG6e8/eveGKK+Dyy2HtWli1CjZsgOee2/+mqmP5C3dxEZ/kZz0L/GbHHw8rVsBHPxru3C5qbITZsyONEJrZs2HcuKCk1ln9+0NNTVDemj07sVun8vPh+uth6lTIyUncuZIkSZIkSZIkSUp+FpekNLNr1y5++tOf8uijj1JTU8O2bdtobW095Pvy8vIoLS1l5MiRfPSjH+Wss86isLAwAYklSZIkSZKk/WtqijpBYvT0nllZMHp08AHQ1gbbtgXLj+rrg/knb7uP8c98kSN2v9zzwPuqqIBbb4U+fcKd2w1z5ya2rBNPsVhwn6VLu/a+3FyYMSMoPc2dC9XV+y+xhaWwMPgSmDmzayUrSZIkSZIkSZIkZQ6LS1KaqK+vZ8GCBfzwhz9k165dXX5/a2srmzZtYtOmTdx+++0cfvjhnH/++UyfPp3S0tI4JJYkSZIkSZIOrqUl6gSJEfY9c3JgwIDgg507g7VMa+8J95Ajj4Q77oDPfCbcud20Y0dQ0kkn1dUwf36wWauriouD0tP8+VBVBUuWQENDeNlKS2HSJKis7F4+SZIkSZIkSZIkZY7sqANI6pmXXnqJ8ePHM2jQIFasWNGt0tL+/POf/+Suu+5iwIABfOELX+Af//hHKHMlSZIkSZKkztq9O+oEiRG3LUGPPw4nnwz3hFxa+sQnYNOmpCktQVDOiedmoSg0Nwf36onevYPe2pYt8MQTMGUKjBwZbErqiqKi4H1TpgRztmwJ5lpakiRJkiRJkiRJ0qG4cUlKYT/96U8ZP358XEtFHR0d3HXXXTz00EN897vf5aMf/WjczpIkSZIkSZL21atX1AkSIz8/5IEtLfDlL8PNN4c7t7AQvvlN+OIXISsr3Nk90NERbBRKR0uWwOWX9/yXOysLRo8OPgDa2mDbNqithfp6aGoKvmxiseDrsaAA+vaFsjIYMgRKSoJNXpIkSZIkSZIkSVJXWVySUtTtt9/O5ZdfTnt7e0LOe+mllzjzzDO56667qKysTMiZkiRJkiRJymwFBVEnSIxQ71lXBxdcEKzECdOwYcHmpve9L9y5IVizJijhpKOGBli79j+Fo7Dk5MCAAcGHJEmSJEmSJEmSFE/ZUQeQ1HXLly9n0qRJCSst7bVnzx4mTJjAypUrE3quJEmSJEmSMlPfvlEnSIxQ7rlnD3z960HBKMzSUm4uzJkDNTVJWVoCWLUq6gTxle73kyRJkiRJkiRJUnpz45KUYp599lkuvfTSTj9/6qmnctZZZzFixAhOPPFEjjzySN72trfx6quv0tTURENDA08//TQ/+clP2Lhx4yHndXR0MH78eAYOHMjAgQN7chVJkiRJkiTpoMrKok6QGD2+529+A5WV8MtfhpLn30pLgy1Lp54a7tyQbdgQdYL4Svf7SZIkSZIkSZIkKb1ZXJJSyJ49exg/fjytra2HfHbkyJF84xvfYOTIkft9/cgjj+TII4+kuLiYs88+mxtvvJFHH32UWbNm8eyzzx50dktLCxMmTGD9+vVkZWV16y6SJEmSJEnSoQwZEnWCxOj2PTs6YNkymDoVdu0KNRNXXgk33QSHHRbu3JC1tUFdXdQp4quuLrhnTk7USSRJkiRJkiRJkqSuy446gKTOq6qqYsuWLYd87tprr+WJJ544YGnpQD760Y/y9NNPM3Xq1EM+++yzz3Lvvfd2ab4kSZIkSZLUFaWlUFgYdYr4KiqCkpJuvPGll+Dcc+HSS8MtLfXrBw8/DLfckvSlJYCGBmhujjpFfO3aBdu2RZ1CkiRJkiRJkiRJ6h6LS1IKueWWWw75zNVXX82cOXPI6eaP38zLy2PBggVceeWVh3x20aJF3TpDkiRJkiRJ6oycHCgvjzpFfJWXd2OTzgMPQFkZPPRQuGE+9znYtAk+9rFw58ZRbW3UCRIjU+4pSZIkSZIkSZKk9GNxSUoR9fX1bNy48aDPjBw5khtvvDGU826++WaGDRt20GfWrVtHY2NjKOdJkiRJkiRJ+zN0aNQJ4qtL99u5E8aPh3Hj4OWXwwvRty/84AdQXR38fQqpr486QWJkyj0lSZIkSZIkSZKUfiwuSSni0UcfPeQz3/jGN8jKygrlvOzsbG666aZDPvfII4+Ecp4kSZIkSZK0P2PHRp0gvjp9vyeegEGDoKoq3ABnnBFsWTr//HDnJkhTU9QJEiNT7ilJkiRJkiRJkqT0Y3FJShHPPffcQV8vKSlh5MiRoZ552mmnceKJJx70mWeffTbUMyVJkiRJkqR9jR4NJSVRp4iPI46AJUvgwgvh4othxoygl7RlC7S1/euhlhaYNg1OPx3++MfwDj/sMLjtNvj5z6Ffv/DmJlhLS9QJEiNT7ilJkiRJkiRJkqT0kxt1AEmd09jYeNDXzzjjjLic+4lPfILf/OY3B3z9YK9JkiRJkiRJPZWVBZMmweTJUScJ36uvwsqV+3+tqAg+feLzfOPPF3Dcy5vDPXjoULjnnrRohO3eHXWCxIjFok4gSZIkSZIkSZIkdY8bl6QU0dTUdNDXBw0aFJdzDzX3H//4R1zOlSRJkiRJkvaqrITCwqhTJE42bVyx6xssfWFYuKWlnBz46lehpiYtSksAvXpFnSAx8vOjTiBJkiRJkiRJkiR1j8UlKUXEDvEjNY8++ui4nHvMMccc9PXXX389LudKkiRJkiRJe/XpAxUVUadIjPfwW9Ywmm/wZXrRGt7gkhL45S/huusgLy+8uRErKIg6QWJkyj0lSZIkSZIkSZKUfiwuSSmid+/eB329qKgoLuceau4RRxwRl3MlSZIkSZKkfc2cme5bZzr4AsvYyCBGUhPu6Msvh+eeg6FDw52bBPr2jTpBYmTKPSVJkiRJkiRJkpR+cqMOIKlzjjrqqIO+/vLLL8fl3EPNPVQuSZIkSZIkqbPa2qChAWprob4empqgpQV274ZevWDQINiwIeqU4Xs7f+VOvsC5/CTcwe98JyxfDmecEe7cJFJWFnWCxMiUe0qSJEmSJEmSJCn9WFySUsSAAQN4+OGHD/j6Sy+9FJdzDzX3ve99b1zOlSRJkiRJUvrr6IA1a2DVqqCQVFcHzc1Rp0qs/8ePWMolHMM/wh38P/8Dt90GRx4Z7twkM2RI1AkSI1PuKUmSJEmSJEmSpPSTHXUASZ3z4Q9/+KCvP/nkk3E5d+3atQd9feTIkXE5V5IkSZIkSelrxw5YvBgGDIDTToNFi6CmJrNKS2/jVe5mIj/iv0MtLXX06QPf+x58//tpX1oCKC2FwsKoU8RXURGUlESdQpIkSZIkSZIkSeoei0tSijj99NMpKCg44OuPPfYYsVgs1DNff/11HnvssQO+np2dzWmnnRbqmZIkSZIkSUpfjY1wySXQrx9MngwNDVEnisYo1rCRQUxkRahz/4+P8/lTN9Hyqc+GOjeZ5eRAeXnUKeKrvDy4pyRJkiRJkiRJkpSKLC5JKaJv375UVFQc8PUdO3Zw++23h3rmt771LV599dUDvn7uuedy/PHHh3qmJEmSJEmS0s+ePTB3LgwcCMuWZdZmpX31IsY8ruJxTuPd/CG0ua9TwBUs5kx+zopHjuf886G1NbTxSW/o0KgTxFe630+SJEmSJEmSJEnpzeKSlEKmT59Or169Dvj617/+dV588cVQzvrDH/7ATTfddNBnpk6dGspZkiRJkiRJSl9bt8KIETBrFoS8MDylDOIFNjCUq/gm2XSENncDp1JOHbdyBR3/+iP/Bx+EiROhvT20Y5La2LFRJ4ivdL+fJEmSJEmSJEmS0pvFJSmFlJaWMnv27AO+/ve//51zzjmH1157rUfnvPLKK5x11lk0NTUd8JmJEycyatSoHp0jSZIkSZKk9NXeDvPnQ3k5rF8fdZroZNPGDOaygaEMYlNoc/eQw9eYzYd4mm2UvuX16mpYuDC045La6NFQUhJ1ivgoLQX/GFaSJEmSJEmSJEmpzOKSlGJmzZrFGWecccDXn3/+eYYOHcoLL7zQrfnr1q3j1FNPZevWrQd8pri4mJtvvrlb8yVJkiRJkpT+WluhshJmzMjsLUvv5nc8wUeYyyx60Rra3F9xEh/iab7K19hD3gGfu+aaYONVusvKgkmTok4RH5MmBfeTJEmSJEmSJEmSUpXFJSnF5OTk8OMf/5jRo0cf8Jlt27YxbNgwPv/5z3e6wLRhwwYqKioYOXIkv/vd7w743PHHH88jjzxC7969u5xdkiRJkiRJ6a+lBcaNCzb+ZK4OPs9dbGQQH+apUCffxiTKqWMDww75bCwGEydCW1uoEZJSZSUUFkadIlyFhcG9JEmSJEmSJEmSpFSWG3UASV132GGH8fOf/5xp06axZMmS/T6ze/duli9fzvLly3nnO9/JiBEjOOmkk+jbty+HH344r732Gk1NTWzbto2amhr++te/HvLc97///fzwhz/k3e9+d8g3kiRJkiRJUjpobYXzzoPVq6NOEp1j+BvLuJixPBjq3O0cx0SW8398okvvW7cOFiwItl+lsz59oKICli2LOkl4KirAnx8lSZIkSZIkSZKkVJfV0dHREXUISd33s5/9jJkzZ7Jp06a4ndGrVy+uvPJKbrzxRnr16hW3c8Jy2223HbDQFabGxkZisdhbPj9gwAA2b94c9/MlSZIkSZKSSXt7sB0mkzctjWEVy7iYt/P3UOeu5DNcxu28wlHden9+PmzeDMXFocZKOo2NMHBgsGkq1WXK75kkSZIkSZIkSVImGThwIFu2bHnL59P9/z9345KU4s466yzOPPNMfvzjH3P33XfzyCOP0NLSEsrsI444gs997nN8+ctf5oQTTghlZiL8/e9/3+9/0CVJkiRJkhQ/CxZkbmnpbbzKzUzhIu4Ode4OevMlbuN7fA7I6vacWAzmzoWlS8PLloyKi2HOHJg5M+okPTdnjqUlSZIkSZIkSZIkpYfsqANI6rmsrCw+9alPMX/+fKZPn05BQUGP5uXl5fGVr3yFl156idtvvz2lSkuSJEmSJElKvK1b4dpro04RjZE8yQucEnpp6RE+ysls4ntU0JPS0l7V1bBzZ89zJbupU2HYsKhT9Mzw4TBtWtQpJEmSJEmSJEmSpHBYXJJS3J49e6iqqqKsrIz+/ftzww039HjjUmtrKzfeeCPvec97+OIXv8i2bdtCSitJkiRJkqR0s2cPTJgQbPXJJL2IcRMzWcNo3sPvQ5v7OgVMZhFn8H/8mfB+oFBzM1RVhTYuaeXmwooVkJ8fdZLuyc+H5cshJyfqJJIkSZIkSZIkSVI4LC5JKeyhhx7ipJNOYvz48WzevDn0+X/961/59re/zYABA/jMZz5DY2Nj6GdIkiRJkiQptS1cCOvXR52i54YNgwsvhM98Bo444uDPnsxG1jOMmcwjm47QMtTyft7PcyxmMh1x+OP7JUugI7y4Sat/f7j++qhTdM8NNwT5JUmSJEmSJEmSpHRhcUlKQa+//jqTJk3inHPO4fe//33cz2tvb+e+++5j8ODB3H333XE/T5IkSZIkSamhsRFmz446RTheeAGuuw4mTYJXX93/M9m0MZ35bGAop7AxtLPbyOZ6ruGD/JIG4tdaaWiAtWvjNj6pTJsGFRVRp+iaigqYOjXqFJIkSZIkSZIkSVK4cqMOIKlrXn/9dc455xwee+yxQz6bk5PD6aefzqhRoxgxYgTHH388Rx11FEcccQQ7d+7klVde4U9/+hM1NTWsXbuWxx57jPb29gPO++c//8lFF11EbW0tt912W5jXCtUxxxzDgAED4n5OY2MjsVgs7udIkiRJkiQlq7lzIV3+eCQWC+5TVLT/19/F7/kO4xlNuM2fX3MiF3IP6/hAqHMPZNUqGD06IUdFKjsbli8PSmirV0ed5tDGjAnyZvvj5iRJkiRJkiRJkpRmsjo6OjqiDiGpc3bv3s3ZZ5/NI488ctDn8vLyuOSSS5g6dSrvfe97Oz2/sbGRhQsXsnTpUvbs2XPQZ7/0pS9x6623dnp2Oho4cCBbtmx5y+cHDBjA5s2bI0gkSZIkSZKUODt2QL9+0NwcdZLwFBbCoEHwzDP7fraD8XyHxVzJEbwW6nm380Wm802aOUBbKg5GjoQnn0zYcZFraYHzzkvu8tKYMXDvvVBQEHUSSZIkSZIkSZIkxVOm/v/n/uw+KYVcd911hywtvetd7+LJJ5/k1ltv7VJpCaC4uJjbbruNNWvWcMIJJxz02dtuu4077rijS/MlSZIkSZKUPqqq0qu0BMF9nnvuP/98NH/nAf6bFUwMtbT0F47lLH7KJG5PaGkJoK4O2toSemSkCgrg/vuhoiLqJPtXUQH33WdpSZIkSZIkSZIkSenL4pKUIp5++mnmzZt30GdOOukknn32WYYPH96jsz70oQ9RW1tLcXHxQZ+bPn06jY2NPTpLkiRJkiRJqaejA5YsiTpFfOzeHfz1HFZTTxmf4sehzv8hn+ZkNvFzzgp1bmft2gXbtkVydGTy8oKi3bx5kJ8fdZpAfj7Mnx/kysuLOo0kSZIkSZIkSZIUPxaXpBQxa9Ys2tvbD/j6kUceyUMPPcTRRx8dynnHHHMMDz30EH369DngM7t27eKqq64K5TxJkiRJkiSljjVr0rf8cjivsZSLWc0Y3sHfQpu7kyO4gHs4j5W8TDh/htddtbWRHh+J7Gy46qpg49SwYdFmGT48yDF9epBLkiRJkiRJkiRJSmd+S0xKARs2bODJJ5886DNf/epXOemkk0I9t6SkhNmzZx/0mVWrVrl1SZIkSZIkKcOsWhV1gvj4EDW8wClczJ2hzn2M0ziZTVRzAZAV6uzuqK+POkF0+veHmhqYOzfx25fy84OtTzU1QQ5JkiRJkiRJkiQpE1hcklLA3XfffdDXTzjhBC655JK4nD1p0iSOP/74A77e3t7Ot7/97bicLUmSJEmSpOS0YUPUCcKVx26+ztWsZRTv5XehzW0hn//lZj7GI/yJ/wptbk81NUWdIFq5uTBjBmzeDBdfDIWF8T2vsDA4Z/PmYOtTTk58z5MkSZIkSZIkSZKSicUlKQU8/vjjB339/PPPJz9OPx40Pz+f884776DPPProo3E5W5IkSZIkScmnrQ3q6qJOEZ6B1LOeYVzNTeTQHtrc5yhnCLXcwv/SkWR/FN/SEnWC5FBcDEuXwvbtsHgxlJaGO7+0NJi7fXtwTnFxuPMlSZIkSZIkSZKkVJBc3y2V9BZ/+9vf2LZt20GfOeOMM+Ka4VDzX3jhBV599dW4ZpAkSZIkSVJyaGiA5uaoU/RcFu1MZQG1DGEwL4Q2t41sbuArfIBn2MLA0OaGKRaLOkFy6d0brrgCtmyBJ56AKVNg5Miub2IqKgreN2VKMGfLlmBu797xSC1JkiRJkiRJkiSlhtyoA0g6uN/97neHfGbYsGFxzTB8+PCDvt7W1savf/1rhgwZEtcckiRJkiRJil5tbdQJeu6/+APfYTwfYU2oc39DMZVU8Us+FOrcsMVpeXvKy8qC0aODDwi2i23bFnzN19dDU1OwrSoWC34NCwqgb18oK4MhQ6CkBHJyor2DJEmSJEmSJEmSlGwsLklJ7uWXXz7o67169aJ3nH9kZ58+fcjLy6O1tfWAzxwqpyRJkiRJktJDfX3UCXqig0qqWMyV9CbcDeJ3cCnT+Sa7ODzUufFQUBB1gtSQkwMDBgQfkiRJkiRJkiRJkronO+oAkg6uqanpoK8fddRRCclxqHMsLkmSJEmSJGWGQ/xxVdI6in9wH5/mO0wItbT0Eu/gbH7CZdyREqUlCLYESZIkSZIkSZIkSVIiWFySklxOTs5BX4/FYgnJ0dLSctDXs7KyEpJDkiRJkiRJ0TrEHxMlpU/yEPWUMY4HQp17H+Moo56fcnaoc+OtrCzqBJIkSZIkSZIkSZIyhcUlKckVFRUd9PWmpiba2trimqG1tZUdO3Yc9JnCwsK4ZpAkSZIkSVJy2L076gSdV8Q/uYNLeYhzOJa/hjZ3J0dwIVV8hh/yMkeHNjdRhgyJOoEkSZIkSZIkSZKkTGFxSUpyxx577EFf7+jo4MUXX4xrhj//+c+HfOYd73hHXDNIkiRJkiQpOfTqFXWCzvkgT/M8g7mUpaHOfZyPMIiNfJcLgdTbQl5UBCUlUaeQJEmSJEmSJEmSlCksLklJ7j3vec8hn3nsscfimuHRRx895DOdySlJkiRJkqTUV1AQdYKDy2M3N/AVnuTDnEhjaHNbyGcKC/koj/JH3hXa3EQrL4ecnKhTSJIkSZIkSZIkScoUFpekJHf00Udz/PHHH/SZn//853HN8LOf/eygrx977LG8/e1vj2sGSZIkSZIkJYe+faNOcGAD2MwzfICv8HVyaA9tbh2DOZVnWcQUOlL8j9WHDo06gSRJ0v9n797jtK7r9PFfwwAzDhpQ2Vp2XCqOHgiRdXVh7bxbwq+11dxJlEq3SHNFhQ4e9ou2u0iQ2YabliA2W5q6IZ12O8LGFrBIKsfd6LzWlgVq0AwwM78/PttRBWb4zP2Zw/P5eMyjnPu+X+/rDTOUcF+8AAAAAICBpG//CSsMEH/8x398wMfvueeefOc73+mRs7dt25YVK1Yc8DmnnHJKj5wNAAAAQO8zYULVCR6vLh35m7w/GzIpL8nG0ua2Z1D+Lu/KlKzN5vTCi3fDjBlVJwAAAAAAAAAGEsUl6AOmT59+wMf37duXq666qkfOfs973pP29vYDPueMM87okbMBAAAA6H0mTao6we96Tr6fL+bleX/mpDFtpc3dkT/M1KzOe/J32Zehpc2t0pgxydSpVacAAAAAAAAABpLBVQcADm769Ok58sgj84tf/OJJn9PS0pKpU6fmwgsvLO3cRYsW5Z577jngcxobG/P//X//X2lnAgAAAJSlvT3Zti3ZsCHZtCnZuTNpbU327k2GDk0aG5ORI4sNQiedlIwendTXV5269xszJmlqSvbsqTpJZ96Yj+Ufc1GG59FSJ3900AW5pGNxdufIUudWbfbspK6u6hQAAAAAAADAQKK4BH3AUUcdlQsuuCDvf//7D/i8t7/97XnKU56SN7zhDYd95q233pq5c+ce9HmzZs3KyJEjD/s8AAAAgMPV2ZmsWpWsWJGsX59s3Ni1cs2wYcmJJyaTJyczZiTTpil5PJH6+mTixGTNmuoyPC0P55/y1rw+d5c698f5g7wlH8nPTn5tOh9IUnk5qzxNTcnMmVWnAAAAAAAAAAaaQVUHAA7N3LlzM3z48AM+Z//+/TnnnHPy9re/PXu6+VfePvbYY5k1a1be/OY3p6Oj44DPHTZsWN71rnd16xwAAACAsuzaldx4YzJuXHL66ckNNxSlmq7+9sju3cXrbrihmDNuXDF3167yM/d1kydXd/ar87k8mONKLy3dk9fluDyYz+S1OeWUpLm51PGVa25ODvLbiwAAAAAAAAClU1yCPuKYY47JP/zDPxzSc5csWZLnPve5ufrqq/P973//kF7zne98J+9617vy3Oc+N8uWLTuk11x33XV5znOec0jPBQAAACjbjh3JhRcmxx6bXHJJsm1bufO3bSvmHntscc6OHeXO78tmzKj9mcPyi9yUt+Zz+fM8Mz8ube6jOSrnZVnOzN15OEcnKe43b17S0FDaMZVqaCjuAwAAAAAAAFBrdZ2dnZ1VhwAO3V/91V/l4x//eJde8/znPz+nnXZanv3sZ+epT31qjjrqqDz66KP5+c9/nh/84Af52te+dsgFp1/5i7/4i9x1112pq6vr0uv6k/Hjx2fLli2P+/y4ceOyefPmChIBAADAwLB/f7JoUXLNNUlbW+3ObWhI5s9PLrssqa+v3bm9UWdnMnZssn17bc6bkm/k9pybF+Vbpc5dlak5L7fle3n+rz83ZkyyZUtSV5dcf33/KPwsWJDMnVt1CgAAAAAAABjYBur7zwdXHQDomltvvTU7d+7M5z//+UN+zXe/+91897vfLS3DS1/60tx+++0DurQEAAAAVGPr1uT885N162p/dltbUWK5555k6dKiuDNQ1dUls2cXG6l60pDszdWZn3fl71OfjtLmtmVo3pP35v25NB353Rba7NnF/ZJkzpzk7rur+Xory5QpRdkOAAAAAAAAoAqDqg4AdE1jY2M+9alPZebMmZWcf/bZZ+fTn/50mpqaKjkfAAAAGJg6OpKFC5OJE6svkaxdW+RYuLDINVDNnJn05G8Rjc2WfD2n5Mq8t9TS0jdzQk7Kf2ZRLn9caampqbjXrwwenCxbVmzb6osaGoqS3UDfEAYAAAAAAABUR3EJ+qCGhobcdtttueWWWzJixIianPmUpzwlS5YsySc+8YkcccQRNTkTAAAAIEn27SvKJHPnFluPeoO2tiLPzJlFvoFoxIikubn8uXXpyCW5IfflJZmU+0qb25G6/EPmZUrWZlOOe8LnNDcnw4f/7ufGjk2uvba0GDV13XUDezMYAAAAAAAAUD3FJejD3vKWt2T79u15xzve0WNlosbGxsyePTvbt2/P2972th45AwAAAODJtLYmZ56ZtLRUneSJtbQU+Vpbq05SjXnzyt1G9Oz8IF/IK3JDLk1jymupfTsvyNSszrvyD9mbJw7c0FDc54lcdlnPlLR6UnNzMmdO1SkAAAAAAACAgU5xCfq4ZzzjGfnABz6Q73//+7nxxhtzyimnpL6+/rBmDho0KFOmTMn73//+fP/738+HPvShHHPMMSUlBgAAADg0+/YlZ52VrFxZdZIDW7kyOfvsgbl5adSoZP78MiZ1pjkfy4M5Li/Ll8sY+GsfyZtzQu7Pmpx2wOfNn1/c54kMGpQsXZqccUap0XrM9OlF3kH+BAAAAAAAAACoWF1nZ2dn1SGAcj3yyCNZvXp1Nm7cmM2bN+d73/tefvzjH2fnzp1pbW3Nvn37MmTIkDQ2NmbkyJE55phj8rznPS/jxo3LiSeemKlTp2bkyJFVX6PXGz9+fLZs2fK4z48bNy6bN2+uIBEAAAD0Hx0dycyZvXfT0hNpbk6WLx94ZZH9+5NTT03Wreve65+an+WmvC1n5ZOl5vpJjs5b8pGszPSDPnfKlGTNmuRgfx9Qa2vvL9NNn57ccUfS2Fh1EgAAAAAAAOC3DdT3nw+uOgBQvuHDh+eMM87IGX3lr4AFAAAA+D2LFvWt0lJS5D3xxOTyy6tOUluDByfLliUTJyZtbV177avy+dyaN+VZ+VGpmT6VGbkwN+enecZBn9vQUGwnOpQl5o2Nyd13J7Nm9c6vz+bm4i5DhlSdBAAAAAAAAKCguAQAAAAAA1h7e7JtW7JhQ7JpU7JzZ7FVZu/eZOjQoqgxcmQyYUJy0knJ6NGHVvA4HFu3Jldd1bNn9JQrr0xe85pk7Niqk9TW2LHJtdcmc+ce2vObsjsLc0Vm56ZSczyWI/OO3JhlOT9J3SG95rrruvbzNWRIsVnrhBOKr9OulrV6QkNDcY85cwbexi8AAAAAAACgd1NcAgAAAIABpLMzWbUqWbEiWb8+2bgx2bPn0F8/bFixVWjy5GTGjGTatKTu0Pohh2T//uT883tHGaQ72tqKbTxr1vR8wau3ueyy5P77D76J6OSsze05Ny/Of5d6/ur8Sc7LbfluXnDIr2luLso+XTVoUHLFFclrX1t8va5b1/UZZZkypdiyNNDKcgAAAAAAAEDf4O9eBAAAAIABYNeu5MYbk3HjktNPT264oSjXdKW0lCS7dxevu+GGYs64ccXcXbvKybl4cbUlkDKsXZssWlR1itobNKgo0JxxxhM/Pjj78v9yddbk1FJLS20ZmrlZkNPzlS6VlqZPL/IezoaisWOL74cFC4qtR7XU0JBcf31xvtISAAAAAAAA0FvVdXZ2dlYdAqAvGj9+fLZs2fK4z48bNy6bN2+uIBEAAAA83o4dRamipaXrJaWuaGoqttfMm5eMGtW9GTt2JOPH991tS7+toSHZvLn7Pxa9SXt7sm1bsmFDsmlTsnNn0tqa7N2bDB2aNDYmI0cmEyYkJ52UPO95yTnnJCtX/mbGmGzN7Tk3J2VDqdkeyHF5Yz6WB3N8l143fXpyxx1F9rL0pe81AAAAAAAAoPYG6vvPB1cdAAAAAAAo3/79xdafa66pTRFoz57klluS5cuT+fOTyy5L6uu7NmPBgv5RWkqKeyxYkNx8c9VJuq6zM1m1KlmxIlm/Ptm4sWtFnGHDkuOPT8aMSbZv68hF+ccsyLwckdbSMnakLu/L5bkq12ZvurbqqLm52LQ0ZEhpcZIUJaKbb04WLiy+D5YsKQpfZRkzJpk9O5k5Mxk+vLy5AAAAAAAAAD3JxiWAbhqojVcAAAB6v61bk/PPT9atqy7DlClFOWTs2EN7/q5dybHH9uymmlprakoeeqjvlEx27SoKNzfdVE7h5tj8MEszK6/IFw9/2G/5Tp6f83Jb/j1Tu/S6hobkuuuSOXOSQYNKjfSEOjuT1at/UwC7776uF8AmTkwmT05mzEimTk3q6nouLwAAAAAAANCzBur7z21cAgAAAIB+oqOj2LJ01VXVby5au7YoXVx7bbF96WBFkeXL+1dpKSnus3x5cvHFVSc5sB07iu1QLS3l/Ry8IR/PkszOyOwqZ+D/uTWz8je5IY/lKV16XVeLdGWoq0umTSs+kqS9Pdm+PdmwIdm0Kdm5M2ltLb5XGxqSxsZk5MhkwoRk0qRk9Oiuby0DAAAAAAAA6G0UlwAAAACgH9i3L5k1qyif9BZtbcncucn99xelkSFDnvh5nZ3JkiW1zVYrS5YkF13UOzfl7N9fFN2uuaa8otvI/DxLMjtvyB3lDPw/P8nRuSC35N7M6NLrGhqK8tycOdWXgOrrk3Hjig8AAAAAAACAgeIgf88pAAAAANDbtbYmZ57Zu0pLv62lpcjX2vrEj69aVWyi6Y+2bUtWr646xeNt3ZqcemryzneWV1p6Zf41D+a40ktL9+aMHJcHu1RaampKLrgg2bw5ueKK6ktLAAAAAAAAAAOV4hIAAAAA9GH79iVnnZWsXFl1kgNbuTI5++wi7+9bsaL2eWqpN92voyNZuDCZODFZt66cmUdkTz6Yi/KveXWOzUPlDE3yWI7Mm/ORzMiK/CR/cEivGTMmufHG5KGHkptvTkaNKi0OAAAAAAAAAN0wuOoAAAAAAED3dHQks2b1/tLSr9x7b5F3+fJk0G/9lUrr11eXqRZ6y/327St+/MvczDU563J7zs3o/Fd5Q5N8LadmZpbnO/nDAz5v2LCihDV5cjJjRjJ1alJXV2oUAAAAAAAAAA6D4hIAAAAA9FGLFpVbQqmFlpbkxBOTyy8v/rm9Pdm4sdJIPW7jxuKe9fXVZWhtLXcz1+Dsy3vy3lyZ6zI47eUMTdI5ZEh+ctG1+e4Jl+cvt9Rn584ie1tb0tCQNDYmI0cmEyYkkyYlo0dX++MKAAAAAAAAwIEpLgEAAABAH7R1a3LVVVWn6J4rr0xe85pk7Nhk27Zkz56qE/Ws3buT7duTceOqOX/fvnJLSy/O9nwsb8zk/Gc5A//Pg5mQj/7x7Vm44MS8cUipowEAAAAAAACoyKCqAwAAAAAAXbN/f3L++cUWmr6orS2ZNavYQrRhQ9VpaqOqe3Z0FD/WZZSW6tKRt+cfszETSy0tdaQuC3N5Jmd9PrDqxMyaVeQGAAAAAAAAoO+zcQkAAAAA+pjFi5N166pOcXjWrk0WLUoefrjqJLWxaVM15y5alLS0HP6cZ+V/sjSz8sp84fCH/Zbv5nk5L7dldab9+nMtLcmJJyaXX17qUQAAAAAAAABUwMYlAAAAAOhDduxIrr666hTluPrq5HvfqzpFbezcWfszt25Nrrrq8OecnU/kwRxXemlpac7P8Xngd0pLv3LllUV+AAAAAAAAAPo2xSUAAAAA6EMWLEja2qpOUY62tuS++6pOURutrbU9b//+5PzzD+9rZUR25p9zTj6Rc/LUlNe8+mmentflnrwpS/NYnvKEz2lrS2bNStrbSzsWAAAAAAAAgAooLgEAAABAH7FrV9LSUnWKcn3nO1UnqI1al80WL07Wrev+61+eL+TBHJdz8onyQiVZmdfmuDyYT+V1B33u2rXJokWlHg8AAAAAAABAjSkuAQAAAEAfsXx5smdP1SnKNVA26jQ01O6sHTuSq6/u3muPyJ58IO/IF/LKPDv/U1qmX2RYLsjNmZ5787855pBfd/XVxX0AAAAAAAAA6JsUlwAAAACgD+jsTJYsqToF3dXYWLuzFizo3oank7I+9+UleUc+WGqeNfnjnJD785FckKSuS69tayvuAwAAAAAAAEDfpLgEAAAAAH3AqlXJ9u1Vp6C7Ro6szTm7diUtLV17TX3256rMz9dzSsakvC+yvRmSd+XvMjWr8+2M6vaclpbkkUdKiwUAAAAAAABADSkuAQAAAEAfsGJF1Qk4HBMm1Oac5cuTPXsO/fkvyn9lTU7N/FyTwWkvLcfmjMuUrM0/5F3pSP1hzdqzp7gXAAAAAAAAAH2P4hIAAAAA9AHr11edgMMxaVLPn9HZmSxZcsjPzux8KN/MiZmSdaVl6EhdFmVOJmVDvpmJpc1dsqS4HwAAAAAAAAB9i+ISAAAAAPRy7e3Jxo1Vp6C7hg1LRo/u+XNWrUq2bz/4856Zh/K5/Fk+lIvSlF+Wdv7385y8LF/K5VmUtjSWNjdJtm1LVq8udSQAAAAAAAAANaC4BAAAAAC93LZtyZ49VaeguyZOTOrre/6cFSsO/pyzckc2ZUJenX8t9ezbMjPH5cF8NaeXOve3Hcr9AAAAAAAAAOhdBlcdAAAAAAA4sA0bqk7A4Zg8uTbnrF//5I+NyM78Yy5Kc/651DMfztPy1/lw7smZpc59Ige6HwAAAAAAAAC9k+ISAAAAAPRymzZVnYDDMWNGz5/R3p5s3PjEj70sX8yynJ9n539KPfMz+fO8JR/Jj/PMUuc+mY0bi3vWYnsVAAAAAAAAAOUYVHUAAAAAAODAdu6sOgHdNWZMMnVqz5+zbVuyZ8/vfq4xv8wNuSRfzCtKLS3tTlMuzIfz2ny6ZqWlJNm9O9m+vWbHAQAAAAAAAFACG5cAAAAAoJdrba06Ad01e3ZSV9fz52zY8Lv/PCn/mdtzbsZmW6nn/EdOycwsz468sNS5h2rDhmTcuEqOBgAAAAAAAKAbbFwCAAAAgF5u796qE9RGfX3VCcrV1JTMnFmbszZtKv6zPvtzZa7N13NKqaWlfRmcd+e9mZrVlZWWkt/cEwAAAAAAAIC+wcYlAAAAAOjlhg6tOkFtvOAFybe+VXWK8jQ3J8OH1+asnTuTF+W/sjwz80dZW+rsLRmbN+Zj2ZiXlDq3O3burDoBAAAAAAAAAF1h4xIAAAAA9HKNjVUnqI1Jk5KGhqpTlKOhIZk3r0aHdXbm1AduysZMLL209P78TSZlQ68oLSVJa2vVCQAAAAAAAADoCsUlAAAAAOjlRo6sOkFtPO95yfz5Vacox/z5yahRNTjooYeSP//znL9udoZlT2ljf5Bn52X5Yubk/WnNEaXNPVxtbVUnAAAAAAAAAKArFJcAAAAAoJebMKHqBLUxYUIyZ05y8slVJzk8U6Ykl11Wg4Puuis57rjk858vdezteWOOy4P5cl5W6twy9JeNXAAAAAAAAAADheISAAAAAPRykyZVnaA2Jk1KBg9Oli3ruwWVhoZk6dKkvr4HD9m1K3njG5O//Mvk5z8vbezP8tT8Ze7MzNyeRzKitLllamysOgEAAAAAAAAAXaG4BAAAAAC93JgxSVNT1Sl61rBhyejRxX8fOza59tpq83TXddcV+XvMl79cbFlqaSl17Ofy6hyXB3NX/rLUuWUbObLqBAAAAAAAAAB0heISAAAAAPRy9fXJxIlVp+hZEyf+7paiyy5Lmpury9Mdzc3JnDk9NPyXv0wuvTR52cuSH/6wtLG705S35qb8eT6bH+VZpc3tKRMmVJ0AAAAAAAAAgK5QXAIAAACAPmDy5KoT9Kzfv9+gQcnSpckZZ1STp6umTy/yDuqJ33G9775k0qTkhhtKHfuNTMmJ+WY+nLcmqSt1dk+ZNKnqBAAAAAAAAAB0heISAAAAAPQBM2ZUnaBnPdH9hgxJ7ryz95eXpk9P7rijyFuq/fuT9743mTIl2bq1tLH7MjhXZX5Oy9fyrbyotLk9bdiwZPToqlMAAAAAAAAA0BWKSwAAAADQB0yb1n9LG2PGJFOnPvFjjY3J3Xcnzc21zXSompuTu+4qcpbqW99K/uRPkiuvLApMJdmaMTklX891uSrtGVza3FqYODGpr686BQAAAAAAAABdobgEAAAAAH1AXV0ye3bVKXrG7NnF/Z7MkCHJ8uXJ9dcnDQ21y3UgDQ3JwoVFrlI3LXV2Jh/+cHLCCck3vlHi4OQDeUdekvuyISeVOrdWJk+uOgEAAAAAAAAAXaW4BAAAAAB9xMyZSVNT1SnK1dRU3OtgBg1Krrgi2bgxOfnkns91IFOmFDkuv7zIVZof/Sh57WuTt7412bOntLE/yLPz8nwhf5MPpDVHlDa31mbMqDoBAAAAAAAAAF2luAQAAAAAfcSIEUlzc9UpytXcnAwffujPHzs2WbMmWbCg9tuXGhqKrU9r1hQ5SnX33clxxyWf/WypY1vyVzk+D+RLeXmpc2ttzJhk6tSqUwAAAAAAAADQVYpLAAAAANCHzJtX+8JOT2loKO7TVYMHJ3PnJps3Jxdc0PNbqJqainM2by62PtXXlzj8kUeS885LXv/65Gc/K23szzMyZ+cTeWNasisjS5tbldmzk7q6qlMAAAAAAAAA0FWKSwAAAADQh4walcyfX3WKcsyfX9ynu0aNSm6+OXnooeTGG4utPGUaM6aY+9BDxTmHk/UJffWryfHHJ8uXlzr2i4NemePyYO7M2aXOrUpTUzJzZtUpAAAAAAAAAOgOxSUAAAAA6GPmzElOPrnqFIdnypTkssvKmTV8eHLxxcmWLUUX6NJLk9NO6/ompmHDitddemkxZ8uWYu7w4eXk/LXW1uLyp5+efP/75c094ojkQx/KnW/6fB7KseXNrVhzcw/8HAAAAAAAAABQE4OrDgAAAAAAdM3gwcmyZcnEiUlbW9Vpuq6hIVm6NKmvL3duXV0ybVrxkSTt7cn27cmGDcmmTcnOnUVnqK2tyNDYmIwcmUyYkEyalIweXX6mx9m4MTn33GTz5nLnTp6c3H57Mnp05u1Ilt/eN782fl9DQzJvXtUpAAAAAAAAAOguxSUAAAAA6IPGjk2uvTaZO7fqJF133XVF/p5WX5+MG1d8VK69Pbn++uSaa5J9+8qbW1+fXHVV8u53J0OGJElGjUrmz+8fhZ/584v7AAAAAAAAANA3Dao6AAAAAADQPZddljQ3V52ia5qbkzlzqk5RYzt2JFOnFuWiMktLo0cnX/96UYb6v9LSr8yZk5x8cnlHVWHKlOJrHAAAAAAAAIC+S3EJAAAAAPqoQYOSpUuTM86oOsmhmT69yDtooPyuZGdncsstyQknJP/xH+XOvuii5L77ksmTn/DhwYOTZcuShoZyj62Vhobia6W+vuokAAAAAAAAAByOgfIWAQAAAADol4YMSe68s/eXl6ZPT+6443GLgfqvH/+4uPSFFya7d5c391nPSv7t35IPfjBpajrgU8eOTa69tryja+m664r8AAAAAAAAAPRtiksAAAAA0Mc1NiZ33500N1ed5Ik1Nyd33VXkHBD+5V+S445LPv3pcue+4Q3Jgw8mr3jFIb/ksst679fFk2luTubMqToFAAAAAAAAAGVQXAIAAACAfmDIkGT58uT665OGhqrTFBoakoULi1wDYtPSo48ms2Ylf/EXycMPlzd3xIjkn/85+fjHk6c+tUsvHTQoWbq092/k+pXp04u8g/zONQAAAAAAAEC/4I9/AQAAAKCfGDQoueKKZOPG5OSTq80yZUqR4/LLB0gJZdWq5Pjjk2XLyp37ilcUW5bOOafbI4YMSe68s/eXl6ZPT+64Y4CU3AAAAAAAAAAGiIHwlgEAAAAAGFDGjk3WrEkWLKj99qWGhmLr05o1RY5+r7W1aIudfnryve+VN7exMbnxxuTzn0+e/exSxt19d9LcXEK2HtDcnNx1V5ETAAAAAAAAgP5DcQkAAAAA+qHBg5O5c5PNm5MLLkiamnr2vKam4pzNm4seT319z57XK9x/fzJ5cvK+9yWdneXNPemkYl3VxReXuq5qyJBk+fKiWFbrQtuTaWhIFi4sctm0BAAAAAAAAND/KC4BAAAAQD82alRy883JQw8VC3zGjCl3/pgxxdyHHirOGTWq3Pm9Unt7sc5q8uRk06by5tbXJ1dfnfzHf5T/E/V/Bg0qimUbNyYnn9wjRxyyKVOKHJdfXmo/CwAAAAAAAIBeZHDVAQAAAACAnjd8eLHA56KLktWrkxUrkvXrk/vuS/bsOfQ5w4YlEycWnZ0ZM5KpU5O6up7L3et8+9vJeeclX/tauXNf9KLkYx+rWZto7NhkzZpk8eKiK9XWVpNjkxRblq69NpkzZ4Bs5gIAAAAAAAAYwBSXAAAAAGAAqatLpk0rPpJiedD27cmGDcXyoJ07k9bWosjS0JA0NiYjRyYTJiSTJiWjRw/QsklnZ3Lrrcnf/E3yi1+UO3v27OT664tWWA0NHpzMnZuceWaxQKqlpWsltq5qakqam5N58wbIZi4AAAAAAAAAFJcAAAAAYCCrr0/GjSs+eBL/+7/JBRckK1eWO/eZz0yWLk1e9apy53bRqFHJzTcnCxcmy5cnS5Yk27aVN3/MmKKbNXNmsfkLAAAAAAAAgIFDcQkAAAAA4Ml86lPJhRcmP/1puXPPOqtoCD3taeXOPQzDhycXX5xcdFGyenWyYkWyfn1y331d28Q0bFgycWIyeXIyY0YydWqx6QsAAAAAAACAgUdxCQAAAADg9z36aPI3f1NsRCrT8OFFYemcc3ptm6euLpk2rfhIkvb2ZPv2ZMOGZNOmZOfOpLU1aWtLGhqSxsZk5MhkwoRk0qRk9OhikxcAAAAAAAAAKC4BAAAAAPy21auT885Lvvvdcue+7GVFEeo5zyl3bg+rr0/GjSs+AAAAAAAAAKArBlUdAAAAAACgV2hrS+bOTf70T8stLTU2Jh/4QPJv/9bnSksAAAAAAAAAcDhsXAIAAAAAeOCB5I1vTB58sNy5kyYlt9+ejB1b7lwAAAAAAAAA6ANsXAIAAAAABq729uT665PJk8stLQ0alFx1VfL1rystAQAAAAAAADBg2bgEAAAAAAxM3/lOct55yb//e7lzX/jCYsvSH/1RuXMBAAAAAAAAoI+xcQkAAAAAGFg6O5Nbb02OP7780tLb3pZ885tKSwAAAAAAAAAQG5cAAAAAgIHkJz9JLrwwWbGi3LnHHFOUof7sz8qdCwAAAAAAAAB9mI1LAAAAAMDAcO+9yXHHlV9aev3rk02blJYAAAAAAAAA4PcoLgEAAAAA/dtjjyVveUsyY0axcaksw4cnt9+e3Hln8rSnlTcXAAAAAAAAAPqJwVUHAAAAAADoMV/7WjJzZvKd75Q796UvTZYtS57znHLnAgAAAAAAAEA/YuMSAAAAAND/tLUl73xnMnVquaWlhobk/e9PvvAFpSUAAAAAAAAAOAgblwAAAACA/uXBB5M3vjF54IFy506cmHzsY8m4ceXOBQAAAAAAAIB+ysYlAAAAAKB/aG9P3ve+5KSTyi0tDRqUvOc9yTe+obQEAAAAAAAAAF1g4xIAAAAA0Pd997vJeeclq1eXO3fUqOT225NTTil3LgAAAAAAAAAMADYuAQAAAAB9V2dnsmxZcvzx5ZeW/vqvk29+U2kJAAAAAAAAALrJxiUAAAAAoG/66U+LctG//Eu5c//gD5KPfjR5zWvKnQsAAAAAAAAAA4yNSwAAAABA3/PpTycTJpRfWjrzzGTTJqUlAAAAAAAAACiB4hIAAAAA0Hc89lhywQXJGWckP/lJeXOf8pRk+fLkk59Mnv708uYCAAAAAAAAwAA2uOoAAAAAAACHZM2aZObM5NvfLnfun/5psmxZ8rznlTsXAAAAAAAAAAY4G5cAAAAAgN5t797k3e9Opk4tt7TU0JAsWpR86UtKSwAAAAAAAADQA2xcAgAAAAB6r02bknPPTb75zXLnnnhicvvtyYQJ5c4FAAAAAAAAAH7NxiUAAAAAoPfp6EgWL05OOqnc0tKgQcm73pWsXau0BAAAAAAAAAA9zMYlAAAAAKB3+d73kvPPT7761XLn/uEfJsuXJ6eeWu5cAAAAAAAAAOAJ2bgEAAAAAPQOnZ1Fsej448svLV1wQXL//UpLAAAAAAAAAFBDNi4BAAAAANV7+OHkr/86ueeecuf+wR8kH/lI8trXljsXAAAAAAAAADgoxSUAAAAAoFqf/Wzypjcl//u/5c593euSD384OfrocucCAAAAAAAAAIdkUNUBAAAAAIAB6he/SN761uQ1rym3tHTUUcmyZcnddystAQAAAAAAAECFbFwCAAAAAGrv619Pzj032bGj3LlTpya33ZY8//nlzgUAAAAAAAAAuszGJQAAAACgdvbuTa68MjnttHJLS0OHJu97X/KVrygtAQAAAAAAAEAvYeMSAAAAAFAbW7Ykb3xjsnFjuXNPOCG5/fbkuOPKnQsAAAAAAAAAHBYblwAAAACAntXRkdxwQ/KSl5RbWqqrS+bNS9auVVoCAAAAAAAAgF7IxiUAAAAAoOd8//vJrFnJl79c7twXvCBZvjw57bRy5wIAAAAAAAAApbFxCQAAAAAoX2dn8rGPJccfX35p6c1vTu6/X2kJAAAAAAAAAHo5G5cAAAAAgHL97GfJW9+a3HVXuXOf8YzklluS6dPLnQsAAAAAAAAA9AjFJQAAAACgPJ//fPKmNyU/+lG5c2fMSG6+uSgvAQAAAAAAAAB9wqCqAwAAAAAA/cDu3cns2cmf/Vm5paWjjkpuvTX5l39RWgIAAAAAAACAPsbGJQAAAADg8Kxdm5x7bvLf/13u3D/5k+S225IXvKDcuQAAAAAAAABATdi4BAAAAAB0z759ydVXJ6eeWm5paejQ5Prrk698RWkJAAAAAAAAAPowG5cAAAAAgK7burXYsrRhQ7lzjzsu+djHkuOPL3cuAAAAAAAAAFBzNi4BAAAAAIeuoyO58cbkJS8pt7RUV5fMnZusX6+0BAAAAAAAAAD9hI1LAAAAAHAQ7e3Jtm1FT2fTpmTnzqS1Ndm7Nxk6NGlsTEaOTCZMSE46KRk9Oqmvrzp1D/jhD5Pzz0++9KVy5z7/+clttyVTp5Y7FwAAAAAAAAColOISAAAAAPyezs5k1apkxYpiAdDGjcmePYf++mHDkhNPTCZPTmbMSKZNKxYKHapeV5Tq7Ew+/vHk7W9Pdu0qd/ab3pS8//3JU55S7lwAAAAAAAAAoHKKSwAAAADwf3btSpYvT266qSgOddfu3cmaNcXHDTckY8Ykb3tbMnNmMmLE459fdVHqgH7+8yL8nXeWNPD/HH10csstRWAAAAAAAAAAoF8aVHUAAAAAAKjajh3JhRcmxx6bXHLJ4ZWWnsi2bcXcY48tztmxo/j8rl3JjTcm48Ylp59elJzWrOlaaSn5TVHqhhuKOePGFXMPeznSv/5rctxx5ZeWpk8vVkkpLQEAAAAAAABAv6a4BAAAAMCAtX9/smBBMn58sfynq4Whrtqzpzhn3LhkypTaF6W6FPSii5JXvzp56KHygh15ZPKRjySf+lTyjGeUNxcAAAAAAAAA6JUUlwAAAAAYkLZuTU49NXnnO5O2ttqevXdvsm5d7YpS48cn11+ftLcfwovWrUsmTkw+9KFyw5x2WnL//cmb35zU1ZU7GwAAAAAAAADolQZXHQAAAADoO9rbi00uGzYkmzYlO3cmra1FCWPo0KSxMRk5MpkwITnppGT06KS+vurU8Ls6OpJFi5Krrqp9YakqbW3JvHnJPfckS5cmY8c+wZP27Uve+97kuusOseF0iIYMSa69Nrn8cr8gAAAAAAAAAMAAo7gEAAAAPKnOzmTVqmTFimT9+mTjxq5tiBk2LDnxxGTy5GTGjGTaNItWqNa+fcmsWUlLS9VJqrF2bbFM6dprk8suSwb9ah/79u3JuecW3+hlmjAh+djHkhNOKHcuAAAAAAAAANAnDDr4UwAAAICBZteu5MYbk3HjktNPT264IVmzpmulpSTZvbt43Q03FHPGjSvm7tpVfmY4mNbW5MwzB25p6Vfa2pK5c5OZM5N9bR3JP/5j0WYqs7RUV1dsWFq/XmkJAAAAAAAAAAYwxSUAAADg13bsSC68MDn22OSSS5Jt28qdv21bMffYY4tzduwodz48mX37krPOSlaurDpJ7/GVlv/Jpme/Orn44uSXvyxv8POel3zlK8nChUljY3lzAQAAAAAAAIA+R3EJAAAAyP79yYIFyfjxyS23dH2zUlft2VOcM358cv31SXt7z57HwNbRkcyapbT0287OJ/JgjsvEh79Q7uDzz08eeCCZNq3cuQAAAAAAAABAn6S4BAAAAAPc1q3Jqacm73xn0tZW27Pb2pJ584rzt26t7dkMHIsWJS0tVafoHUZkZ/455+QTOSdPzc7yBj/96ck99yRLlyZPeUp5cwEAAAAAAACAPk1xCQAAAAaojo5k4cJk4sRk3bpqs6xdW+RYuLDIBWXZujW56qqqU/QOL88X8mCOyzn5RLmDX/va5MEHk9e9rty5AAAAAAAAAECfp7gEAAAAA9C+fcnMmcncubXfsvRk2tqKPDNnFvngcO3fn5x/fu/5Gq/KEdmTD+Qd+UJemWfnf8obPGxYcvPNyb33JsccU95cAAAAAAAAAKDfGFx1AAAAAKC2WluTs85KVq6sOskTa2lJHn00ufPOpLGx6jT0ZYsXV79NrGonZX1uz7kZk+3lDv7jP06WL09GjSp3LgAAAAAAAADQr9i4BAAAAAPIvn29u7T0KytXJmefbfMS3bdjR3L11VWnqE599ueqzM/Xc0q5paUhQ5K/+7tk9WqlJQAAAAAAAADgoBSXAAAAYIDo6Ehmzer9paVfuffeIm9HR9VJ6IsWLEja2qpOUY0X5b+yJqdmfq7J4LSXN3jcuGTt2uRd70rq68ubCwAAAAAAAAD0W4pLAAAAMEAsWpS0tFSdomtaWpLFi6tOQV+za1ff+1ovR2feliX5Zk7MlKwrb2xdXXLppcmGDcnEieXNBQAAAAAAAAD6PcUlAAAAGAC2bk2uuqrqFN1z5ZVFfjhUy5cne/ZUnaK2npmH8rn8WZbk7WnKL8sb/JznJF/6UtEgbGwsby4AAAAAAAAAMCAoLgEAAEA/t39/cv75SVtb1Um6p60tmTUraW+vOgl9QWdnsmRJ1Slq6y9zZzZlQl6dfy117taTZyYPPpicfnqpcwEAAAAAAACAgUNxCQAAAPq5xYuTdeuqTnF41q5NFi2qOgV9wapVyfbtVaeojRHZmY+lOXfm7Dw1O0ub+3CeljNzV/7i0dvS+ZThpc0FAAAAAAAAAAYexSUAAADox3bsSK6+uuoU5bj66uI+cCArVlSdoDZeli/mwRyX5vxzqXM/kz/PcXkw9+TMbNuWrF5d6ngAAAAAAAAAYIBRXAIAAIB+bMGCpK2t6hTlaGsr7gMHsn591Ql6VmN+mRtySb6YV+TZ+Z/S5u5OUy7Mh/PafDo/zjN//fmBUgQDAAAAAAAAAHqG4hIAAAD0U7t2JS0tVacoV0tL8sgjVaegt2pvTzZurDpFz3lJNuS+vCSX5MZS5/5HTskJuT+35MIkdb/zWH8vggEAAAAAAAAAPUtxCQAAAPqp5cuTPXuqTlGuPXuKe8ET2bat/33NJ0l99ufKXJtv5I8yNttKm7svg/PuvDdTszo78sInfM7GjUUhDAAAAAAAAACgOxSXAAAAoB/q7EyWLKk6Rc9YsqS4H/y+DRuqTlC+F+a/87WclmtzdYZkf2lzN2dcpmRt/j7vTnsGP+nzdu9Otm8v7VgAAAAAAAAAYIBRXAIAAIB+aNWq/ls22LYtWb266hT0Rps2VZ2gTJ15a27KN3Ni/ihrS538/vxNTsp/ZmNeckjP74+FMAAAAAAAAACgNhSXAAAAoB9asaLqBD2rv9+P7tm5s+oE5TgmP8pn8prclNkZlj2lzf1+npOX5kuZk/enNUcc8uv6VyEMAAAAAAAAAKglxSUAAADoh9avrzpBz+rv96N7WlurTnD4Xp9PZlMm5M/zuVLn3p435vg8kK/kpV1+bX8phAEAAAAAAAAAtae4BAAAAP1Me3uycWPVKXrWxo3FPeG37d1bdYLuG55dWZ5z88mclafl56XN/Vmemtfnk5mZ2/NIRnRrRn8ohAEAAAAAAAAA1VBcAgAAgH5m27Zkz56qU/Ss3buT7durTkFvM3Ro1Qm65/R8OQ/k+Jybj5U693N5dSZkU+7O6w9rTltbSYEAAAAAAAAAgAFHcQkAAAD6mQ0bqk5QGwPlnhy6xsaqE3RNY36Zxbk0X87L8tz8oLS5u9OUt+am/Hk+mx/nmYc9r6GhhFAAAAAAAAAAwIA0uOoAAAAAQLk2bao6QW0MlHty6EaOrDrBoZuY+3J7zs34bCl17jcyJefm9nwrLyptZl8rhAEAAAAAAAAAvYeNSwAAANDP7NxZdYLaGCj35NBNmFB1goOrz/68O+/N2kwptbS0L4NzVebntHyt1NJS0rcKYQAAAAAAAABA72LjEgAAAPQzra1VJ6iNgXJPDt2kSVUnOLBR+VaWZ2b+OF8vde7WjMm5uT0bclKpc3+lLxTCAAAAAAAAAIDeycYlAAAA6Gf27q06QW20tVWdgN5mzJikqanqFE+kMxfmw7k/J5ReWvpA3pGX5L4eKy0lvb8QBgAAAAAAAAD0XopLAAAA0M8MHVp1gtpoaKg6Ab1NfX0ycWLVKX7XMflRPp3X5sN5a4ZlT2lzf5Bn5+X5Qv4mH0hrjiht7u8bNiwZPbrHxgMAAAAAAAAA/ZziEgAAAPQzjY1VJ6iNgXJPumby5KoT/MZf5O48mOPymny21Lkt+ascnwfypby81LlPZOLEohAGAAAAAAAAANAdiksAAADQz4wcWXWC2hgo96RrZsyoOkHylDySZTkvd+f1eXp+Vtrcn2dkzs4n8sa0ZFdq8w3Qm4pgAAAAAAAAAEDfo7gEAAAA/cyECVUnqI2Bck+6Ztq0ZPToCs/PV/NAjs95WV7q3H/NK3NcHsydObvUuQfTG4pgAAAAAAAAAEDfpbgEAAAA/cykSVUnqI2Bck+6pq4umT279uc2pDXvy2X5ak7P8/L90ubuyRGZnQ/l1fl8Hsqxpc09FGPGJFOn1vRIAAAAAAAAAKCfUVwCAACAfmbMmKSpqeoUPWvYsGq36tC7zZxZ2++BE7Mx/5mTclkWlzp3XSZnYjbmpsxOUlfq7EMxe3ZRBAMAAAAAAAAA6C7FJQAAAOhn6uuTiROrTtGzJk4s7glPZMSIpLm5588ZlPa8M3+ftZmSCdlc2tz9qc81+ducmjX5r1TT0GtqKgpgAAAAAAAAAACHQ3EJAAAA+qHJk6tO0LP6+/04fPPmJQ0NPTf/D7MjqzM1f593Z2j2lTZ3W0bnlHw983NN9mdIaXO7qrk5GT68suMBAAAAAAAAgH5icNUBAAAAgPLNmJHccEPVKXrOjBlVJ6C3GzUqmT+/KDCVqzNvyUfy/lyaI7O71MkfzEWZlwX5ZZpKndtVDQ098eNGmdrbk23bkg0bkk2bkp07k9bWZO/eZOjQpLExGTkymTAhOemkZPRoW+oAAAAAAAAAqIbiEgAAAPRD06YVb1Tfvr3qJOUbMyaZOrXqFPQFc+Ykd9+drFtXzrw/yI9zSy7IGfl0OQP/z//kWTk/y/LFvKLUud01f35R/KL36OxMVq1KVqxI1q9PNm5M9uw59NcPG5aceGKxrW7GjOJ/I+rqeiwuAAAAAAAAAPzaoKoDAAAAAOWrq0tmz646Rc+YPdsb7jk0gwcny5YVG4QO1+tyTzZlQumlpY/nDTkuD/aa0tKUKclll1Wdgl/ZtSu58cZk3Ljk9NOLTXpr1nSttJQku3cXr7vhhmLOuHHF3F27ys8MAAAAAAAAAL+trrOzs7PqEAB90fjx47Nly5bHfX7cuHHZvHlzBYkAAOB37dqVHHts19/g3ps1NSUPPZQMH17+7Pb2ZNu2ZMOGZNOmZOfOpLU12bs3GTo0aWxMRo5MJkxITjqp2GhVX19+Dsq3cGEyd273XvuUPJIP5JKcn9tKzbQzI/K23JQ78oZS5x6OhoZik8/YsVUnYceOZMGCpKWlZ38Nb2pKmpuTefNs2QIAAAAAAADoaQP1/eeDqw4AAAAA9IwRI4o3pN9yS9VJytPcXF5pqbMzWbUqWbEiWb++KGx0pSAwbFhy4onJ5MnJjBnJtGk2QfVWl12W3H9/UQLpiqlZleWZmefl+6Xm+be8Im/KrfmfPLvUuYfruuuUlqq2f3+yaFFyzTVJW1vPn7dnT/G/EcuXJ/PnF98rCpkAAAAAAAAAlGlQ1QEAAACAnjNvXrFFpT9oaCjuc7h27UpuvDEZNy45/fTkhhuSNWu6vtVk9+7idTfcUMwZN66Yu2vX4WekXIMGJUuXJmeccWjPb0hrFubyfCWnl1pa+mUac1E+mFfn872utNTcnMyZU3WKgW3r1uTUU5N3vrM2paXf1tZW/Pp66qlFDgAAAAAAAAAoi+ISAAAA9GOjRhVbNPqD+fOL+3TXjh3JhRcmxx6bXHJJsm1bedmSYt4llxTzL7ywOI/eY8iQ5M47D15eOj73Z30m5/IsyqB0lnb++pyUidmYD+WidPay35KbPr0odg3qXbEGjI6OZOHCZOLEZN26arOsXVvkWLiwyAUAAAAAAAAAh8vbEQAAAKCfmzMnOfnkqlMcnilTkssu695r9+9PFixIxo9Pbrml65uVumrPnuKc8eOT669P2tt79jwOXWNjcvfdxXah3zco7ZmXf8j6TM5x2VTamftTn7/NNfnj/Ee2Z0xpc8syfXpyxx1FsYva27cvmTkzmTu39luWnkxbW5Fn5swiHwAAAAAAAAAcDsUlAAAA6OcGD06WLUsaGqpO0j0NDcU2mPr6rr9269bk1FOTd76z9qWAtrZk3rzi/K1ba3s2T27IkGT58qJU9qvviRfk21mVafmHvCtDU15TY3tenD/Of+T/5W+zP72vGdTcnNx1V1HoovZaW5Mzz0xaWqpO8sRaWop8ra1VJwEAAAAAAACgL1NcAgAAgAFg7Njk2murTtE9111X5O+Kjo5k4cJk4sRk3bqeyXWo1q4tcixcWOSieoMGJVdckWy8rzPXPf8juT8n5LSsKfWMf8zbMzEbsz69b91ZQ0Px9bh8uU1LVdm3LznrrGTlyqqTHNjKlcnZZ9u8BAAAAAAAAED3KS4BAADAAHHZZcWGlb6kuTmZM6drr9m3L5k5M5k7t/Zblp5MW1uRZ+ZMBYBe43//N2PfOSPv+e4FOSq/KG3sQ3lmXpXP5+L8Y36ZptLmlmXKlGTjxuTyy4sCF7XX0ZHMmtX7S0u/cu+9RV7FSwAAAAAAAAC6w9sTAAAAYIAYNChZujQ544yqkxya6dOLvF0pV7S2JmeembS09Fyuw9HSUuRrba06yQD3qU8lxx1XenPkjpyVCdmUf8urnvQ5RxyRnHxyMnRoqUcfVENDcv31yZo1Xd9gRrkWLeq9v0Y9mZaWZPHiqlMAAAAAAAAA0BcpLgEAAMAAMmRIcuedvb+8NH16cscdRd5DtW9fctZZvX+LycqVydln27xUiUcfTd70puR1r0t++tPSxu7MiPxVWvKGfCI789QnfM6YMcmNNyY/+lGydm2yZUtywQVJUw8vZWpqKs7ZvDm54oqkvr5nz+PAtm5Nrrqq6hTdc+WVRX4AAAAAAAAA6IrBVQcAAAAAaquxMbn77mTWrN659aO5udi01JXSUkdHcZ/eXlr6lXvvLfIuX961jVIchtWrk/POS7773VLHfjEvy/lZlv/Js3/n88OGJRMnJpMnJzNmJFOnJnV1v3l81Kjk5puThQuLr4MlS5Jt28rLNWZMMnt2MnNmMnx4eXMPV3t7cc8NG5JNm5KdO4sNZHv3FluoGhuTkSOTCROSk05KRo/uP2Wr/fuT889P2tqqTtI9bW3Fr1tr1vSfnxMAAAAAAAAAep7iEgAAAAxAQ4YUZYkTTii2f/SGN9I3NCTXXZfMmdP1Ms+iRb2zhHUgLS3JiScml19edZJ+rq2t+CJ/3/uSzs7Sxu6tb8wdExfkMy+4KC9tHPQ7hZtJkw69cDN8eHLxxclFFxXdqhUrkvXrk/vuS/bsOfQ8BytKVaWzM1m16jf32rix6/c68cTf3GvatN5xr+5YvDhZt67qFIdn7dri19u5c6tOAgAAAAAAAEBfUdfZWeI7NgAGkPHjx2fLli2P+/y4ceOyefPmChIBAED3bN1abAGp8g31U6YUW5bGju36a7duLQobvaF81VUNDUWRozv35hA88EDyxjcmDz5Y7txJk5Lbb+/Rn7j29mT79sdvJmprK75uuluUqpVdu4py5E03lb9J6m1vKzZJjRhR3tyetmNHMn583/x16vc1NCSbNxdbwwAAAAAAAAA4dAP1/ec2LgEAAMAAN3ZssmZNsQ3k6qtr+8b6hobk2muLLUvdKV3s31+UrvpqGaCtLZk1q/jx702lkz6vvb1YC3PVVcneveXNra9P3v3uYu6QIeXNfZKjxo0rPvqSHTuSBQuKjWJd2ax0qLZtSy65JHnXu5Lm5mTevL5RoFmwoO/+OvX72tqK+9x8c9VJAAAAAAAAAOgLBlUdAAAAAKje4MHJ3LnFFo0LLkiamnr2vKam4pzNm5Mrruh+aWfx4mo3RZVh7dqiY0NJvvOd5PTTi0ZLmaWlF74w+drXkvnze7y01Bft31+UWcaPT265pWdKS79tz57inPHjk+uvL7pqvdWuXUWRqz9paUkeeaTqFAAAAAAAAAD0BYpLAAAAwK+NGlVs0XjooeTGG5MxY8qdP2ZMMfehh4pzDmdTyo4dxYao/uDqq4v7cBg6O5Nbb02OPz75938vd/bb3pZ885vJH/1RuXP7ia1bk1NPTd75ztpvFWprKzpqp55a5OiNli/v+SJXre3ZU9wLAAAAAAAAAA5GcQkAAAB4nOHDk4svTrZsSb761eTSS5PTTuv6JqZhw4rXXXppMWfLlmLu8OGHn3HBgtqXJHpKW1txH7rpJz9JXve65M1vTn7xi/LmHnNM8tnPJkuWFF/M/I6OjmThwmTixOo3n61dW+RYuLDI1Vt0dhZfPv3RkiXF/QAAAAAAAADgQAZXHQAAAADoverqkmnTio8kaW9Ptm9PNmxINm1Kdu5MWluL4k1DQ9LYmIwcmUyYkEyalIwendTXl59r166kpaX8uVVqaSlKF2WUugaUe+9NLrigKC+V6S//MrnppuRpTyt3bj+xb18ya1bv+j5sa0vmzk3uvz9ZujQZMqTqRMmqVcWvmf3Rtm3J6tW/+d8HAAAAAAAAAHgiiksAAADAIauvT8aNKz6qtHx5smdPtRnKtmdPca+LL646SR/x2GPFKq+PfrTcucOHJx/6UPJXf1U093ic1tbkrLOSlSurTvLEWlqSRx9N7ryzKFNWacWKas/vaStWKC4BAAAAAAAAcGCKSwAAAECf0tmZLFlSdYqe8Z73JOvW/e7mqpNO6rnNVX3W176WzJyZfOc75c596UuTZcuS5zyn3Ln9yL59vbu09CsrVyZnn53cdVe1m5fWr6/u7Fro7/cDAAAAAAAA4PApLgEAAAB9yqpVyfbtVafoGY89lnzsY4///LBhyYknJpMnJzNmFBtOBuQyoLa25JprkuuvLxpsZWloSBYsKNZdDRpU3tx+pqMjmTWr95eWfuXee4u8y5dX89Pa3p5s3Fj7c2tp48binoqVAAAAAAAAADwZ78QAAAAA+pQVK6pOUHu7dydr1iQ33JCcfnoyblxy443Jrl1VJ6uhBx9MTj65KBiVWVp6yUuS++5LLrlEaekgFi1KWlqqTtE1LS3J4sXVnL1tW7JnTzVn18ru3f23SAoAAAAAAABAObwbAwAAAOhT1q+vOkH1tm0rejbHHptceGGyY0fViXpQe3vyvvclJ52UPPBAeXMHDUquvDL5+teLJhgHtHVrctVVVafoniuvLPLX2oYNtT+zCgPlngAAAAAAAAB0j+ISAAAA0Ge0tycbN1adovfYsye55ZZk/Pjk+uuLH59+5bvfTV760uSKK5K9e8ub+8IXJl/7WnLttcnQoeXN7af270/OPz9pa6s6Sfe0tSWzZtX++2PTptqeV5WBck8AAAAAAAAAukdxCQAAAOgztm0ryjr8rra2ZN685NRTq9ksU7rOzmTZsuT445PVq8ud/da3Fu23U04pd24/tnhxsm5d1SkOz9q1yaJFtT1z587anleVgXJPAAAAAAAAALpHcQkAAADoMzZsqDpB77Z2bTJxYrJwYdLRUXWabvrpT5MzzyxW5Dz2WHlzjzkm+cxnkptuSo48sry5/dyOHcnVV1edohxXX13cp1ZaW2t3VpUGyj0BAAAAAAAA6J7BVQcAAAAAOFSbNlWdoPdra0vmzk3uvz9ZujQZMqS257e3F5uxNmwofr527iyKDXv3JkOHJo2NyciRyYQJyUknJaNHJ/X1//fiT386efObk5/8pNRM3zvpzLTe8E954R89PfUHfzq/ZcGC4muqP2hrK+5z8821OW/v3tqcU7X+8vUBAAAAAAAAQM9QXAIAAAD6jJ07q07Qd7S0JI8+mtx5Z1EW6imdncmqVcmKFcn69cnGjcmePYf++mHDklMmPJb5u+fklE0fKTXbI3lKLso/5mP/+cbktLoMG5aceGIyeXIyY0YybVpSV1fqkf3Krl3F11F/0tJSbCQbPrznzxo6tOfP6A0aGqpOAAAAAAAAAEBvNqjqAAAAAACHqrW16gR9y8qVydlnJ/v2lT97167kxhuTceOS009PbrghWbOma6WlJDlh95r809oTSy8tfTmn57g8mI/l3CRFO2n37iLjDTcUmceNK+6wa1epR/cby5d3/eezt9uzp7hXLfRkYbA3GSj3BAAAAAAAAKB7FJcAAACAPmPv3qoT9D333pvMmpV0dJQzb8eO5MILk2OPTS65JNm2rXtzhmRv3pt3Z3WmZlS+XU64JK1pyKVZnJfni/lBnnvA527bVtzh2GOLO+3YUVqMPq+zM1mypOoUPWPJkuJ+PW3kyJ4/ozcYKPcEAAAAAAAAoHsUlwAAAIA+Y+jQqhP0TS0tyeLFhzdj//5kwYJk/PjkllsObxPP+GzK2kzJu/P3qU9JjaokG3NiJmVDbsil6ezCb3vt2VPcafz45Prrk/b20iL1WatWJdu3V52iZ2zblqxe3fPnTJjQ82f0BgPlngAAAAAAAAB0j+ISAAAA0Gc0NladoO+68spk69buvXbr1uTUU5N3vjNpa+t+hrp05NIszn/mpEzMN7s/6Pe0Z1Dem3dnStZmS8Z3e05bWzJvXnHX7v5Y9RcrVlSdoGfV4n6TJvX8Gb3BQLknAAAAAAAAAN2juAQAAAD0GSNHVp2g72prS2bN6to2oY6OZOHCZOLEZN26wzv/uflevpSXZXEuS2MOo/30e3bkD/Mn+fdcmfdmX8pZybV2bXHnhQuLH4OBaP36qhP0rFrcb8yYpKmp58+p0rBhyejRVacAAAAAAAAAoDdTXAIAAAD6jAkTqk7Qt61dmyxadGjP3bcvmTkzmTv38LYsJZ05N8vzQI7P6fnq4Qx6nA/nwpyQ+/P1/HGpc5PiznPnFj8G+/aVPr5Xa29PNm6sOkXP2rixayW+7qivLwpw/dnEicU9AQAAAAAAAODJKC4BAAAAfcakSVUn6PuuvjrZsePAz2ltTc48M2lpObyznpaHc1den+U5L8Pz6OEN+y0/zh/ktVmZt+bD2Z0jS5v7RFpaih+L1tYePaZX2bYt2bOn6hQ9a/fuZPv2nj9n8uSeP6NK/f1+AAAAAAAAABw+xSUAAACgzxgzJmlqqjpF39bWlixY8OSP79uXnHVWsnLl4Z3zZ/lsNmVCzsw9hzfo99yT1+W4PJjP5LWlzj2QlSuTs88eOJuXNmyoOkFt1OKeM2b0/BlV6u/3AwAAAAAAAODwKS4BAAAAfUZ9fTJxYtUp+r6WluSRRx7/+Y6OZNaswystDcsv8k/563w2r8kx+d/uD/o9j+aonJdlOTN35+EcXdrcQ3XvvcWPTUdHzY+uuU2bqk5QG7W457RpyejRPX9OFcaMSaZOrToFAAAAAAAAAL2d4hIAAADQp0yeXHWCvm/PnmT58sd/ftGiotTUXX+Ur+ebOTF/nZu7P+QJfDXTcnweyPKcl6Su1Nld0dKSLF5c2fE1s3Nn1Qlqoxb3rKtLZs/u+XOqMHt2cT8AAAAAAAAAOBDFJQAAAKBPmTGj6gT9w5IlSWfnb/5569bkqqu6N2tI9ua6vCdfy2l5YXaUEzBJW4bmsrwvL82X8708v7S5h+PKK4sfq/6stbXqBLVRq3vOnJk0NdXmrFppairuBQAAAAAAAAAHo7gEAAAA9CnTpiWjR1edou/bti1Zvbr47/v3J+efn7S1dX3O2GzJN/JHeU/+LvXpKC3fN3NCTsp/ZnEuS2cv+i2strZk1qykvb3qJD1n796qE9RGd77eu2PEiKS5uTZn1UpzczJ8eNUpAAAAAAAAAOgLes+7PgAAAAAOQV1dMnt21Sn6hxUriv9cvDhZt65rr61LRy7JDbkvL8lLsrG0TB2py9/nnZmStdmU40qbW6a1a5NFi6pO0XOGDq06QW00NNTurHnzanteT2poKO4DAAAAAAAAAIdCcQkAAADoc2bOTJqaqk7R961fn+zYkVx9ddde95x8P1/IK3JDLk1jyltb8+28IFOzOu/O32dvenfL4+qrix+7/qixseoEtVHLe44alcyfX7vzetL8+cV9AAAAAAAAAOBQKC4BAAAAfc6IEUlzc9Up+r6NG5N/+Iek7ZC7R51pzsfyYI7Ly/LlUrPckrfkhNyfNTmt1Lk9pa0tWbCg6hQ9Y+TIqhPURq3vOWdOcvLJtT2zbFOmJJddVnUKAAAAAAAAAPoSxSUAAACgT5o3L2no3Ut5er3du5OWlkN77lPzs9yZs/KxnJvhebS0DP+bZ2R6VuTC3JJf5KjS5tZCS0vyyCNVpyjfhAlVJ6iNWt9z8OBk2bK+++tWQ0OydGlSX191EgAAAAAAAAD6EsUlAAAAoE8aNSqZP7/qFH3fL3958Oe8Op/LpkzIX+auUs/+l/x/mZBNWZnppc6tlT17kuXLq05RvkmTqk5QG1Xcc+zY5Npra39uGa67rsgPAAAAAAAAAF2huAQAAAD0WXPmJCefXHWK/qspu7Mkb8vn8ud5Zn5c2txHc1Rm5db8Re7Jwzm6tLlVWLIk6eysOkW5xoxJmpqqTtGzhg1LRo+u5uzLLkuam6s5u7uam4tfbwEAAAAAAACgqxSXAAAAgD5r8OBk2bKkoaHqJP3PlHwj38yJeVv+qdS5q/MnOSH3Z1lmJakrdXYVtm1LVq+uOkW56uuTiROrTtGzJk4s7lmFQYOSpUuTM86o5vyumj69yDvI7yQDAAAAAAAA0A3+uBkAAADo08aOTa69tuoU/cfg7Mv8XJU1OTUvyrdKm9uWobki1+f0fCXfzQtKm9sbrFhRdYLyTZ5cdYKeVfX9hgxJ7ryz95eXpk9P7rijyAsAAAAAAAAA3aG4BAAAAPR5l12WNDdXnaLvG5st+Ub+KFflutSno7S59+f4TM76vC9XpCMVrbnpQevXV52gfDNmVJ2gZ/WG+zU2Jnff3Xt/7WpuTu66q8gJAAAAAAAAAN2luAQAAAD0eYMGJUuX9v7tJb1VXTryjnwg9+UlmZT7SpvbkbosyNycnHV5MMeXNre32bgxaW+vOkW5pk1LRo+uOkXPGDMmmTq16hSFIUOS5cuT669PGhqqTlNoaEgWLixy2bQEAAAAAAAAwOFSXAIAAAD6hSFDkjvvVF7qqmfnB/m3vDIfyN+kMW2lzf1Onp9pWZV3ZkH2ppc0MnrI7t3J9u1VpyhXXV0ye3bVKXrG7NnF/XqLQYOSK64oCnAnn1xtlilTihyXX17kAgAAAAAAAIDD5Y+fAQAAgH6jsTG5++6kubnqJH1BZ/4qLXkwx+Xl+VKpkz+aN+WE3J+v5U9KndubbdhQdYLyzZyZNDVVnaJcTU3FvXqjsWOTNWuSBQtqv32poaHY+rRmTZEDAAAAAAAAAMqiuAQAAAD0K0OGJMuXF2/Cr/Wb//uKp+ZnuSNnpyVvzIg8Utrcn+TozMin8pZ8NI/lKaXN7Qs2bao6QflGjOh/JcDm5mT48KpTPLnBg5O5c5PNm5MLLuj54lhTU3HO5s3F1qf6+p49DwAAAAAAAICBR3EJAAAA6HcGDSrehL9xY3LyyVWn6V1elc/nwRyXs/LJUueuyPRMyKbcmxmlzu0rdu6sOkHPmDev/xQAGxqK+/QFo0YlN9+cPPRQcuONyZgx5c4fM6aY+9BDxTmjRpU7HwAAAAAAAAB+RXEJAAAA6LfGjk3WrEkWLOg/5Yvuasru/GPens/nz/Ks/Ki0uY/lyLw5H8n/l0/lp3lGaXP7mtbWqhP0jFGjkvnzq05Rjvnz+15BZ/jw5OKLky1bkq9+Nbn00uS007q+iWnYsOJ1l15azNmypZjbm7dPAQAAAAAAANA/DK46AAAAAEBPGjw4mTs3OfPMosDU0pLs2VN1qto6OWtze87Ni/Pfpc7995yW83JbvpM/LHVuX9TWVnWCnjNnTnL33cm6dVUn6b4pU5LLLqs6RffV1SXTphUfSdLenmzfnmzYkGzaVGz8am0tvg4bGpLGxmTkyGTChGTSpGT06KS+vto7AAAAAAAAADAwKS4BAAAAA8KoUcnNNycLFybLlydLliTbtlWdqmcNzr5clWvz7vxdBqe9tLl7MyRX5dq8L5enI9oQSf/e6DV4cLJsWTJxYt8saDU0JEuX9q/iTn19Mm5c8QEAAAAAAAAAvdmgqgMAAAAA1NLw4cnFFydbtiRf/Wpy6aXJaaclTU1VJyvX6GzL13NKrs61pZaWHsyETM76XJ95Sku/pbGx6gQ9a+zY5Nprq07RPdddV+QHAAAAAAAAAGrPxiUAAABgQKqrS6ZNKz6SpL092b492bAh2bQp2bkz+eUvkxUrksceqzZrV9SlIxflH7Mg83JEWkub25G6vC+X5+rMT1v6eUunG0aOrDpBz7vssuT++5OWlqqTHLrm5mTOnKpTAAAAAAAAAMDApbgEAAAAkKS+Phk3rvj4bTfemFxySTWZuurY/DBLMyuvyBdLnfvdPC/n5baszrRS5/YnEyZUnaDnDRqULF2aPPposnJl1WkObvr0Iu8gO+cBAAAAAAAAoDL+2B4AAADgAGbOTJqaqk5xcG/Ix/Ngjiu9tHRrZuX4PKC0dBCTJlWdoDaGDEnuvDM544yqkxzY9OnJHXcUeQEAAAAAAACA6ti4BAPIli1b8uUvfzmbNm3Kf/3Xf+W73/1uHnvssTz22GPp6OjIsGHDcuSRR+apT31q/vAP/zCjRo3K6NGjc/LJJ2fChAmpr6+v+goAAAA1N2JE0tyc3HJL1Ume2Mj8PEsyO2/IHaXO/Wmengtzcz6V15U6tz8aNiwZPbrqFLXT2JjcfXcya1bS0lJ1msdrbi42LSktAQAAAAAAAED1FJegn9u6dWs+8pGP5BOf+EQeeuihAz53165d2bVrV374wx/mgQce+J3Hhg0blpNPPjmvfvWr85rXvCbjx4/vydgAAAC9yrx5yfLlSVtb1Ul+1yvzr7k1b8qxOfC/73XVyrw2F+SW/G+OKXVufzVxYjLQ/q6PIUOK74kTTkiuuqp3fG80NCTXXZfMmZMMsmceAAAAAAAAAHoFf4QP/dR9992XV77ylRk3blwWL1580NLSwezevTtf+cpXMm/evEyYMCETJkwoKSkAAEDvN2pUMn9+1Sl+44jsyQdzUf41ry61tPSLDMtbckum516lpS6YPLnqBNUYNCi54opk48bk5JOrzTJlSpHj8suVlgAAAAAAAACgN/HH+NDPPPLIIzn//PNz0kkn5Qtf+EKPnfPDH/6wx2YDAAD0RnPmVF/OSJKTsj4bMzEX5UOlzl2TP84JuT8fzVuS1JU6u7+bMaPqBNUaOzZZsyZZsKDYelRLDQ3J9dcX548dW9uzAQAAAAAAAICDU1yCfuRrX/taTjjhhNx2223p7OysOg4AAEC/MnhwsmxZ7YsZvz4/+3JN/jZfzykZnf8qbe7eDMk78/eZmtX5dkaVNnegGDMmmTq16hTVGzw4mTs32bw5ueCCpKmpZ89rairO2by52PpUX9+z5wEAAAAAAAAA3aO4BP3Exz/+8bzsZS/L9773vaqjAAAA9FtjxybXXlv7c1+c7VmTU/O3+X8ZnPbS5v7smPE5OeuyIO9MRzQ/umP27KTOgqpfGzUqufnm5KGHkhtvLIpdZRozppj70EPFOaN07QAAAAAAAACgVxtcdQDg8H3oQx/KxRdffMhblo488sicfPLJedGLXpTnPe95OfLIIzNkyJDs2rUru3btyk9/+tM88MAD2bRpU1pbW3s4PQAAQN9y2WXJ/fcnLS21OK0zs7MkC3NFmvLL8sbW1SWXXpr6K96b/x7VmOwpb/RA0tSUzJxZdYreafjw5OKLk4suSlavTlasSNavT+67L9nTha+3YcOSiROTyZOTGTOK7VaKYgAAAAAAAADQdyguQR93xx13HFJp6Ygjjsg555yTmTNn5tRTT83gwQf/9m9vb8+WLVvyuc99LitWrMg3vvGNdHR0lBUdAACgTxo0KFm6NHn00WTlyp4751n5n9yaN+VV+bdyBz/3uclttyV/+qcZkaS5ObnllnKPGCiam4uCDk+uri6ZNq34SJL29mT79mTDhmTTpmTnzqS1NWlrSxoaksbGZOTIZMKEZNKkZPTopN4yMAAAAAAAAADos+o6D3VFC9DrfO1rX8vLXvay7N2794DPe8tb3pL58+fnmc985mGd95Of/CRLly7NTTfd9OvtTAPZ+PHjs2XLlsd9fty4cdm8eXMFiQAAgFpqbU3OOqtnyktn5Y7clLflqdlZ7uCZM5Mbb/ydts2OHcn48UVxhEPX0JBs3pyMGlV1EgAAAAAAAACgLxio7z+3cQn6qJ07d+acc845YGlp5MiR+ed//ue8+tWvLuXMZzzjGZk3b14uv/zyfOELXyhlJgAAvUt7e7Jt2+M3Yezdmwwd+rubME46ySYMBrbGxuTuu5NZs5KWlnJmjsjOfChvz1/l4+UM/JWnPS358IeTM8983EOjRiXz5yfz5pV7ZH83f77SEgAAAAAAAADAwSguQR914YUX5oc//OGTPv6sZz0rX/jCFzJu3LjSz66vry+tDAUAQLU6O5NVq5IVK5L165ONG5M9ew799cOGJSeemEyenMyYkUybltTV9Vhc6HWGDEmWL09OOCG56qrD21r0snwxy3J+np3/KS9gkvz5nycf/WhyzDFP+pQ5c4oS1rp15R7dX02Zklx2WdUpAAAAAAAAAAB6v0FVBwC67jOf+UzuuuuuJ338qKOOymc/+9keKS0BANA/7NqV3HhjMm5ccvrpyQ03JGvWdK20lCS7dxevu+GGYs64ccXcXbvKzwy91aBByRVXFMW/k0/u+uuPyJ58IO/IF/OKcktLw4YVW5Y+/ekDlpaSZPDgZNmypKGhvOP7q4aGZOlS2+YAAAAAAAAAAA6F4hL0Mfv27ctlB/lrnf/pn/4pJ5xwQo0SAQDQl+zYkVx4YXLssckllyTbtpU7f9u2Yu6xxxbn7NhR7nzozcaOLYp8CxYcegFoUv4zGzIp78gHyw1zyinJN79ZfCMe4hq0sWOTa68tN0Z/dN11xY8VAAAAAAAAAAAHp7gEfcxHP/rRbN++/Ukfnz59ev7qr/6qhokAAOgL9u8vyhTjxye33NL1zUpdtWdPcc748cn11yft7T17HvQWgwcnc+cmmzcnF1yQNDU98fPqsz9XZX6+nlMyNiU2CAcPTt773mT16uSFL+zyyy+7LGluLi9Of9PcnMyZU3UKAAAAAAAAAIC+Q3EJ+pCOjo4sXrz4SR+vr6/PggULapgIAIC+YOvW5NRTk3e+M2lrq+3ZbW3JvHnF+Vu31vZsqNKoUcnNNycPPZTceGMyZsxvHntR/itfy2mZn2syJPvLO3TcuGTt2uTd7y4KTN0waFCydGlyxhnlxeovpk8vfmwG+d00AAAAAAAAAIBD1r13sQCVuPfee/Pf//3fT/r4mWeemTG//W44AAAGtI6OZNGi5Kqral9Y+n1r1yYTJybXXltsdPHGfwaK4cOTiy9OLrooWb2qMz+99p/y2q9elsaOX5Z70KWXFpuWjjjicQ+1tyfbtiUbNiSbNiU7dyatrcnevcnQoUljYzJyZDJhQnLSScno0cmddyZnnZWsXFluzL5q+vTkjjuSIUOqTgIAAAAAAAAA0LcoLkEfsnTp0gM+/ta3vrVGSQAA6O327UtmzUpaWqpO8httbcncucn99xdbSxQAGEjqfvRQpi14c/Llz5c7+DnPSZYtS1760l9/qrMzWbUqWbEiWb8+2bgx2bPn0EcOG5aceGLykpckL3958sUvlhu5r2lu9msWAAAAAAAAAEB3KS5BH7Fr1658/vNP/ga3Zz7zmfnTP/3T2gUCAKDXam3t3ZtSWlqSRx8tNro0NladBmrgk59M3vrW5Oc/L3fuG9+YfPCDyYgRSZJdu5Lly5Obbio2LHXX7t3JmjXFR5IcfXSxpWn//sNO3Kc0NCTXXZfMmWNLHAAAAAAAAABAdykuQR/xL//yL9m7d++TPv7a1742dXV1NUwEAEBvtG9f7y4t/crKlcnZZyd33WWLCf3Yrl3JRReVv/rsqU9NPvzh5PWvT5Ls2JEsWFAc05XNSofqpz8t/nPQoKSjo/z5vdGUKcWWpbFjq04CAAAAAAAAANC3+ftioY/4whe+cMDHX/rSl9YoCQAAvVVHRzJrVu8vLf3KvfcWeQdKEYIB5ktfSo47rvzS0p/9WbJpU/L612f//qKwNH58csstPVNa+m0D4Xu1oSG5/vpi25TSEgAAAAAAAADA4VNcgj7iq1/96gEfnzJlSm2CAADQay1aVH5Hoqe1tCSLF1edAkr0y18mf/M3yctfnvzwh+XNbWpKbrop+cxnkmc+M1u3JqeemrzznUlbW3nHdMWgHv5dpaamYjPb2WcX/72nz7rggmTz5uSKK5L6+p49DwAAAAAAAABgoBhcdQDg4L71rW/lRz/60ZM+PmLEiLzgBS846Jz9+/fnv//7v/Od73wnjzzySNra2tLU1JSjjjoqz3nOc/L85z8/Rx55ZJnRAQCoka1bk6uuqjpF91x5ZfKa19huQj9w333JG99YfEOWacqU5Pbbkxe9KB0dyaL3Fd/vVRWWfqWjIxk8OHnqU5Of/KS8uWPGJLNnJzNnJsOHF5975JFk+fJkyZJk27aePQsAAAAAAAAAgPIoLkEf8M1vfvOAj7/whS980scefvjhtLS0ZOXKlfn3f//37N2790mfW1dXl7Fjx+a0007LjBkz8vKXvzxDhw7tbmwAAGpk//7k/POrLzF0V1tbMmtWsmaNLSf8rvb2oqSyYUOyaVOyc2fS2prs3ZsMHZo0NiYjRyYTJiQnnZSMHl3R19D+/cmCBcnf/m3x38syeHByzTXFWqXBg7NvX/G90ps2q+3fX5SWXv7yZPz44ufqvvuSPXsOfcawYcnEicnkycmMGcnUqUld3e8+Z/jw5OKLk4suSlavTlasSNav75mzAAAAAAAAAAAoj+IS9AGbNm064OOjRo163Od+8pOf5Jprrsltt92WX/7yl4d0TmdnZ7Zs2ZItW7bk5ptvztFHH523v/3tecc73pGRI0d2KzsAAD1v8eJk3bqqUxyetWuTRYuSuXOrTkKVOjuTVat+U0rZuLHrpZQTT/xNKWXatBqUUr71reTcc5NvfKPcuWPGJB/7WDJpUpKisHXWWcnKleUeU5YvfjE54ojkC19IhgxJtm9/fOGsrS1paPjdwtmkSV0rnNXVFT+v06YV/9ze3nNnAQAAAAAAAABw+Oo6Ozs7qw4BHNhZZ52VT37yk0/6+Dve8Y584AMf+PU/f/SjH83ll1+eXbt2lXL+05/+9Pzd3/1dLrjgglLm9Rfjx4/Pli1bHvf5cePGZfPmzRUkAgAGoh07ii0nfXXb0m9raEg2b06eoJdPP7drV7J8eXLTTcWGpbKMGZO87W3JzJnJiBHlzU1StKxuvjmZM6dr7apDccklyd//fdEESrJvX3Lmmb23tPTbpk9P7rqrKC8BAAAAAAAAAPAbA/X954OqDgAc3A9+8IMDPn700UcnSfbt25c3v/nNectb3lJaaSlJHn744Vx44YU588wz8+ijj5Y2FwCAw7dgQf8oLSXFPRYsqDoFtbRjR3LhhcmxxxZdnTJLS0kx75JLivkXXlicV4of/Sh57WuTt7613NLSs59drCy64YZfl5Y6OpJZs/pGaSlJ7r23yNvRUXUSAAAAAAAAAAB6A8Ul6AN+9KMfHfDxpzzlKdm/f3/OOeec3HrrrT2W45577smf/umf5qc//WmPnQEAwKHbtStpaak6RblaWpJHHqk6BT1t//6ipDZ+fHLLLeUvLPp9e/YU54wfn1x/fdLefhjD7r47Oe645LOfLS1fkqS5OXnwweTlL/+dTy9a1Pe+z1taksWLq04BAAAAAAAAAEBvMLjqAMDB/fjHPz7g40OHDs3s2bNz991393iWjRs35qUvfWnWrFmTpzzlKT1+Xnd86EMfypIlS3r8nB2l/XXtAADds3x5zxc+am3PnuJeF19cdRJ6ytatyfnnJ+vW1f7strZk3rzknnuSpUuTsWO78OJHHim+MG+/vdxQI0cm//RPyVlnPe6hrVuTq64q97haufLK5DWv6eKPMQAAAAAAAAAA/Y7iEvRyra2taWtrO+Bz7rzzznzlK1950sePOOKIvOxlL8uMGTPykpe8JH/wB3+Qo48+Oo888kh+/OMfZ/v27Vm5cmU+85nP5Gc/+9lBM23atClveMMb8pnPfCZ1dXVdvlNP++lPf5otW7ZUHQMAoEd1diY16GpXYsmS5KKLkl74fzU5DB0dxfagq64qCkRVWrs2mTgxufba5LLLkkEH20f9la8k552X/OAH5QZ51auSW29NnvWsxz20f39R8Kr6x6q72tqSWbOSNWuS+vqq0wAAAAAAAAAAUJWDvTUHqNgvf/nLgz7nyUpLdXV1mTlzZr797W9n5cqVectb3pKXvOQlOfbYYzN06NAcffTROe644/L6178+t912W37wgx/kmmuuyRFHHHHQMz/3uc/lgx/8YJfvAwBAOVatSrZvrzpFz9i2LVm9uuoUlGnfvmTmzGTu3N5TxGlrK/LMnFnke0KtrcmcOclLX1puaemII5IPfSj53OeesLSUJIsXV7OVqkxr1xZlNQAAAAAAAAAABi7FJejlWltbu/W6pqamfO5zn8ttt92WY4455pBec8QRR+Rv//Zvc//99+f5z3/+QZ//rne9Kw899FC38gEAcHhWrKg6Qc/q7/cbSFpbkzPPTFpaqk7yxFpainyP+1evjRuTSZOS97+/3ANPPjn55jeT2bOfdK3Yjh3J1VeXe2xVrr66uA8AAAAAAAAAAAOT4hL0cvue9K/+fnJHHXVU/u3f/i2vetWrunXmi170ovz7v/97XvziFx/weXv27Mn8+fO7dQYAAIdn/fqqE/Ss/n6/gWLfvuSss5KVK6tOcmArVyZnn/1/m5f270/+7u+SKVOSLVvKO6S+Pvl//y9ZsyY5yL9rLVjQezZTHa62tuI+AAAAAAAAAAAMTIpL0MvV19d3+TUf/OAHc+qppx7Wuc9+9rPzyU9+MkOHDj3g85YtW5aHH374sM4CAKBr2tuLZTD92caNxT3puzo6klmzen9p6VfuvTeZ9/od6Zw6NXnPe/6vxVSS0aOTb3yjWD80ePABn7prV+/dTtVdLS3JI49UnQIAAAAAAAAAgCoc+N0yQOUOVhz6fdOnT895551XytnHH398rr766lx55ZVP+py2trYsXbo0V1xxRSlnluHoo4/OuHHjevycHTt2pK2//DXoAECfsm1bsmdP1Sl61u7dyfbtSQ3+bx09ZNGivlTA6cwFuSXz752Tuuwud/TFFyf/8A9JU9MhPX358v73/b1nT3Gviy+uOgkAAAAAAAAAALVW19nZ2Vl1CODJPfLIIxkxYsQhP//BBx/MhAkTSju/tbU1z372s/Ozn/3sSZ8zZcqUfOMb3yjtzL5i/Pjx2bJly+M+P27cuGzevLmCRADAQLF8eVJSV71XW748OffcqlPQHVu3JhMnJn2h5/8H+XE+krfktflMuYOPPTZZujR5xSsO+SWdncnYsUVpr78ZMybZsiWpq6s6CQAAAAAAAABANQbq+88HVR0AOLCmQ/xbuZPkT/7kT0otLSVJY2NjZs2adcDnrF+/Pg8//HCp5wIA8OQ2bao6QW0MlHv2N/v3J+ef3zdKS6/LPdmUCeWXls45J3nwwS6VlpJk1ar+WVpKik1xq1dXnQIAAAAAAAAAgFpTXIJebsiQITnqqKMO6bnnn39+j2Q4WHGpo6Mj69at65GzAQB4vJ07q05QGwPlnv3N4sVJb//Xg6fkkSzN+bknZ+bpefLtsl02YkTy8Y8n//zPyciRXX75ihXlRemN+vv9AAAAAAAAAAB4PMUl6AOe9rSnHdLzTj311B45f+zYsRkxYsQBn3Pffff1yNkAADxea2vVCWpjoNyzP9mxI7n66qpTHNjUrMoDOT7n57ZyB7/ylcWasDe8odsj1q8vMU8v1N/vBwAAAAAAAADA4ykuQR/w9Kc//aDPGTlyZF784hf3yPl1dXU5+eSTD/icHTt29MjZAAA83t69VSeojba2qhPQVQsW9N6ft4a0ZmEuz1dyep6X75c3+Igjkn/8x+Tzn0+OPbbbY9rbk40by4vVG23cWNwTAAAAAAAAAICBQ3EJ+oDnPve5B33O2LFjU1dX12MZxo0bd8DHf/CDH/TY2QAA/K6hQ6tOUBsNDVUnoCt27UpaWqpO8cROyDezPpNzeRZlUDrLGzx5ctHGefvbk8P897Ft25I9e0rK1Uvt3p1s3151CgAAAAAAAAAAaklxCfqAF7zgBQd9zogRI3o0w8iRIw/4+M9//vMePR8AgN9obKw6QW0MlHv2F8uX977izaC0Z17+Ietyco7LpvIG19cnf/u3yZo1yejRpYzcsKGUMb3eQLknAAAAAAAAAACFwVUHAA7uD//wDw/6nJ4uLh1s/p7e9g5FAIB+7CCd8n5joNyzP+jsTJYsqTrF73pBvp3lmZnTsqbcwS9+cXL77cnJJ5c6dlOJvarebKDcEwAAAAAAAACAgo1L0AdMmDDhoM854ogjejTDwebv37+/R88HAOA3DuH/HvYLA+We/cGqVcn27VWn+JXOvDkfyQM5vvzS0tvfnmzcWHppKUl27ix9ZK80UO4JAAAAAAAAAEDBxiXoAyZOnJhBgwalo6PjSZ/zyCOP9GiGg83v6eIUAAC/MWlS1QlqY6Dcsz9YsaLqBIVn5H9zSy7I9Kwsde4jw56V4fcsTV75ylLn/rbW1h4b3asMlHsCAAAAAAAAAFCwcQn6gKOOOiovfvGLD/icXbt29WiGnQf5a7GPPPLIHj0fAIDfGDMmaWqqOkXPGjYsGT266hQcqvXrq06QzMinsikTSi8tfSJn55wJD/ZoaSlJ9u7t0fG9Rltb1QkAAAAAAAAAAKglxSXoI0477bQDPv6Tn/ykR88/2Pxjjz22R88HAOA36uuTiROrTtGzJk4s7knv196ebNxY3flH5dHcmln5VF6Xo/NwaXN3ZkTOyT/nnHwiqzc9Ne3tpY1+QkOH9uz83qKhoeoEAAAAAAAAAADUkuIS9BGvetWrDvj4li1bsuf/Z+/u472u6/vxPw4HOAQV0LqwuVaLNa5VRKSioFq1roQ2S9uOolRakuUEBStFQ1cBaWaFqSsMO1uariG1LrZKXGRAiBcgsEb71spyXYAWp3OAc87vj/evzYqrA+/P530u7vfb7dxKPp/P8/V44eegePs8eLa21uz873znOwd9/NnPfnbNzgYA4PdNmVJ1gtrq6/frS7ZtS2r4W5GDenHuzgM5LnNyc6lz/zUvz8Q8mM/mr5Mku3cn27eXesTvGTKktvN7iv5yTwAAAAAAAAAACopL0Eu8/OUvT+NB/sj5ffv2HbJcdKRaW1vz4IMPHvQ5xx9/fE3OBgBg/2bNqjpBbfX1+/UlGzfW/8zBac/SXJy78pI8J98vbe6vMyTvzHX5i3wlP8of/dZjtb7nyJG1nd9T9Jd7AgAAAAAAAABQUFyCXmLEiBF55StfedDnfPWrX63J2V/72tfS0dFx0OdMnTq1JmcDALB/M2Yko0dXnaI2xoxJpk+vOgWHa/Pm+p43MQ9kQ6bk4nwoA9JV2tzvZHImZVM+lnemaz//uaTW95wwobbze4r+ck8AAAAAAAAAAAqKS9CLnHXWWQd9/JOf/GT27t1b+rnXX3/9QR9/znOek9F99VOzAAA9VENDMndu1SlqY+7c4n70Djt31uecAenIgizJd3JSjsvBN8J2x7405n1ZlBfknmzPmAM+r9b3nDy5tvN7iv5yTwAAAAAAAAAACopL0IvMmjUrT33qUw/4+E9+8pN87nOfK/XM7373u/nKV75y0Oe8/vWvL/VMAAAOz+zZydChVaco19Chxb3oPdraan/Gc/JfuSsvyZJcksEp7w9r+I88L9OyNlfkfdmXQQd9bq3vOWZM3/t+/l3DhvXdTXEAAAAAAAAAAOyf4hL0IkOGDMkFF1xw0OdcdNFF2VnSHwXe1dWVc889N52dnQd93jnnnFPKeQAAdM+IEUlzc9UpytXcnAwfXnUKumPPnlpO78qcfCoP5Li8ON8sdfLHMzeTsinrM/Wwnt/eXurxv6exMZk0qbZnVG3SpOKeAAAAAAAAAAD0H4pL0Mucf/75GX6QT3L++Mc/zty5c0s56yMf+Ujuuuuugz7nla98ZcaNG1fKeQAAdN/ChUlTU9UpytHUVNyH3mXw4NrMfVr+J/+c1+dTeUuelF+VNvfhPDOvypdyfj6e1gw77NfV4/tsypTan1Glvn4/AAAAAAAAAAB+n+IS9DIjRozI4sWLD/qcz372s5k7d266urqO+JxPfvKTmT9//kGf09DQkA9+8INHfAYAAEdv1KjkEP962GssXlzch95lyJDyZ87MqmzOhMzKnaXOvS1vzMQ8mK/kVd1+bS3u+btmzar9GVXq6/cDAAAAAAAAAOD3Daw6ANB973jHO/LpT38699577wGfc/311+fnP/95Pvaxj+VpT3vaYc9ub2/PBz7wgSxevPiQxae3v/3tmTRp0mHPBgCopY6OZNu2ZOPGZPPmZOfOpK0t2bOn2AgzZEgycmQyYUJy0knJ6NFJY2PVqcsxb15yxx3J+vVVJzlyU6cmh+jN00ONHFnerCfml7k2f5u35FPlDU2yK8Pzjnw8/5C/SdJwRDPKvOeBzJhR/Nq0fXvtz6q3MWOS6dOrTgEAAAAAAAAAQL0pLkEv1NjYmM985jM5+eST86tf/eqAz7vtttvy1a9+Ne9973tzxhln5Jhjjjngc3/1q19l9erVueyyy7Jjx45DZhg9enQ+9KEPHVF+AIAydHUla9Ykq1YlGzYkmzYlra2H//phw5ITTkimTCm2gMyYkTQcWZ+hcgMHJjffnEyalLS3V52m+5qakhUr+k6RrL+ZMKGcOS/Kv+fTOSvPzX+VM/D/97W8LGfn5vwwzzqqOWXd82AaGpK5c5MLLqj9WfU2d27v/TUWAAAAAAAAAIAj19B1qJUqQI/1uc99LqeffvohNyMlSUNDQ57//OfnxBNPzDOe8Yz8wR/8QR577LE88sgj2bZtW77xjW+k/TA/5frUpz413/rWt/K85z3vaK/Qq40fPz4PPfTQ7/34uHHjsmXLlgoSAUD/sGtXsnJlcv31xYalsowZk5x3XjJ7djJiRHlz62nZsmTBgqpTdN+yZclFF1WdgiO1ZcvRlXoGpz2LsygXZ1kGpLz/RPHrDMkl+WA+mnemKwOOet6WLcm4cSUEO4Rdu5Jjj+1eEbOnGzo0efjhZPjwqpMAAAAAAAAAAFSnv37+3MYl6MXe+MY35qc//Wne8Y53HPK5XV1dueeee3LPPfcc1ZkjR47MF7/4xX5fWgIA6m/HjmTJkqSlpTYf6N+2rdhy8u53J83NycKFyahR5Z9TS/PnJ/ffX/wc9RbNzcm8eVWn4GiMGVMUU47k+3JCHsxnckaOzwOlZtqYE3NmbsnWlNM0GjYsGT26lFGHNGJE8X1x0031Oa8empuVlgAAAAAAAAAA+quj/yOHgUrNnTs3N954YwYNGlTzs571rGfl7rvvzsknn1zzswAAfmPfvqKwNH588UH+Wm8haW0tzhk/Plm6NOnoqO15ZRowIFmxIjnllKqTHJ6ZM4u8A/zOtFdrbEwmTereawakIxdlWb6Tk0otLXVkQK7MpXlB7imttJQU92tsLG3cIS1cmDQ11e+8WmpqKu4DAAAAAAAAAED/5ONh0Aecc845ueuuu/JHf/RHNTtj1qxZue+++zJhwoSanQEA8Lu2bk2mTUsuuSRpb6/v2e3txYftp00rcvQWgwYlt93W88tLM2cmt95a5KX3mzLl8J/77Py/fD0vy7IsSFP2lJbhu/nTvCjfzKJcmb0ZXNrcpHv3K8OoUcnixfU9s1YWL+592+sAAAAAAAAAACiP4hL0ES984QuzdevWLFy4MIMHl/chvT/7sz/LqlWr8s///M95ylOeUtpcAICD6exMli0rtpysX19tlnXrihzLlhW5eoMhQ5I77kiam6tOsn/Nzcnttxc56RtmzTqcZ3XlrNycB3JcZuTuUs+/Pm/PCbkv384LSp37G4d3v3LNm5f09mW3U6cm8+dXnQIAAAAAAAAAgCopLkEf8sQnPjEf/OAH8//+3//L5ZdffsQbmAYPHpzXvOY1+ed//uds3bo1M2fOLDkpAMCB7d2bzJ6dLFhQ/y1LB9LeXuSZPbvI1xsMGpSsXJksXZo0NVWdptDUVBTAVq60aamvmTEjGT36wI8/NT/NP+WvcnPm5Mn5ZWnn/jjH5DX5Yubm+rRmWGlzH2/MmGT69JqMPqiBA5Obb+4537/d1dSUrFiRNDZWnQQAAAAAAAAAgCoNrDoAUL5nPvOZueKKK3LFFVfk/vvvz7/+67/m/vvvz7Zt2/KjH/0ov/zlL9Pa2ppBgwZl2LBhOeaYY/Inf/InmTBhQl7wghfkJS95SYYPH171NQCAfqitLTnttGT16qqT7F9LS/LYY8ltt/WObUEDBiQXX5y87nXJ2WdXu71q6tSixDB2bHUZqJ2GhmTu3OSCC37/sddldf4+b80z8j+lnnl7Ts3b84n8PE8tde7vmju3uF8Vxo5NrryyKE72Nldd5fsdAAAAAAAAAICkoaurq6vqEAC90fjx4/PQQw/93o+PGzcuW7ZsqSARAPRue/cmp57ac0tLjzdzZnL77b1ra9C+fck11ySLFtV3k1VTU1G8mDfP5pW+bteu5Nhjk9bW4q+fmF/mmszLOfn7Us95NE/O+flYPpMzktS2UTR0aPLww0mVf65DZ2ex7a2lpboM3dXcXGxWG2DPNwAAAAAAAADA/+qvnz/3ERIAAKBynZ3JnDm9o7SUJHfeWeTt7Kw6yeEbOLDY2rJlS3LOOUUho5aGDi3O2bKl2PqktNT3jRhRFFaS5IVZm/tzfOmlpa/npZmYB/OZnJlal5aS4j5VL6MdMKDYVnbKKdXmOFwzZxZ5lZYAAAAAAAAAAEgUlwAAgB7g6qt71zaRpMh7zTVVp+i+UaOSG28stshcd10yZky588eMKeY+/HBxzqhR5c6nZ1t44Z4sbXx37s70PDf/VdrctjTlwlyTl+ff8t/549LmHkxTU7JwYV2OOqRBg5Lbbuv55aWZM5Nbb+1d2+gAAAAAAAAAAKgtxSUAAKBSW7cml11WdYojc+mlRf7eaPjw5J3vTB56KLnrruTCC5MXvaj7m5iGDSted+GFxZyHHirmVr2lhgps3pxRf31yLu74YBpT3jqyezMpk7Mx1+bCdNXxP2MsXtyzindDhiR33PF/W616mubm5Pbbi5wAAAAAAAAAAPAbA6sOAAAA9F/79iVnn520t1ed5Mi0tydz5iRr1yaNjVWnOTINDcmMGcVXknR0JNu3Jxs3Jps3Jzt3Jm1txV2bmopSwsiRyYQJyeTp63wXAADraklEQVTJyejRvffulKSzM/nwh5P3vCfZs6e0sR0ZkA/mkrwvl2dvBpc293BMnZrMn1/XIw/LoEHJypXJ8ccXhc+e8GtnU1Ny1VXJvHnJAH88DgAAAAAAAAAAv0NxCQAAqMw11yTr11ed4uisW5dcfXWyYEHVScrR2JiMG1d8wSF9//vJWWcla9aUOvY/MyqzszL35IWlzj0cTU3JihU9t5A3YEBy8cXJ615XFD+r/DV06tTi52rs2OoyAAAAAAAAAADQs/mzcAEAgErs2JEsWlR1inIsWlTcB/qNrq7k059Ojjuu9NLSDTk3J+S+SkpLSbE9qDcUccaOLba9LVlSlK3qqakpWbq0OL83/FwBAAAAAAAAAFAdxSUAAKASS5Yk7e1VpyhHe3txH+gXfvaz5A1vKNb9PPZYaWN/kmfkdVmdt+eG7M4TS5vbHc3Nybx5lRx9RAYOLLa9bdmSnHNOMnRobc8bOrQ4Z8uWYutTT91KBQAAAAAAAABAz6G4BAAA1N2uXUlLS9UpytXSkjz6aNUpoMa++MVkwoTkn/6p1LH/lL/MxDyYL+Z1pc7tjpkzkxUrkgG98L+UjBqV3Hhj8vDDyXXXJWPGlDt/zJhi7sMPF+eMGlXufAAAAAAAAAAA+q5e+HEcAACgt1u5MmltrTpFuVpbi3tBn/SrXyVve1vyutcljzxS2tjH8qSclZtzau7Iz/K00uZ218yZya23JoMGVRahFMOHJ+98Z/LQQ8lddyUXXpi86EXd38Q0bFjxugsvLOY89FAxd/jwWqQGAAAAAAAAAKAvG1h1AAAAoH/p6kqWL686RW0sX56cf37S0FB1EijRt76VzJ6d7NhR6ti7MiNn5dP5QZ5d6tzuam4uNi319tLS4zU0JDNmFF9J0tGRbN+ebNyYbN6c7NyZtLUl7e1JU1MyZEgycmSxTGvy5GT06KSxsdo7AAAAAAAAAADQNyguAQAAdbVmTfEB+r5o27bk7rv/rywAvdqePcn73pd88INJZ2dpY9szOO/J+/PhXJiuChdBNzUlV12VzJuXDOjj+6gbG5Nx44ovAAAAAAAAAACopz7+0RwAAKCnWbWq6gS11dfvRz+xZUvy/Ocn739/qaWlHH98frRqY7558vxKS0tTpyabNiUXXdT3S0sAAAAAAAAAAFAlH88BAADqasOGqhPUVl+/H31cZ2fy4Q8nkycXzZ6yDBiQXHJJsm5dnjtzQtauTZYsKbYe1VNTU7J0abJ2bTJ2bH3PBgAAAAAAAACA/khxCQAAqJuOjnK7ED3Rpk3FPaHX+cEPkpe/PJk3L2lvL2/uc5+b3H138oEP/G9TaeDAZMGCYrHTOeckQ4eWd9z+DB1anLNlS3LxxUljY23PAwAAAAAAAAAACopLAABA3WzblrS2Vp2itnbvTrZvrzoFdENXV3LLLcnEick3vlHu7Le+NbnvvmTatP0+PGpUcuONycMPJ9ddl4wZU+7xY8YUcx9+uDhn1Khy5wMAAAAAAAAAAAc3sOoAAABA/7FxY9UJ6mPjxmTcuKpTwGH4+c+Tt789uf32cuc+/enJ3/99csoph/X04cOTd74zOf/8YjnTqlXJhg3Jvfd2r+w4bFgyaVIyZUoya1YyfXrS0HCEdwAAAAAAAAAAAI6a4hIAAFA3mzdXnaA++ss96eW+9KXkzW9OfvKTcue+/vXJDTcU5aVuamhIZswovpKko6PYYLZxY/F9tXNn0taWtLcnTU3JkCHJyJHJhAnJ5MnJ6NFJY2O51wEAAAAAAAAAAI6c4hIAAFA3O3dWnaA++ss96aV2704uuij5xCfKnfukJyXXXZecdVZpa44aG4vtZTaYAQAAAAAAAABA76S4BAAA1E1bW9UJ6qO/3JNe6NvfTs48M/nP/yx37vTpyac/nTznOeXOBQAAAAAAAAAAerUBVQcAAAD6jz17qk5QH+3tVSeA37F3b3LZZcm0aeWWlgYPTpYtS77+daUlAAAAAAAAAADg99i4BAAA1M3gwVUnqI+mpqoTwOM89FCxZenee8ude9xxyS23FP8LAAAAAAAAAACwHzYuAQAAdTNkSNUJ6qO/3JMerrMz+chHkhNPLLe01NCQLFyYrF+vtAQAAAAAAAAAAByUjUsAAEDdjBxZdYL66C/3pAf77/9O5sxJvva1cuc+5znJypXJi19c7lwAAAAAAAAAAKBPUlwCAABqpqMj2bYt2bgx2by5WNDSH0yYUHUCqva77/2dO5O2tmTPnmTw4GIr18iRxXvlpJOS0aOTxsYSDu7qSv7hH5J3vCN59NESBj7OW96SfPjDyZOeVO5cAAAAAAAAAACgz1JcAgAAStPVlaxZk6xalWzYkGzalLS2Vp2q/iZPrjpB71FZwadkR/veHzYsOeGEZMqUZNasZMaMpKGhmyF+/vPkvPOSz32umy88hKc9LbnppiIYAAAAAAAAAABANyguAQAAR23XrmTlyuT664sSSn82bFhRrmH/ekTBp0Rlvfd3707Wri2+rr02GTOm6CDNnp2MGHEYA7785eTNb05+/OMjD7E/M2cWpaWnP73cuQAAAAAAAAAAQL8woOoAAABA77VjR3LuucmxxyYXXKC0lCSTJvXMjUBV27Urue66ZNy45KUvLco5a9d2fyPXbwo+115bzBk3rpi7a1f5mQ+m1u/9bduKucceW5yzY8cBnrh7dzJ3bvLqV5dbWnriE5NPfjL5539WWgIAAAAAAAAAAI6Y4hIAANBt+/YlS5Yk48cXy1i6Wz7py6ZMqTpBz9JjCj4lqfd7v7W1OGf8+GTp0qSj43EPrltXNOWuv77cQ1/0ouSBB4oNTlWuswIAAAAAAAAAAHo9xSUAAKBbtm5Npk1LLrkkaW+vOk3PM2tW1Ql6hh5V8ClJle/99vZk4cLi/K0P7E0WLSr+4rvfLe+QQYOKv2l33ZX8yZ+UNxcAAAAAAAAAAOi3FJcAAIDD0tmZLFtWLHhZv77qND3TmDHJ9OlVp6hejyn4bC1nZk967+9aty2tJ7wgufLKcttZEycmGzYkCxYkjY3lzQUAAAAAAAAAAPq1gVUHAAAAer69e5M5c5KWlqqT9Gxz5yYNDeXP7ehItm1LNm5MNm9Odu5M2tqSPXuSwYOTIUOSkSOTCROSk05KRo+upnvS2ZlcfXVy2WXVb+Nat64oGl15ZTJ/fjLgCP/Yjp7y3m9IZ87Px7IkC/OErrYSBzckF11U/EQ1NZU3FwAAAAAAAAAAIIpLAADAIbS1JaedlqxeXXWSnm3o0GT27HJmdXUla9Ykq1YVS3A2bUpaWw//9cOGJSeckEyZksyalcyYUZtC1eP1lILP47W3FwuE7r8/WbEiGTSoe6/vKe/9Y/PD3Jyz8/J8rdzBz352snKlNWEAAAAAAAAAAEDNKC4BAAAHtHdvzyhu9AbNzcnw4Uc3Y9euokdy/fXFhqUjtXt3snZt8XXttcmYMcl55xXFqhEjji7j/vSUgs+BtLQkjz2W3HZbsZ3qcPSM935X/jr/mI/nHRmZXeWOnjOneHM8+cnlzgUAAAAAAAAAAHicAVUHAAAAeqbOzqLb0FPLKD1JU1OycOGRv37HjuTcc5Njj00uuODoSkv7s21bMffYY4tzduwob3bPKPgc2urVyemnF3kPpSe890fmF/ls3pR/SHO5paWnPjX5/OeTT31KaQkAAAAAAAAAAKg5xSUAAGC/rr662FTDoS1enIwa1f3X7duXLFmSjB+f3HRT0tpafrbHa20tzhk/Plm6NOnoOLp5PaHg0x133lnk7ew8+POqfu+/Ml/Jg5mY03NbuYNPOSXZvDl5/evLnQsAAAAAAAAAAHAAiksAAMDv2bo1ueyyqlP0DlOnJvPnd/91W7cm06Yll1yStLeXn+tg2tuLDVHTphU5jlTVBZ8j0dKSXHPNgR+v8r3/hLTmozk/X8mrcmweLm/wsGFFY23VquQZzyhvLgAAAAAAAAAAwCEoLgEAAL9l377k7LPrX6bpjZqakhUrksbGw39NZ2eybFkyaVKyfn3tsh2OdeuKHMuWHXoL0e/qzeW2Sy/df2Gryvf+lKzPpkzK+fl4uYOnTUvuvz9561uThoZyZwMAAAAAAAAAAByC4hIAAPBbrrmm+kJNb3HVVcnYsYf//L17k9mzkwULek4xrL29yDN7dpHvcPT2clt7ezJnTtLR8ds/XsV7f2D25vJckW/lhRmd/yhv8KBByQc+kKxZk4waVd5cAAAAAAAAAACAblBcAgAA/teOHcmiRVWn6B2am5N58w7/+W1tyamnJi0ttct0NFpainxtbYd+bl8ot61bl1x99f/9dRXv/T/L9qzNtFyR92VgOg79gsO0pWF8/vuO9ckll3RvHRgAAAAAAAAAAEDJFJcAAID/tWRJ792iU08zZyYrViQDDvN3VHv3JqedlqxeXdtcR2v16uT00w++eakvldsWLSruk9T3vd+QzrwjH8t9OSEnZ0NpczvTkA9lfiZ3fSdXrj6htLkAAAAAAAAAAABHSnEJAABIkuza1XO3AfUkM2cmt96aDBp0eM/v7EzmzOn5paXfuPPOIm9n5/4f70vltvb24j71fO//YX6UL+dV+VjemSfkMNZbHabv54/zsnw9F+dDac+QtLQkjz5a2ngAAAAAAAAAAIAjorgEAAAkSVauTFpbq07RszU3J7ffngwZcvivufrq3lcIa2lJrrnm93+8L5bbWlqSG26oz3v/9Hw2D2ZiXpl/LXXuzTkrx+WBrMlL/vfHWluL72kAAAAAAAAAAIAqKS4BAADp6kqWL686Rc/V1JQsW1YUQQ5301KSbN2aXHZZ7XLV0qWXFvkfry+W21pb91/SKtOI7Mw/5K/z2fx1npKdpc39Wf4gf5U7Mic357EM/73Hly8vvrcBAAAAAAAAAACqorgEAABkzZpk+/aqU/RMU6cmmzYlF12UDOjG76D27UvOPjtpb69ZtJpqb0/mzEk6Ooq/7svltv/5n9rNfnn+NQ9mYv46ny117hfy2kzI5nw+f3XA52zbltx9d6nHAgAAAAAAAAAAdIviEgAAkFWrqk7Q8zQ1JUuXJmvXJmPHdv/111yTrF9ffq56Wrcuufrq4v8rt3XPE9Kaj+Rd+de8Mn+UH5U291cZlnNzQ07J6jySYw75fN/bAAAAAAAAAABAlQZWHQAAAKjehg1VJ+g5hg5NmpuThQuTUaOObMaOHcmiReXmqsqiRcmppyrAdMdJ2ZBbcmbGpNym17fygpyZW/K9HP4b0/c2AAAAAAAAAABQJcUlAADo5zo6kk2bqk5RvTFjkrlzk9mzk+HDj27WkiVJe3s5uarW3l7c56GHqk7S8zVmX96T92dRFmdgOkqbuzcDc3nel6VZkI5u/jZ+06bie7yxsbQ4AAAAAAAAAAAAh01xCQAA+rlt25LW1qpT1N+wYcmkScmUKcmsWcn06UlDw9HP3bUraWk5+jk9yWc+U87PTV/2vPxHbsmZmZr1pc7dknE5I5/JfZl0RK/fvTvZvj0ZN67UWAAAAAAAAAAAAIdFcQkAAPq5jRurTlAfL3lJcvLJyYQJyeTJyejRtdlCs3Jl3yuC/frXVSfoybpyXq7Ph3JRhqbcn6hrcmHek/enPUOOas7GjYpLAAAAAAAAAABANRSXAACgn9u8ueoE9XHyycmSJbU9o6srWb68tmfQczwzD+dTeXNela+UOvcHeVbOzs35Rl5Wyrz+8j0OAAAAAAAAAAD0PAOqDgAAAFRr586qE9RHPe65Zk2yfXvtz6F6b8xt2ZwJpZeWVubMHJcHSistJf3nexwAAAAAAAAAAOh5bFwCAIB+rq2t6gT1UY97rlpV+zOo1ojszMdyfprzD6XO/XmekrflhtyRN5Q6N+k/3+MAAAAAAAAAAEDPo7gEAAD93J49VSeoj/b22p+xYUPtz6A6f55/y805O3+UH5U691/y6rwln8xP8sxS5/5GPd77AAAAAAAAAAAA+zOg6gAAAEC1Bg+uOkF9NDXVdn5HR7JpU23PoBpD8utcmwvyb3lFqaWl3Rmat+UTeW2+WLPSUlL79z4AAAAAAAAAAMCB2LgEAAD93JAhVSeoj1rfc9u2pLW1tmdQfydmYz6TMzI220qde0+en9lZmf/M80qduz/95XscAAAAAAAAAADoeWxcAgCAfm7kyKoT1Eet77lxY23nU1+N2Zf35qp8O88vtbS0NwPz3lyVF+ff61JaSvrP9zgAAAAAAAAAANDz2LgEAAD93IQJVSeoj1rfc/Pm2s6nfv40383KzM4L8u1S5z6UsTkzt+TeTC517qH0l+9xAAAAAAAAAACg57FxCQAA+rnJ9e1QVKbW99y5s7bzqYeuvC2fyH05ofTS0ofzt5mcjXUvLSX953scAAAAAAAAAADoeWxcAgCAfm7MmGTo0KS1teoktTNsWDJ6dG3PaGur7Xxq65j8OJ/MW/KafKnUuf+dP8rZuTlfz5+XOvdw1eO9DwAAAAAAAAAAcCA2LgEAQD/X2JhMmlR1itqaNKm4Zy3t2VPb+dTOqbk9mzOh9NLSLTkjE/NgZaWlpD7vfQAAAAAAAAAAgANRXAIAADJlStUJaqse9xs8uPZnUK7h2ZWVOTO35435g/yitLk/z1PyxtyW2bklj2ZEaXOPRF//3gYAAAAAAAAAAHo2xSUAACCzZlWdoLbqcb8hQ2p/BuV5ab6eB3JczsxnSp375fxFJubB3J43ljr3SPX1720AAAAAAAAAAKBnU1wCAAAyY0YyenTVKWpjzJhk+vTanzNyZO3P4OgNya9zTS7M1/Pn+eP8d2lzd2dozsvyvDpfyo/zh6XNPRr1eu8DAAAAAAAAAAAciOISAACQhoZk7tyqU9TG3LnF/WptwoTan8HROSGb8p2clAtzbalz1+XkTMqmfCLnJanDm+0w1eu9DwAAAAAAAAAAcCCKSwAAQJJk9uxk6NCqU5Rr6NDiXvUweXJ9zqH7GrMv78nfZX1Ozvg8VNrcvRmYy7I407I2382flTa3DPV87wMAAAAAAAAAAByI4hIAAJAkGTEiaW6uOkW5mpuT4cPrc9aYMX2v+PW7hg7tfXcclf/M3Zmev8ulGZR9pc3dmjF5Qe7JVbksHRlY2tyy1PO9DwAAAAAAAAAAcCCKSwAAwP9auDBpaqo6RTmamor71EtjYzJpUv3Oq8KJJ/amcltXzs0NuS8n5IW5p9TJH8m7cmLuzcacVOrcstT7vQ8AAAAAAAAAAHAgiksAAMD/GjUqWby46hTlWLy4uE89TZlS3/PqbcqU3lFue0Z+ki/kdbkhb88Ts7u0uf+dP8rL86/523wkbXlCaXPLVsV7HwAAAAAAAAAAYH8UlwAAgN8yb15y8slVpzg6U6cm8+fX/9xZs+p/Zj3NmtXzy21/lTuyORPy2vxLqXNb8jc5Lg/ka3l5qXPLVtV7HwAAAAAAAAAAYH8UlwAAgN8ycGBy8809f6vOgTQ1JStWJI2N9T97xoxk9Oj6n1sPY8Yk06cX/78nltuenEdzc87KHXlDnpqflzb3FxmZ0/PZnJGW7MrI0ubWQpXvfQAAAAAAAAAAgP1RXAIAAH7P2LHJlVdWneLIXHVVkb8KDQ3J3LnVnF1rc+cW90t6XrltRu7KAzkuZ2VlqXO/kldmYh7MbTm91Lm1UuV7HwAAAAAAAAAAYH8UlwAAgP2aPz9pbq46Rfc0NxfbgKo0e3YydGi1Gco2dGhxr8frCeW2prTlQ5mfr+dleXZ+UNrcric8ITef9LG8Kl/Owzm2tLm11BPe+wAAAAAAAAAAAL9LcQkAANivAQOSFSuSU06pOsnhmTmzyDug4t/ljBjR+wpfh9LcnAwf/vs/XmW57YRsyndyUubnmgxIV3mDp0xJw6ZNaf7WO3LKKQ3lza2hnvLeBwAAAAAAAAAA+F0+1gQAABzQoEHJbbf1/PLSzJnJrbcWeXuChQuTpqaqU5Sjqam4z/5UUW4bkI5ckg9kXaZmQraUN7ixMbniimTt2mT0aO99AAAAAAAAAACAEiguAQAABzVkSHLHHT13i1Bzc3L77UXOnmLUqGTx4qpTlGPx4uI+B1LPgs9zsyN3Z3o+kPdkcPaWN3j06OSee5LLL/+tBpD3PgAAAAAAAAAAwNFRXAIAAA5p0KBk5cpk6dKes0moqSlZtqzI1RO3zcybl5x8ctUpjs7Uqcn8+Yd+Xu0LPl15a27K/Tk+0/Ktckeff35y773JlCn7fdh7HwAAAAAAAAAA4MgpLgEAAIdlwIDk4ouTTZuqL+RMnVrkuOiiIldPNHBgcvPNPafs0l1NTcmKFUlj4+E9v1YFn2fkJ7kzM3NTzs0Ts7u8wX/4h8lXvpJ89KPJ0KEHfar3PgAAAAAAAAAAwJHxMScAAKBbxo5N1q5NliypfymnqakoxqxdW+To6caOTa68suoUR+aqq7r/c1x2wef1+XwezMScki8c/bDHe9ObkgcfTF75ym69zHsfAAAAAAAAAACgexSXAACAbhs4MFmwINmyJTnnnEMurDlqQ4cW52zZUhRjDncLUE8wf37S3Fx1iu5pbk7mzTvy1x9twefJeTQrcnY+n7/K0/KzIw/yu0aMSP7hH5J//MfkKU85ohHe+wAAAAAAAAAAAIdPcQkAADhio0YlN96YPPxwct11yZgx5c4fM6aY+/DDxTmjRpU7vx4GDEhWrEhOOaXqJIdn5swi74Cj/N3ikRZ8pmdN7s/xOTufProAv+sVryi2LP31X5cyznsfAAAAAAAAAADg0Bq6urq6qg4B0BuNHz8+Dz300O/9+Lhx47Jly5YKEgFA9bq6krvvTlatSjZsSO69N2ltPfzXDxuWTJqUTJmSzJqVTJ+eNDTULm89tbUlp52WrF5ddZIDmzkzufXWZMiQ8mc/+miycmWyfHmybdvvP96UtlyZyzI/V2dASvxt6pAhydKlyTvecfRtrIPw3gcAAAAAAAAAAA6mv37+XHEJ4Aj1139wAEB3dHQk27cnGzcmmzcnO3cWBZ729qSpqeiUjByZTJiQTJ6cjB6dNDZWnbp29u5N5sxJWlqqTvL7mpuLTUuDBtX2nP0VfP609f58JmdkYjaXe9jkyclnPlP+OqTD4L0PAAAAAAAAAAA8Xn/9/PnAqgMAAAB9V2NjMm5c8UVRClq5Mjn++OSyy4oSS9WampKrrkrmzavpQqL/1dCQzJhRfKWjI51LP5SGRZelYd/e8g5pbEze+97k0ktr38Q6SATvfQAAAAAAAAAAoL+rw8fSAAAA+I0BA5KLL042bUpOPrnaLFOnFjkuuqg+paXf8r3vJS95SQa855JyS0vPe16ydm3yvvdVVloCAAAAAAAAAACgoLgEAABQgbFji37NkiXF1qN6ampKli4tzh87tr5np6sr+eQni7VT3/xmubPnzi2aWFOnljsXAAAAAAAAAACAI6K4BAAAUJGBA5MFC5ItW5JzzkmGDq3teUOHFuds2VJsfWpsrO15v+eRR5JZs5K3vjX51a/Km/vMZyZf+lLy8Y8nw4aVNxcAAAAAAAAAAICjorgEAABQsVGjkhtvTB5+OLnuumTMmHLnjxlTzH344eKcUaPKnX9Y/vmfk4kTk9Wry537xjcmDz6YvOpV5c4FAAAAAAAAAADgqA2sOgAAAACF4cOTd74zOf/85O67k1Wrkg0bknvvTVpbD3/OsGHJpEnJlCnFgqPp05OGhtrlPqjHHkv+9m+TFSvKnTt8eLFh6W/+psLLAQAAAAAAAAAAcDCKSwAAAD1MQ0MyY0bxlSQdHcn27cnGjcnmzcnOnUlbW9LenjQ1JUOGJCNHJhMmJJMnJ6NHJ42N1d4hSdG+Ouus5P/9v3Ln/vmfF0WoZz2r3LkAAAAAAAAAAACUSnEJAACgh2tsTMaNK756hfb25LLLkg99KOnqKm/ukCHJBz9YrKUaMKC8uQAAAAAAAAAAANSE4hIAAADleeCB5IwzkgcfLHfuiScmt9zSi9pbAAAAAAAAAAAA+COqAQAAOHodHcnSpcmUKeWWlgYMSN773uSee5SWAAAAAAAAAAAAehkblwAAADg6//VfyVlnJf/+7+XO/dM/TVauTF7wgnLnAgAAAAAAAAAAUBc2LgEAAHBkurqSFSuS444rv7T09rcn992ntAQAAAAAAAAAANCL2bgEAABA9/3P/yTnnpusWlXu3GOOST75yeQ1ryl3bh/X0ZFs25Zs3Jhs3pzs3Jm0tSV79iSDBydDhiQjRyYTJiQnnZSMHp00NladGgAAAAAAAAAA6OsUlwAAAOieO+9MzjmnKC+V6dRTk098InnqU8ud2wd1dSVr1hS9sQ0bkk2bktbWw3/9sGHJCSckU6Yks2YlM2YkDQ01iwsAAAAAAAAAAPRTiksAAAAcnl/+MrnwwmIjUpme/OTkYx9LzjhDe+YQdu1KVq5Mrr++2LB0pHbvTtauLb6uvTYZMyY577xk9uxkxIiSwgIAAAAAAAAAAP3egKoDAAAA0At885vJ8ceXX1p66UuTBx9MzjxTaekgduxIzj03OfbY5IILjq60tD/bthVzjz22OGfHjnLnAwAAAAAAAAAA/ZPiEgAAAAfW3p5cckkyfXryX/9V3tympuSaa5J/+7fkj/+4vLl9zL59yZIlyfjxyU03Ja2ttT2vtbU4Z/z4ZOnSpKOjtucBAAAAAAAAAAB9m+ISAAAA+7d5czJ1atGc6eoqb+6kScnGjcmFFyYD/Lb0QLZuTaZNK3pj7e31Pbu9PVm4sDh/69b6ng0AAAAAAAAAAPQdPiEGAADAb+voSD70oWTy5OT++8ubO2BA8p73JN/+drHSh/3q7EyWLSv6XevXV5tl3boix7JlRS4AAAAAAAAAAIDuGFh1AAAAAHqQ738/OeusZM2acueOGpWsXJm88IXlzu1j9u5N5sxJWlqqTvJ/2tuTBQuKDtuKFcmgQVUnAgAAAAAAAAAAegsblwAAAEi6upKbb04mTiy/tHTuucl99yktHUJbW3LqqT2rtPR4LS1Fvra2qpMAAAAAAAAAAAC9hY1LAABQsY6OZNu2ZOPGZPPmZOfOohiwZ08yeHAyZEgycmQyYUJy0knJ6NFJY2PVqelTfvrT5G1vSz7/+XLnPuMZySc/mbz2teXO7YP27k1OOy1ZvbrqJAe3enVy+unJ7bfbvAQAAAAAAAAAABya4hIAANRZV1ex0GbVqmTDhmTTpqS19fBfP2xYcsIJyZQpyaxZyYwZSUNDzeLS133hC8lb35o88ki5c//qr5JPfCJ52tPKndsHdXYmc+b0/NLSb9x5Z5F35cpkgD3OAAAAAAAAAADAQSguAQBAnezaVXzQ//rriw1LR2r37mTt2uLr2muTMWOS885LZs9ORowoKSx9369+lcybl9x0U7lzn/Sk5GMfS848U6PuMF19ddLSUnWK7mlpKQqUF11UdRIAAAAAAAAAAKAn82cjAwBAje3YkZx7bnLssckFFxxdaWl/tm0r5h57bHHOjh3lzqcPWrs2Of748ktLL3lJ8uCDRYtOaemwbN2aXHZZ1SmOzKWXFvkBAAAAAAAAAAAORHEJAABqZN++ZMmSZPz4oh/S2lrb81pbi3PGj0+WLk06Omp7Hr3Qnj3Je96TTJ+efO975c0dPLhYG/S1ryXPfnZ5c/u4ffuSs89O2turTnJk2tuTOXP8WgMAAAAAAAAAAByY4hIAANTA1q3JtGnJJZfUv5TQ3p4sXFicbxsK/2vz5mTq1OQDH0g6O8ube/zxycaNybx5yQC/xeyOa65J1q+vOsXRWbeu6KwBAAAAAAAAAADsj0+VAQBAiTo7k2XLkkmTqi8krFtX5Fi2rNyeCr1MZ2fRkDnppOS++8qbO2BA8u53F2/0CRPKm9tP7NiRLFpUdYpyLFpU3AcAAAAAAAAAAOB3KS4BAEBJ9u5NZs9OFiyo/5alA2lvL/LMnl3ko5/5/veTP//zZP78ct+Uz31ucvfdyfvfnwweXN7cfmTJkp7z68TRam8v7gMAAAAAAAAAAPC7FJcAAKAEbW3JqacmLS1VJ9m/lpYiX1tb1Umoi66uZOXK5LjjkrvuKnf2OecUm5umTSt3bj+ya1fP/bXiSLW0JI8+WnUKAAAAAAAAAACgp1FcAgCAo7R3b3Laacnq1VUnObjVq5PTT7d5qc/72c+SN7whOeus5LHHypv79Kcnd96Z3Hhj8qQnlTe3H1q5MmltrTpFuVpbi3sBAAAAAAAAAAA8nuISAAAchc7OZM6cnl9a+o077yzydnZWnYSa+OIXkwkTkn/6p3Lnvv71yebNySmnlDu3H+rqSpYvrzpFbSxfXtwPAAAAAAAAAADgNxSXAADgKFx9ddLSUnWK7mlpSa65puoUlOpXv0re9rbkda9LHnmkvLlPelKyYkVRhHra08qb24+tWZNs3151itrYti25++6qUwAAAAAAAAAAAD2J4hIAAByhrVuTyy6rOsWRufTSIj99wD33JCeckNx4Y7lzp09PHnggOfvspKGh3Nn92KpVVSeorb5+PwAAAAAAAAAAoHsUlwAA4Ajs21f0Odrbq05yZNrbkzlzko6OqpNwxPbsSd773uRFL0p27Chv7uDBybJlyde/njznOeXNJUmyYUPVCWqrr98PAAAAAAAAAADoHsUlAAA4Atdck6xfX3WKo7NuXXL11VWn4Ig89FDy/Ocn739/0tlZ3tzjjku+853koouSxsby5pKkKApu2lR1itratEkhEgAAAAAAAAAA+D+KSwAA0E07diSLFlWdohyLFpW7rIca6+xMrr02OfHEchswDQ3JwoVFG2/ixPLm8lu2bUtaW6tOUVu7dyfbt1edAgAAAAAAAAAA6CkUlwAAoJuWLEna26tOUY729uI+9AI/+EHyilckF15Y7hvwOc9J1qxJPvjBpKmpvLn8no0bq05QH/3lngAAAAAAAAAAwKEpLgEAQDfs2pW0tFSdolwtLcmjj1adggPq6ko+85liE9LXv17u7Le8JXnggeTFLy53Lvu1eXPVCeqjv9wTAAAAAAAAAAA4NMUlAADohpUrk9bWqlOUq7W1uBc90M9/npx2WnLmmcljj5U392lPS1atSv7+75MnPam8uRzUzp1VJ6iP/nJPAAAAAAAAAADg0BSXAADgMHV1JcuXV52iNpYvL+5HD/KlLxVblm6/vdy5s2YVK3Fmzix3LofU1lZ1gvroL/cEAAAAAAAAAAAOTXEJAAAO05o1yfbtVaeojW3bkrvvrjoFSZLdu5Pzzkte85rkxz8ub+4Tn5h88pPJ5z+fPP3p5c3lsO3ZU3WC+mhvrzoBAAAAAAAAAADQUyguAQDAYVq1quoEtdXX79crfPvbyaRJySc+Ue7cF784eeCB5M1vThoayp3NYRs8uOoE9dHUVHUCAAAAAAAAAACgp1BcAgCAw7RhQ9UJaquv369H27s3WbQomTYt+e53y5s7aFCyZEnyjW8kf/In5c3liAwZUnWC+ugv9wQAAAAAAAAAAA5tYNUBAACgN+joSDZtqjpFbW3aVNyzsbHqJP3M1q3JmWcmGzeWO3fixOSWW5Ljjy93Lkds5MiqE9RHf7knAAAAAAAAAABwaDYuAQDAYdi2LWltrTpFbe3enWzfXnWKfqSzM7nuuuTEE8stLTU0JBdfXKzQUlrqUSZMqDpBffSXewIAAAAAAAAAAIdm4xIAAOxHR0dRVtq4Mdm8OVm/vupE9bFxYzJuXNUp+oEf/jA5++zka18rd+6zn52sXJlMn17uXEoxeXLVCeqjv9wTAAAAAAAAAAA4NMUlAABI0tWVrFmTrFpVLKrZtKnvb1jan82bq07Qx3V1Jf/4j8k73pHs2lXu7LPPTj7ykeTJTy53LqUZMyYZOrRv/9oybFgyenTVKQAAAAAAAAAAgJ5CcQkAgH5t165iQc311xcblvq7nTurTtCH/eIXyXnnJbfdVu7cpz41uemm5PWvL3cupWtsTCZNStaurTpJ7UyaVNwTAAAAAAAAAAAgUVwCAKCf2rEjWbIkaWnp29tPuqutreoEfdRXvpK8+c3Jww+XO/eUU4rS0jOeUe5cambKlL5dXJoypeoEAAAAAAAAAABATzKg6gAAAFBP+/YVhaXx44u+h9LSb2tvrzpBH9Pampx/fvKqV5VbWnriE4s38KpVSku9zKxZVSeorb5+PwAAAAAAAAAAoHtsXAIAoN/YujU5++xk/fqqk/RcTU1VJ+hD1q9Pzjwz+Y//KHfutGnJypXJc59b7lzqYsaMZPToZPv2qpOUb8yYZPr0qlMAAAAAAAAAAAA9iY1LAAD0eZ2dybJlyaRJSkuHMmRI1Qn6gL17kyuuSF74wnJLS4MGJR/4QLJmjdJSL9bQkMydW3WK2pg7t7gfAAAAAAAAAADAb9i4BABAn7Z3bzJnTtLSUnWS3mHkyKoT9HLbtydnnJF85zvlzp0wIbnlluSEE8qd2890dCTbtiUbNyabNyc7dyZtbcmePcngwUVxb+TI4qf7pJOKzUiNjeXnmD07efe7k9bW8mdXZejQ4l4AAAAAAAAAAACPp7gEAECf1daWnHZasnp11Ul6jwkTqk7QS3V1JR//eLJgQfLrX5c3t6EhmT8/ufJK67COQFdXsaBq1apkw4Zk06bulYWGDSu6YlOmJLNmJTNmlLNRaMSIpLk5uemmo5/VUzQ3J8OHV50CAAAAAAAAAADoaRSXAADok/buVVo6EpMnV52gF/rRj5I3vzn56lfLnfvsZyef/nTRlqFbdu1KVq5Mrr++2LB0pHbvTtauLb6uvTYZMyY577xis9CIEUeXceHCImN7+9HN6Qmamor7AAAAAAAAAAAA/K4BVQcAAICydXYmc+YoLXXXsGHJ6NFVp+hlbr01mTix/NLS2WcnDzygtNRNO3Yk556bHHtscsEFR1da2p9t24q5xx5bnLNjx5HPGjUqWby4vGxVWry4uA8AAAAAAAAAAMDvUlwCAKDPufrqpKWl6hS9z6RJSWNj1Sl6iZ070/nXf5O86U3Jzp3lzX3qU5N/+qdkxYrkyU8ub24ft29fsmRJMn58ctNNSWtrbc9rbS3OGT8+Wbo06eg4sjnz5iUnn1xutnqbOjWZP7/qFAAAAAAAAAAAQE+luAQAQJ+ydWty2WVVp+idpkypOkHP1tWV3HVXcv1f/Wv+55iJGfDZfyz3gNe9LnnwweQv/7LcuX3c1q3JtGnJJZck7e31Pbu9PVm4sDh/69buv37gwOTmm5OmptKj1UVTU9GxU3gEAAAAAAAAAAAORHEJAIA+Y9++5Oyz619e6Ctmzao6Qc+0a1dy3XXJiWNa88BL35XzPv/KPH3Pj0qb3zVsWHLjjcmddybHHFPa3L6uszNZtqzYFLZ+fbVZ1q0rcixbVuTqjrFjkyuvrE2uWrvqqiI/AAAAAAAAAADAgSguAQDQZ1xzTfUFht5qzJhk+vSqU/QsO3Yk556bHHtssvKC7+Qf/+PEvCsfLfWMtXlhJnbcn3M3nJMd32sodXZftndvMnt2smBBzykqtrcXeWbPLvJ1x/z5SXNzbXLVSnNzMm9e1SkAAAAAAAAAAICeTnEJAIA+YceOZNGiqlP0XnPnJg16M0mKzV1LliTjxyefumlf5rcuzj15QcZke2ln7MmgvDvvz/TcnS1to3LTTcV5S5cmHR2lHdMntbUlp56atLRUnWT/WlqKfG1th/+aAQOSFSuSU06pXa4yzZxZ5B3gvygAAAAAAAAAAACH4GNGAAD0CUuW9JzNK73N0KHFlhiSrVuTadOSSy5J/rj9P7I207I4l2dQ9pV2xuaMz8lZnw/m3elM4//+eHt7snBhcf7WraUd16fs3ZucdlqyenXVSQ5u9erk9NO7t3lp0KDkttt6fnlp5szk1luLvAAAAAAAAAAAAIeiuAQAQK+3a1fP3b7SGzQ3J8OHV52iWp2dybJlyaRJyfr1XTkvy3NfTsjUrC/vjDTk6szLSflO7s8JB3zeunVFjmXLilwUOjuTOXN6fmnpN+68s8jbnb+HQ4Ykd9xRfE/2RM3Nye23FzkBAAAAAAAAAAAOh+ISAAC93sqVSWtr1Sl6p6amYstPf7Z3b7FxasGC5CntD+dLeXWW5x0Zml+Xdsb388d5Wb6ei3J12nPo1kd7e5Fn9uzube3py66+uvcVFFtakmuu6d5rBg0qfk1burT4/uwJmpqKIt3KlTYtAQAAAAAAAAAA3aO4BABAr9bVlSxfXnWK3mvx4mTUqKpTVKetLTn11KJg8sbclgczMa/KV0o949OZnePyQNbkJd1+bUtLka+trdRIvc7Wrclll1Wd4shcemmRvzsGDEguvjjZtCk5+eTa5DpcU6cWOS66qMgFAAAAAAAAAADQHT52BABAr7ZmTbJ9e9UpeqepU5P586tOUZ29e5PTTkvuXr0rt+SM3JbT8wf5RWnzf5Y/yKm5PWfn03ksw494zurVyemn99/NS/v2JWefXWyh6o3a25M5c5KOju6/duzYZO3aZMmS+m9famoqtj6tXVvkAAAAAAAAAAAAOBKKSwAA9GqrVlWdoHdqakpWrEgaG6tOUo3OzqJMsnv11/JgJuaMtJQ6/4t5TSbmwfxTTi1l3p13Fnk7O0sZ16tcc02yfn3VKY7OunXJ1Vcf2WsHDkwWLEi2bEnOOScZOrTcbL9r6NDinC1biq1P/fXXCAAAAAAAAAAAoByKSwAA9GobNlSdoHe66qr+vUXlIx/8dU5q+dt8LS/Ps/LD0ubuztCcmxvyunwhP8kzS5ubJC0tRYmnP9mxI1m0qOoU5Vi0qLjPkRo1KrnxxuThh5PrrkvGjCkvW1LMu+66Yv6NNxbnAQAAAAAAAAAAHC3FJQAAeq2OjmTTpqpT9D7Nzcm8eVWnqM5/3b4xr7p0cv42Hyl17rfyghyf+3NTzk3SUOrs37j00mTr1pqM7pGWLEna26tOUY729uI+R2v48OSd70weeii5667kwguTF72o+5uYhg0rXnfhhcWchx4q5g4ffvQZAQAAAAAAAAAAfmNg1QEAAOBIbduWtLZWnaJ3mTkzWbEiGdAf/wiDffvS8f4P5llXvC8Du/aVNnZvBubyvC9LsyAdNf4tVnt7MmdOsnZt0thY06Mqt2tXsWWqL2lpSZYtK6cc1NCQzJhRfCVFkXP79mTjxmTz5mTnzqStrXjPNDUlQ4YkI0cmEyYkkycno0f3/fcQAAAAAAAAAABQPcUlAAB6rY0bq07Qu8ycmdx6azJoUNVJKvDd7yazZ6fx298udeyWjMuZuSWbcmKpcw9m3brk6quTBQvqdmQlVq7se8XE1tbiXu98Z/mzGxuTceOKLwAAAAAAAAAAgJ6iP/456wAA9BGbN1edoPdobk5uv73YutKvdHUln/hEcsIJScmlpQ/nb3NSvlPX0tJvLFqU7NhR92PrpqsrWb686hS1sXx5cT8AAAAAAAAAAID+QHEJAIBea+fOqhP0fE1NybJlxZaXfrdp6cc/Tl772uS880pd3fODPCsvy9cyLx9OW55Q2tzuaG9Pliyp5Oi6WLMm2b696hS1sW1bcvfdVacAAAAAAAAAAACoD8UlAAB6rba2qhP0bFOnJps2JRddlAzob//m/7nPJRMmJF/6Uqljb8kZOS4P5Bt5Walzj0RLS/Loo1WnqI1Vq6pOUFt9/X4AAAAAAAAAAAC/0d8+vggAQB+yZ0/VCXqmpqZk6dJk7dpk7Niq09TZrl3JmWcmp52W/OIXpY39eZ6SN+RzmZ1b8mhGlDb3aLS2Fpu0+qING6pOUFt9/X4AAAAAAAAAAAC/obgEAECvNXhw1Ql6lqFDk3POSbZsSS6+OGlsrDpRnX3968lxxyWf+UypY7+UV2VCNueOvKHUuWVYvjzp6qo6Rbk6OopNYX3Zpk3FPQEAAAAAAAAAAPo6xSUAAHqtIUOqTtAzjBmTXHdd8vDDyY03JqNGVZ2ozn796+TCC5M///Pkv/+7tLG7MzRvz/V5Tf4lP8kzS5tbpm3bkrvvrjpFubZtK7ZJ9WW7dyfbt1edAgAAAAAAAAAAoPYGVh0AAACO1MiRVSeoxrBhyaRJyZQpyaxZyfTpSUND1akqcu+9yZlnJg89VOrYb2dqzswt+c88r9S5tbBqVTJjRtUpyrNxY9UJ6mPjxmTcuKpTAAAAAAAAAAAA1JbiEgAAvdaECVUnqI+XvCQ5+eTivpMnJ6NHJ42NVaeq2L59yZIlyRVXFP+/JHszMIuzKB/Iu9PRS367tGFD1QnKtXlz1Qnqo7/cEwAAAAAAAAAA6N96xyfxAABgPyZPrjpBfXz84zaz/Jb//M9k9uzknntKHbs1Y3JmbsnGnFTq3FrbtCnp6Og7ZbadO6tOUB/95Z4AAAAAAAAAAED/NqDqAAAAcKTGjEmGDq06RW0NG1ZsWCJJV1dyww3J8ceXXlr6SN6VE3NvrystJcnu3cn27VWnKE9bW9UJ6qO/3BMAAAAAAAAAAOjfFJcAAOi1GhuTSZOqTlFbkyb1nU06R+UnP0le97rk7W9PWltLG/vDHJuX51/zt/lI2vKE0ubW28aNVScoz549VSeoj/b2qhMAAAAAAAAAAADUnuISAAC92pQpVSeorb5+v8Nyxx3JhAnJv/xLqWNb8jeZmAfztby81LlV2Ly56gTlGTy46gT10dRUdQIAAAAAAAAAAIDaU1wCAKBXmzWr6gS11dfvd1CPPpqcdVbyhjckP/95aWN/kZE5PZ/NGWnJrowsbW6Vdu6sOkF5hgypOkF99Jd7AgAAAAAAAAAA/ZviEgAAvdqMGcno0VWnqI0xY5Lp06tOUZG77kqOOy5ZubLUsV/JKzMxD+a2nF7q3Kq1tVWdoDwj+0aX7JD6yz0BAAAAAAAAAID+TXEJAIBeraEhmTu36hS1MXducb9+pa0tmT8/ednLkh/8oLSxrXlC5ubjeVW+nIdzbGlze4r29qoTlGfChKoT1Ed/uScAAAAAAAAAANC/KS4BANDrzZ6dDB1adYpyDR1a3Ktf2bQpOemk5Jprkq6u0sauz5RMyqZcn7lJ+mYTrKmp6gTlmTy56gT10V/uCQAAAAAAAAAA9G+KSwAA9HojRiTNzVWnKFdzczJ8eNUp6qSjI/nAB5KpU5MtW8qb29iYO0+8ItOyNv+R0eXN7YGGDKk6QXnGjOl7RcTfNWxYMrpvvyUBAAAAAAAAAACSKC4BANBHLFzYd7bONDUV9+kXduxIpk9P3vOeZO/e8uaOHp3cc0+++eeXZ18GlTe3hxo5suoE5WlsTCZNqjpFbU2aVNwTAAAAAAAAAACgr1NcAgCgTxg1Klm8uOoU5Vi8uLhPn9bVldx0U3L88cm3vlXu7PPPT+69N5kyJRMmlDu6p+pr95wypeoEtdXX7wcAAAAAAAAAAPAbiksAAPQZ8+YlJ59cdYqjM3VqMn9+1Slq7JFHkpkzk3PPTXbvLm/uH/5h8tWvJh/9aDJ0aJJk8uTyxvdkfe2es2ZVnaC2+vr9AAAAAAAAAAAAfkNxCQCAPmPgwOTmm5OmpqqTHJmmpmTFiqSxseokNfT5zxfrgb7whXLnvulNyYMPJq94xW/98Jgx/9th6rOGDUtGj646RblmzOh7d/qNMWOS6dOrTgEAAAAAAAAAAFAfiksAAPQpY8cmV15ZdYojc9VVRf4+6bHHkjlzkr/6q+RnPytv7ogRyT/+Y/H1lKf83sONjcmkSeUd1xNNmtT3ym4NDcncuVWnqI25c4v7AQAAAAAAAAAA9AeKSwAA9Dnz5yfNzVWn6J7m5mTevKpT1MiaNclxxxXrsMr0ilcUW5be9KaDPm3KlHKP7Wn66v1mz+5727KGDi3uBQAAAAAAAAAA0F8oLgEA0OcMGJCsWJGcckrVSQ7PzJlF3gF97d/O29qSiy9OXvrS5PvfL2/ukCHJRz+afPnLyR/90SGfPmtWeUf3RH31fiNG9L4C4qE0NyfDh1edAgAAAAAAAAAAoH762kcjAQAgSTJoUHLbbT2/vDRzZnLrrUXePuX++4tVQB/6UNLVVd7ck05KNm1Kzj//sJteM2Yko0eXF6EnGTMmmT696hS1s3Bh0tRUdYpyNDUV9wEAAAAAAAAAAOhPFJcAAOizhgxJ7rij525taW5Obr+9yNlndHQkS5YUpaXNm8ub29iYXH558q1vFW2dbmhoSObOLS9KTzJ3bnG/vmrUqGTx4qpTlGPx4uI+AAAAAAAAAAAA/YniEgAAfdqgQcnKlcnSpT1nc0tTU7JsWZGrT21a+t73kpe8JLnkkmTv3vLm/tmfFYWlK6444p+w2bOToUPLi9QTDB1a3KuvmzcvOfnkqlMcnalTk/nzq04BAAAAAAAAAABQf4pLAAD0eQMGJBdfnGzaVH0BYurUIsdFFxW5+oSuruSTn0yOPz755jfLnf2Od5TyN27EiJ67eetINTcnw4dXnaL2Bg5Mbr655xQPu6upKVmxolgaBgAAAAAAAAAA0N/0lY9KAgDAIY0dm6xdmyxZUv8SRFNTsfVp7doiR5/xyCPJrFnJW9+a/OpX5c195jOTL385+djHSluVtHBh7y2//K6mpuI+/cXYscmVV1ad4shcdVUf+54HAAAAAAAAAADoBsUlAAD6lYEDkwULki1bknPOKa0Tc0BDhxbnbNlSbH3qU1tXVq1KJk5MVq8ud+5ppyWbNyd/8Reljh01Klm8uNSRlVm8uLhPfzJ/fu/bmtXcnMybV3UKAAAAAAAAAACA6iguAQDQL40aldx4Y/Lww8l11yVjxpQ7f8yYYu7DDxfn9KmSyWOPJW95S/L61yc//Wl5c0eMSFpaks9+NnnKU8qb+zjz5iUnn1yT0XUzdWpR4ulvBgxIVqxITjml6iSHZ+bMIu8Av+sGAAAAAAAAAAD6MR+hAgCgXxs+PHnnO5OHHkruuiu58MLkRS/q/iamYcOK1114YTHnoYeKucOH1yJ1hf7935Pjj08+9aly5/75nycPPpj8zd8kDQ3lzn6cgQOTm29OmppqdkRNNTUVZZg+tbmrGwYNSm67reeXl2bOTG69tcgLAAAAAAAAAADQnw2sOgAAAPQEDQ3JjBnFV5J0dCTbtycbNyabNyc7dyZtbUl7e1EeGTIkGTkymTAhmTw5GT26j5dJ2tuTRYuSZcuSrq7y5g4ZkixZkpx/ft1W04wdm1x5ZbJgQV2OK9VVVxX5+7MhQ5I77kjmzCkWdPU0zc1FuUxpCQAAAAAAAAAAQHEJAAD2q7ExGTeu+Or3HnggOfPM4n/LNHlycsstlTRx5s9P7r+/ZxZfDqS5OZk3r+oUPcOgQcnKlcXyr8suK3p1VWtqKopl8+bVrYMHAAAAAAAAAADQ4/k4FQAAsH8dHcWGpSlTyi0tNTYWbZN77qlsfdCAAcVWnFNOqeT4bps5s8irEPN/BgxILr442bQpOfnkarNMnVrkuOgif48AAAAAAAAAAAAez0eqAACA3/df/5W89KXJggXJnj3lzf3TP02++c1k8eJibU6FBg1Kbrut55eXZs5Mbr218p+uHmvs2GTt2mTJkmLrUT01NSVLlxbnV9TBAwAAAAAAAAAA6NEUlwAAgP/T1VWs9jnuuOTf/73c2eedl9x3X/L855c79ygMGZLccUfS3Fx1kv1rbk5uv73IyYENHFh07LZsSc45Jxk6tLbnDR1anLNlS7H1qbGxtucBAAAAAAAAAAD0VopLAABA4X/+J/nLv0ze/ObkV78qb+4xxyT/8i/J8uXJsGHlzS3JoEHJypXF5px6b+w5kKamZNmyIpdNS4dv1KjkxhuThx9OrrsuGTOm3PljxhRzH364OGfUqHLnAwAAAAAAAAAA9DWKSwAAQHLnncnEicmqVeXOfeMbk82bk1e/uty5JRswoNics2lTcvLJ1WaZOrXIcdFFRS66b/jw5J3vTB56KLnrruTCC5MXvaj7m5iGDSted+GFxZyHHirmDh9ei9QAAAAAAAAAAAB9z8CqAwAAABX65S+LVsYnP1nu3OHDk49/PPmbv0kaGsqdXUNjxyZr1ybXXJMsWpS0t9fv7Kam5Mork3nzksbG+p3blzU0JDNmFF9J0tGRbN+ebNxY9Ol27kza2oq/z01NyZAhyciRyYQJyeTJyejR/l4AAAAAAAAAAAAcDcUlAADor775zWT27OS//qvcuS97WXLzzcmznlXu3DoZODBZsCA59dRkyZKkpSVpba3deUOHJs3NycKFyahRtTuHooQ0blzxBQAAAAAAAAAAQO0pLgEAcMQ6OpJt235/e8mePcngwb+9veSkk2wv6THa25PLL0+WLk26usqb29SUfPCDybvelQwYUN7ciowaldx4Y7JsWbJyZbJ8efF+L8uYMcncuUV3bPjw8uYCAAAAAAAAAABAT6G4BADAYevqStasSVatSjZsSDZt6t4mmmHDkhNOSKZMSWbNSmbMSBoaahaX/dm8OTnjjOT++8udO2lS8pnP9MlVNsOHJ+98Z3L++cndd//f+//ee7v//p806f/e/9One/8DAAAAAAAAAADQtykuAQBwSLt2FRtnrr/+6DbO7N6drF1bfF17bbFx5rzzio0zI0aUFJb96+hIPvzh5L3vLVZilWXAgOTd704WLSrWbPVhDQ1F2W7GjOKvOzqS7dt/f+NYe3uxfOrxG8cmT7ZxDAAAAAAAAAAAgP5HcQkAgAPasSNZsiRpaeneZpnDtW1bcsEFRe+luTlZuDAZNar8c/q9738/OeusYl1WmUaNSm65JXnBC8qd20s0NhYLpvrgkikAAAAAAAAAAAAoxYCqAwAA0PPs21cUlsaPT266qTalpcdrbS3OGT8+Wbq02GRDCbq6kptvTiZOLL+09La3Jffd129LSwAAAAAAAAAAAMChKS4BAPBbtm5Npk1LLrkkaW+v79nt7cXWpWnTihwchZ/+NDn11GTOnOSXvyxv7jOekXzhC8knPpE88YnlzQUAAAAAAAAAAAD6HMUlAACSJJ2dybJlyaRJyfr11WZZt67IsWxZkYtu+sIXii1Ln/98uXNPPTXZvDl57WvLnQsAAAAAAAAAAAD0SYpLAABk795k9uxkwYL6b1k6kPb2Is/s2UU+DsOvfpWce25yyinJI4+UN/fJT05Wrkw+97nkqU8tby4AAAAAAAAAAADQpw2sOgAAANVqa0tOOy1ZvbrqJPvX0pI89lhy223JkCFVp+nB1q4tWl7f+165c1/ykuTmm5NnP7vcuQAAAAAAAAAAAECfZ+MSAEA/tndvzy4t/cbq1cnpp9u8tF979iTveU8yfXq5paWmpuTqq5OvfU1pCQAAAAAAAAAAADgiiksAAP1UZ2cyZ07PLy39xp13Fnk7O6tO0oNs2ZJMnZp84APl/sQcf3zyne8k8+YlA/yWAQAAAAAAAAAAADgyA6sOAABAuTo6km3bko0bk82bk507k7a2YjHP4MHJkCHJyJHJD36Q3Hpr1Wm7p6UlOeGE5KKLqk5Ssc7O5Npri01L7e3lzR0wIFm4MLniiuLNAgAAAAAAAAAAAHAUFJcAAHq5rq5kzZpk1apkw4Zk06aktbXqVLVz6aXJa1+bjB1bdZKK/OAHydlnJ9/4Rrlzn/vcZOXKZNq0cucCAAAAAAAAAAAA/ZbiEgBAL7VrV9Ezuf76YsNSf9HensyZk6xdmzQ2Vp2mjrq6kltuSd75zuSxx8qdfc45ydVXJ096UrlzAQAAAAAAAAAAgH5tQNUBAADonh07knPPTY49Nrnggv5VWvqNdeuKnk2/8bOfJW98Y3LWWeWWlp7xjGT16uTGG5WWAAAAAAAAAAAAgNIpLgEA9BL79iVLliTjxyc33ZS0tladqFqLFhUlrj7vX/4lmTgxueOOcuf+5V8mDz6YvO515c4FAAAAAAAAAAAA+P8pLgEA9AJbtybTpiWXXJK0t1edpmdoby+KXH3Wr36VvP3tyWtfm/zkJ+XNfdKTkptvLopQT3taeXMBAAAAAAAAAAAAfofiEvRjO3fuzDHHHJOGhoZDfp199tlVxwXolzo7k2XLkkmTkvXrq07T87S0JI8+WnWKGrjnnuSEE5Ibbih37vTpyQMPJGedlTQ0lDsbAAAAAAAAAAAA4HcoLkE/Nn/+/DzyyCNVxwDgAPbuTWbPThYssGXpQFpbk5Urq05Roj17kksvTV70omTHjvLmDh6cfOhDyTe+kTznOeXNBQAAAAAAAAAAADgIxSXop77+9a9nxYoVVccA4ADa2pJTTy02CnFwy5cnXV1VpyjBQw8lL3hB8nd/V6zaKsvxxyff+U4yf34ywL/+AwAAAAAAAAAAAPXjk4vQD/3617/OueeeW3UMAA5g797ktNOS1aurTtI7bNuW3H131SmOQmdncu21yYknJvfeW97choZk4cJk3bpk4sTy5gIAAAAAAAAAAAAcJsUl6Icuv/zy7Nixo+oYAOxHZ2cyZ47SUnetWlV1giP0gx8kr3hFcuGFSXt7eXP/5E+KNtcHP5g0NZU3FwAAAAAAAAAAAKAbFJegn9m0aVM+/OEPVx0DgAO4+uqkpaXqFL3Phg1VJ+imrq7kM59Jjjsu+frXy539lrck99+fvOhF5c4FAAAAAAAAAAAA6KaBVQcA6qejoyNvectbsm/fvqqjALAfW7cml11WdYreadOmpKMjaWysOslh+PnPk/POSz73uXLnPv3pyU03JTNnljsXAAAAAAAAAAAA4AjZuAT9yNVXX51Nmzbt97HnPve5dU4DwOPt25ecfXbS3l51kt5p9+5k+/aqUxyGL385mTix/NLSrFnJgw8qLQEAAAAAAAAAAAA9iuIS9BM7duzIFVdcsd/HXvjCF+aMM86obyAAfss11yTr11edonfbuLHqBAexe3cyd27y6lcnP/5xeXOf9KTkU59KPv/5YuMSAAAAAAAAAAAAQA+iuAT9xNve9rb8+te//r0fHzRoUG644YY0NDRUkAqAJNmxI1m0qOoUvd/mzVUnOIB165JJk5Lrry937otfnNx/fzJnTuKf4wAAAAAAAAAAAEAPpLgE/cCnPvWpfO1rX9vvY/Pnz8+ECRPqnAiAx1uyJGlvrzpF77dzZ9UJfsfevUUjbdq05LvfLW/u4MHJ0qXJN76R/MmflDcXAAAAAAAAAAAAoGQDqw4A1NYjjzySiy66aL+PPfe5z80iKz4AKrVrV9LSUnWKvqGtreoEj7N1a3LmmcnGjeXOnTgx+cxnkuOOK3cuAAAAAAAAAAAAQA3YuAR93Lve9a7sPMAKiuXLl+cJT3hCnRMB8HgrVyatrVWn6Bt6xNaqzs7kuuuSE08st7TU0JAsWJBs2KC0BAAAAAAAAAAAAPQaNi5BH7Z69ercdttt+33s9NNPz1/8xV/UOREAj9fVlSxfXnWKvqOpqeIAP/xhcvbZyde+Vu7c5zwn+fSnk+nTy50LAAAAAAAAAAAAUGM2LkEf9ctf/jJz587d72MjRozItddeW99AAPyeNWuS7durTtF3DBlS0cFdXck//EMycWL5paU3vzm5/36lJQAAAAAAAAAAAKBXsnEJ+qhLLrkkP/zhD/f72Ac+8IEcc8wxdU4EwO9atarqBH3LyJEVHPqLXyTnnZccYMPhEXva05KbbkpmzSp3LgAAAAAAAAAAAEAdKS5BH/Stb30r119//X4fe8ELXpC3ve1tdU4EwP5s2FB1gr5lwoQ6H/iVryRz5iQ//nG5c2fOLEpLT396uXMfp6Mj2bYt2bgx2bw52bkzaWtL9uxJBg8utleNHFn8nJ50UjJ6dNLYWLM4AAAAAAAAAAAAQB+luAR9zJ49e/LWt741XV1dv/fYwIEDc8MNN6ShoaGCZAA8XkdHsmlT1Sn6lsmT63TQ7t3JggXJ8uXlzn3iE5Nrr03e/Oak5H9Wd3Ula9YUW742bCjee62th//6YcOSE05IpkwplkDNmFF6RAAAAAAAAAAAAKAPUlyCPubv/u7vsnXr1v0+Nm/evEycOLHOiQDYn23bulcc4eCGDSu2AtXcunXJmWcm3/1uuXNf9KLk059OnvvcUsfu2pWsXJlcf33xnjtSu3cna9cWX9dem4wZk5x3XjJ7djJiRElhAQAAAAAAAAAAgD5HcQn6kIceeigf/OAH9/vYc57znFx++eV1TgTUSkdHUULYuDHZvDnZuTNpa0v27EkGD06GDElGjkwmTEhOOqkodDQ2Vp2ax9u4seoEfcukSTV+j+/dm1x1VfJ3f1d8A5Zl0KDkyiuTiy4q9QI7diRLliQtLbUpyG3bllxwQfLudyfNzcnChcmoUeWfAwAAAAAAAAAAAPRuikvQR3R2duatb31r9uzZs9/Hly9fnqFDh9Y5FVCWrq5kzZpk1apkw4Zk06bulRGGDUtOOCGZMiWZNSuZMSNpaKhZXA7D5s1VJ+hbpkyp4fBt24otS9/5TrlzJ0xIPvOZ5PjjSxu5b19y9dXJ5Zcn7e2ljT2g1tbkppuKrU6LFyfz5ytJAgAAAAAAAAAAAP9nQNUBgHJ8/OMfzz333LPfx0477bS8+tWvrnMioAy7diXXXZeMG5e89KXJtdcma9d2f4PK7t3F6669tpgzblwxd9eu8jNzeHburDpB3zJrVg2GdnYmH/1osc6pzNJSQ0OxYWnDhlJLS1u3JtOmJZdcUp/S0uO1txdbl6ZNK3IAAAAAAAAAAAAAJIpL0Cf893//d9773vfu97Hhw4fn2muvrW8g4Kjt2JGce25y7LHJBRcUC1/KtG1bMffYY4tzduwodz6H1tZWdYK+Y8yYZPr0kof+6EfJq16VvOtd5f7Nevazk298I1m2LBkypJSRnZ3FuEmTkvXrSxl5xNatK3IsW1bkAgAAAAAAAAAAAPo3xSXoA+bOnZtf/vKX+33s/e9/f575zGfWORFwpPbtS5YsScaPT266qfublbqrtbU4Z/z4ZOnSpKOjtufxf/bsqTpB3zF3brHEqDSf/WwyYULyr/9a4tAkZ5+dPPBAMmNGaSP37k1mz04WLKj/lqUDaW8v8syeXeQDAAAAAAAAAAAA+i/FJejlPvvZz+YLX/jCfh97/vOfn7e//e11TgQcqa1bk2nTkksuqX8Bob09WbiwOH/r1vqe3V8NHlx1gr5h6NCiIFOKX/wi+eu/Lr527SppaJKnPjX5p39KVqxInvzk0sa2tSWnnpq0tJQ2slQtLUU+28UAAAAAAAAAAACg/xpYdQDgyP3iF7/IBRdcsN/HBg4cmBtuuCEDBvS/fuLHP/7xLF++vObn7Nixo+Zn0D90diZXX51cdln1G1PWrUsmTUquvDKZPz/ph7+E1M2QIVUn6Buam5Phw0sY9NWvJnPmJA8/XMKwx3nd64q1ZsccU+rYvXuT005LVq8udWzpVq9OTj89uf32ZNCgqtMAAAAAAAAAAAAA9aa4BL3YvHnz8j//8z/7fezCCy/McccdV+dEPcNPf/rTPPTQQ1XHgMOyd2/RlehJG1Pa25MFC5L77y8WxCgb1MbIkVUn6P2amopNYUeltbUY8rGPlZLpfw0bllx7bfKWtyQNDaWO7uwsft3o6aWl37jzziLvypXKkAAAAAAAAAAAANDf+Ogg9FL/9m//lk9/+tP7fezZz352rrjiivoGArqtrS059dSeVVp6vJaWIl9bW9VJ+qYJE6pO0PstXpyMGnUUAzZsSE48sfzS0gtfWDT/3vrW0ktLSbGhraf+unEgLS3JNddUnQIAAAAAAAAAAACoN8Ul6IVaW1vztre97YCPf/zjH8/QoUPrmAjorr17k9NO6/kbU1avTk4/vchLuSZPrjpB7zZ1ajJ//hG+eO/e5H3vS17wgmT79vJCDRqUvP/9yd13H2Wj6sC2bk0uu6wmo2vu0kuL/AAAAAAAAAAAAED/obgEvdCiRYvyve99b7+PveENb8hrX/vaOicCuqOzM5kzp+eXln7jzjuLvJ2dVSfpW8aMSXRMj0xTU7JiRdLYeAQv3r49mTYtueKKpKOjvFDjxyfr1yfvfvcRBju0ffuSs89O2ttrMr7m2tuLX0vK/GkHAAAAAAAAAAAAejbFJehlNm7cmGuvvXa/jz35yU/OddddV99AQLddfXXS0lJ1iu5paUmuuabqFH1LY2MyaVLVKXqnq65Kxo7t5ou6upKPf7z4Sd+wobwwDQ3JvHnJd76TnHBCeXP345prim5Ub7ZuXfFrIAAAAAAAAAAAANA/DKw6AHD49u3bl7e+9a3pOMCqgve///155jOfWedUPc/Tnva0jBs3rubn7NixI+29de0Fldm6NbnssqpTHJlLL01e+9ojKIz0YB0dybZtycaNyebNyc6dSVtbsmdPMnhwMmRIMnJkMmFCctJJyejR5S7TmTIlWbu2vHn9QXNz0RPqlh/9KHnzm5OvfrXcMH/8x8mnP5285CXlzt2PHTuSRYtqfkxdLFqUnHpqMmpU1UkAAAAAAAAAAACAWlNcgl7kQx/6UO677779PnbyySfnvPPOq2+gHuod73hH3vGOd9T8nPHjx+ehhx6q+Tn0Hfv2JWefnfTWvlt7ezJnTlG0KbO8U09dXcmaNcmqVcXSnU2bktbWw3/9sGHFUp0pU5JZs5IZM4qFO0dq1qzkAEv02I+ZM5MVK5IB3dkZeuutyXnnFa20Ms2enVx3XTJ8eLlzD2DJkt77a8fvam8v7nPjjVUnAQAAAAAAAAAAAGqtOx/7BCr0n//5n3nf+96338cGDhyYG264IQO69UluoN6uuSZZv77qFEdn3brk6qurTtF9u3YVHZNx45KXvrQoC61d273SUpLs3l287tpriznjxhVzd+06slwzZhRbnDi0mTOLDtKgQYf5gp07k7/5m+RNbyq3tPQHf5DcfnuxaalOpaVdu5KWlrocVTctLcmjj1adAgAAAAAAAAAAAKg1LQfoJc4999y0tbXt97ELLrggJ5xwQn0DAd2yY0eyaFHVKcqxaFFxn95gx47k3HOTY49NLrgg2bat3PnbthVzjz22OKe7Py8NDcncueVm6ouam4uu0JAhh/mCf/u3ZOLE5B//sdwgr3lNsnlzcuqp5c49hJUru1+y6+laW4t7AQAAAAAAAAAAAH2b4hL0Ap/85CfzjW98Y7+PPfvZzz7gJiag51iyJGlvrzpFOdrbi/v0ZPv2FRnHj09uuqn2pY/W1uKc8eOTpUuTjo7Df+3s2cnQobXL1ps1NSXLlhUFl8PatNTamrzrXckrXpH86EflBRk2LLnhhuQLX0iOOaa8uYehqytZvryuR9bN8uXF/QAAAAAAAAAAAIC+S3EJerhHHnkkF1988QEf/9jHPpZhw4bVMRHQXbt2JS0tVacoV0tL8uijVafYv61bk2nTkksuqX9ZrL09WbiwOH/r1sN7zYgRxUYhftvUqcmmTclFFyUDDuffWL/znWTy5OSjHy03yAtekNx3X7FSq6Gh3NmHYc2aZPv2uh9bF9u2JXffXXUKAAAAAAAAAAAAoJYUl6CHO//887Nz5879Pnbqqafmda97XZ0TAd21cmXtN/7UW2trca+epLOz2M4zaVKyfn21WdatK3IsW1bkOpSFC4vtQhQ/D0uXJmvXJmPHHsYL9u1LFi8uCkbbtpUXZODA5O/+rmjW/Omflje3m1atquzouujr9wMAAAAAAAAAAID+TnEJerA777wzt99++34fe/KTn5zrrruuzomA7urqSpYvrzpFbSxfXtyvJ9i7N5k9O1mwoP5blg6kvb3IM3t2ke9gRo0qujf92dChyTnnJFu2JBdfnDQ2HsaL/uM/khe9KLn88qLAVJZx44r22XveUxSYKrRhQ6XH11xfvx8AAAAAAAAAAAD0d4pL0IPNmzfvgI9dddVV+cM//MM6pgGOxJo1yfbtVaeojW3bimU0VWtrS049NWlpqTrJ/rW0FPna2g7+vHnzkpNPrk+mnmTMmOS665KHH05uvLEocR1SV1dy/fXJCScUBaMyXXhhsnFjcuKJ5c49Ah0dyaZNVaeorU2binsCAAAAAAAAAAAAfVO1f4Q8cFA/+9nP9vvjT37yk9PU1JS///u/L+2se++996CPf/e73z3keTNmzMjznve80jJBX7BqVdUJamvVqmTGjOrO37s3Oe20ZPXq6jIcjtWrk9NPT26/PRk0aP/PGTgwufnmZNKknrM1qhaGDSvuOGVKMmtWMn160tDQjQEPP5y85S3Jl79cbrBnPav4G/Cyl5U79yhs25a0tladorZ27y7KnePGVZ0EAAAAAAAAAAAAqAXFJeiFHnvssbztbW+r65nf+ta38q1vfeugz1mxYoXiEvyODRuqTlBbVd6vszOZM6fnl5Z+4847i7wrVyYDDrDzcuzY5MorkwUL6putDG96U/LHf5zs3Flsl2pvT5qakiFDkpEjkwkTksmTk9Gjk8bGIzzkc59L3v725Be/KDV7zjyzWPs0YkS5c4/Sxo1VJ6iPjRsVlwAAAAAAAAAAAKCvUlwCgBrp6Eg2bao6RW1t2lTc84iLKEfh6quTlpb6n3s0WlqSE05ILrrowM+ZPz+5//7edbfm5oMXso7arl3J+eeX/5PylKckN9yQvOEN5c4tyebNVSeoj/5yTwAAAAAAAAAAAOiPavXxUgDo97ZtS1pbq05RW7t3J9u31//crVuTyy6r/7lluPTSIv+BDBiQrFiRnHJK/TIdjZkzi7w1Ky197WvJxInll5Ze/eqiMdNDS0tJsb2qP+gv9wQAAAAAAAAAAID+SHEJAGpk48aqE9RHve+5b19y9tlJe3t9zy1Le3syZ06xqepABg1Kbrut55eXZs5Mbr21yFu6X/86+du/TV7+8uSHPyxv7tChyfXXJ1/8YvLMZ5Y3twba2qpOUB/95Z4AAAAAAAAAAADQHykuAUCNbN5cdYL6qPc9r7kmWb++vmeWbd265OqrD/6cIUOSO+5Impvrk6m7mpuT228vcpZu48Zk8uTkIx8pd+7zn5/cd1/y9rcnDQ3lzq6BPXuqTlAfvbWECAAAAAAAAAAAABya4hIA1MjOnVUnqI963nPHjmTRovqdV0uLFhX3OZhBg5KVK5OlS5OmpvrkOpSmpmTZsiJX6ZuW9u1LrrqqKBht3Vre3IEDkyuvTP7935PnPa+8uTU2eHDVCeqjp7y3AQAAAAAAAAAAgPIpLkEPtmvXrnR1ddXl6/LLLz9olrPOOuuQM84+++z6/MRAL9HWVnWC+qjnPZcs6TvbWdrbi/scyoABycUXJ5s2JSefXPtcBzN1apHjoouKXKX67neTF784ueyyosBUljFjkm9/O7n00qLA1IvUZJtVD9Rf7gkAAAAAAAAAAAD9keISANTInj1VJ6iPehWJdu1KWlrqc1a9tLQkjz56eM8dOzZZu7YoO9V7Q01TU7H1ae3aIkepurqST3wiOeGEomBUop+fcUE6NtybTJ5c6tx6GTmy6gT10V/uCQAAAAAAAADA/8fevcdpXdfp47+GGRgcVMB0y+xkpAyCB0JkU1dKy9RS1izNxkBLrEjXxAPWrrqhm6JprRbmoTCULSxd0dy2NV0PYZ4QVwGh/ZK6a7pmBqiMjDDM74/7t7WlAjN87vszh+fz8ZjHrjOf+/W+3jLirHtfvADoixSXAKBKBgwoO0Ft1KpEM3t20tpam7NqpbW1cq9N1dCQnHFGsnhxMnly0tRUvWxJZf7kyZXzTj89qa8v+IBnn00+8pHkC18o9Bf3v/O2HJCfZ9vrvpnBb9ki++6bnHJKcuedlZ5UTzFqVNkJaqOv3BMAAAAAAAAAAAD6IsUlAKiSgQPLTlAbtbhnR0cyc2b1zynDzJmdL9MMG5ZceWXyzDPJpZcmzc3FZmpursx95pnKOcOGFTs/SfLjHye77pr89KeFjr0uLdk1j+WOHJAkWb26sinqm99MPvCBZJddKndbubLQY6uihy6K6rS+ck8AAAAAAAAAAADoixSXAKBKhg4tO0Ft1OKed92VLFtW/XPKsHRpcvfdXXvt4MHJSSclS5ZUtgmdckqy776d38Q0aFD+ZCvRkiWVuYMHdy3XBq1alUycmHziE8kLLxQ29vcZmiMzN5/OdVmVIW/43NKlycknJzvskJxwQrJ8eWERCtfcXP2tWmUbNCgZPrzsFAAAAAAAAAAAAEC1NJQdAAB6q1Gjyk5QG7W457x51T+jTPPmJePHd/31dXWV1//vjPb2StFrwYJk0aJkxYpkzZqkrS1pbKxsyRo6tPJrN2ZMpThSX1/MXTbo3/89mTQp+e//LnTsv+bD+Uy+l2fz1k1+TWtrctVVyezZyfTpyamn1ujvQSfU1yejR1c2RvVWo0d3v7/vAAAAAAAAAAAAQHEUlwCgSsaMKTtBbdTing8+WP0zylT0/errk112qXx0C2vWJF/5SvKNbxQ6tjVb5LR8PZfnC0nqujSjrS2ZNi258cZk1qxkxIhCI262sWN7d3Fp7NiyEwAAAAAAAAAAAADV1K/sAADQWzU3J01NZaeorkGDKtt6qqm9PVm4sLpnlG3hwso9e6WFCyvttoJLS/dnr+yRR3J5pqSrpaU/mXd/ZfvPRRcl69dvfr6iTJhQdoLq6u33AwAAAAAAAAAAgL5OcQkAqqS+vlKE6M1Gj67cs5qWLk1aW6t7RtlWr06WLSs7RcHWrUu+9rVk3LhkyZLixqY+Z+er2Sfz85/ZubC5SWX70hlnJBMnJmvXFjq6y8aPr345sCzNzcl++5WdAgAAAAAAAAAAAKgmxSUAqKKxY8tOUF21uN+CBdU/ozvoVfdcvrzSSPnbvy20AbQ0w/OXuS/n5uy0p6GwuX9uzpzkiCOSNWuqdsQmq6tLpkwpO0V1TJlSuR8AAAAAAAAAAADQeykuAUAVTZhQdoLqqsX9Fi2q/hndQa+4Z0dHcuWVye67J7/8ZaGjL81JeW8ezoLsWejcN3LLLclRR3WPzUsTJyZNTWWnKFZTU+VeAAAAAAAAAAAAQO+muAQAVTR+fDJ8eNkpqqO5ubJUp9pWrKj+Gd1Bj7/n//xPcuihyec+l6xeXdjYp7NDPpR/y8m5NK+ktu2dm29OjjsuWb++pse+xpAhSUtLuRmK1tKSDB5cdgoAAAAAAAAAAACg2hSXAKCK6uqSKVPKTlEdU6ZU7ldta9ZU/4zuoEff88Ybk1GjkltvLXTsP+Xo7JrH8vN8qNC5nTFnTnLJJaUd/wfTpiWNjWWnKEZjY+U+AAAAAAAAAAAAQO+nuAQAVTZxYtJU20UxVdfUVLlXLbz6am3OKVtbW9kJumDVquTYY5MjjkheeKGwsSsyJJ/MD9KSf8rKDC1sblf93d8ljz9eboZhw5Lp08vNUJTp0yv3AQAAAAAAAAAAAHq/hrIDAN3D+9///g1+fY899qhJDuiNhgxJWlqSq64qO0lxWlqSwYNrc9aAAbU5p2w9bpvOnXcmkyYl//VfhY79t3wox2VWnskOhc7dHG1tyXHHJfPnJ/X15eWYOjW54YbkgQfKy7C5xo1LTj217BQAAAAAAAAAAABArSguAUkqxaWNlZeArps2LZk9u4du1fkzjY2V+9TKwIG1O6tMPeaea9ZUVhBdcknS0VHY2FcyMKfnoszMlHR0w6Wg99+fXHxxcsYZ5WVoaEiuuSYZPbpn/l7S2JjMmlVu+QsAAAAAAAAAAACore73rlAA6IWGDUumTy87RTGmT6/cp1aGDq3dWWXqEfd85JFk7NhKg6fA0tKD2TOjszDfzondsrT0v84+O1m+vNwMI0Yk555bboauOu+8Sn4AAAAAAAAAAACg7+i+7wwFgF5m6tRkr73KTrF5xo1LTj21tmeOGlXb88rSre/Z3p5ccEHlG3jRosLGrkt9/j7nZO/cm2VpLmxutbS1JTNmlJ2i8s9gS0vZKTqnpaXyeyAAAAAAAAAAAADQtyguAUCNNDQk11yTNDaWnaRrGhuTWbOS+vranjtmTG3PK0u3veevf52MH598+cvJ2rWFjf1VdsreuTdfzd9nXfoXNrfa5sxJVq0qN0O/fpV/Fg89tNwcm+qwwyp5+/m/PAAAAAAAAAAAAKDP8fZBAKihESOSc88tO0XXnHdeJX+tNTcnTU21P7eWBg1Khg8vO8Wf6ehIrr462W23ZP78Qkd/K1/MHnkkD6bnrSBrbU1mzy47RdK/f3L99d2/vHTYYcncuZW8AAAAAAAAAAAAQN+juAQANXbqqUlLS9kpOqelJZk6tZyz6+uT0aPLObtWRo+u/SarDXruuWTChGTy5GT16sLGPpPt8+H8a07Kt/JKem4bbebMSq+rbAMHJjfc0H1/P2lpSX7840pOAAAAAAAAAAAAoG9SXAKAGuvXL5k1q/tvSvlfhx1WyduvxJ8axo4t7+xa6Fb3u+mmZNSo5JZbCh07N0dmVBbl3/LhQueWYenS5O67y05R0b9/ZQPUhRcmjY1lp6lobEwuuqiSy6YlAAAAAAAAAAAA6NsUlwCgBP37J9df3/3LS4cdlsydW375YMKEcs+vtm5xvxdfTI47Ljn88OR3vyts7IoMyacyJ5/MD7Mi2xQ2t2zz5pWd4I/69UtOPz1ZuDDZa69ys4wbV8lx2mnllh0BAAAAAAAAAACA7sHbCQGgJAMHJjfckLS0lJ3k9bW0JD/+cSVn2caPT4YPLztFdTQ3J/vtV3KIu+9OdtstueaaQsf+PAdk1zyWH+RTSeoKnV22Bx8sO8FrjRiRzJ+fzJhR++1LjY2VrU/z51dyAAAAAAAAAAAAACSKSwBQqv79k9mzK2/4r3XR4I00NiYXXVTJVfampf9VV5dMmVJ2iuqYMqVyv1K0tVVW9bz//clTTxU2tmPgwJzW/x9zYP4tv8nbCpvbnSxcmLS3l53itRoakjPOSBYvTiZPTpqaqnteU1PlnMWLK99K9fXVPQ8AAAAAAAAAAADoWRSXAKBk/fpV3vC/cGGy117lZhk3rpLjtNMqubqTiROrX8Kotaamyr1K8eijydixyde/nnR0FDd3zJj8v7kP5+K1f5OOXvyj5urVybJlZad4Y8OGJVdemTzzTHLppZXNXkVqbq7MfeaZyjnDhhU7HwAAAAAAAAAAAOgdeu+7SQGghxkxIpk/P5kxo/bblxobK1uf5s+v5OiOhgxJWlrKTlGslpZk8OAaH9reXvkm23PP5LHHiptbX5+cdVbyy1/mlyu76TdRwRYsKDvBxg0enJx0UrJkSXLnnckppyT77tv5EuCgQZXXnXJKZc6SJZW5Nf/+BQAAAAAAAAAAAHqUhrIDAAB/1NCQnHFGcsQRlW7JnDlJa2v1zmtqqpRnpk3rGRtTpk1LZs9O2trKTrL5Ghsr96mpJ56orHj6xS+KnbvTTsm111ZWdiVZtKjY8d1VT7pnXV0yfnzlI6n015Ytq5SvFi1KVqxI1qyp/LPV2JgMHJgMHZqMGpWMGZMMH17ppgEAAAAAAAAAAAB0huISAHRDw4YlV16ZXHRRpagzc2aydGlx85ubkylTKh2W7rQxpb29cs8/L1O8+moyYEClTDFuXHL33WUn3XzTp9ewLNbRkcyalZx8cvLyy8XO/sIXKt+ogwb94VMrVhR7RHfVk+9ZX5/sskvlAwAAAAAAAAAAAKBaFJcAoBsbPDg56aTkxBMrZZ1585IHH0wefrhzm5gGDUpGj07Gjk0mTEj226+ygaVsHR3JXXf98V4LF1Z3w1R3MW5ccuqpNTrst79NJk9Obr652Lnbb59873vJQQe95ktr1hR7VHfVV+4JAAAAAAAAAAAA0FWKSwDQA9TVJePHVz6SymaiZcteu5morS1pbKxsJho6NBk1KhkzJhk+vLJhpbtYubKySeryy4vdJNUTNDZWlh/V5Ndj3rxKaen554ud+4lPVH7x3vSm1/3yq68We1x31dZWdgIAAAAAAAAAAACA7k1xCQB6oPr6ZJddKh89yfLlyYwZyZw5fWOz0us577xkxIgqH/Lii8kpp1Q2IhVp8ODk299OPvWpDa7sGjCg2GO7q8bGshMAAAAAAAAAAAAAdG+KSwBA1a1bl1x8cXLOOX17S01LSzJ1apUPueeeZOLE5Mkni527//7JNdckb3/7Rh8dOLDYo7urvnJPAAAAAAAAAAAAgK7qV3YAAKB3e/zxZJ99kjPP7NulpcMOS2bNSvpV66evtrZk2rRk/PhiS0sDBybf/GZy222bVFpKkqFDizu+O+sr9wQAAAAAAAAAAADoKhuXAICqWL++smXprLP6dmEpqZSW5s5N+vev0gGPPZYcc0zy6KPFzn3ve5Nrr0122aVTLxs1qtgY3VVfuScAAAAAAAAAAABAV9m4BAAUbu3aZOLE5IwzlJZaWpIf/7iyuKhw7e3JRRcle+5ZbGmpX7/k7/4u+eUvO11aSpIxY4qL0p31lXsCAAAAAAAAAAAAdJWNSwBAodasSY48MrnllrKTlKuxMTnvvGTq1EoPqHBPPllph91zT7Fz3/OeZPbs5H3v6/KI5uakqSlpbS0wVzczaFAyfHjZKQAAAAAAAAAAAAC6NxuXAIDCrF2rtJQk48YlCxcmp51WhdJSR0dyzTXJbrsVX1r6/OcrwTejtJQk9fXJ6NEFZeqmRo+u3BMAAAAAAAAAAACAN6a4BAAUYv365Ljj+nZpqbExufDCZP78ZMSIKhzw/PPJxz5W+Rv90kvFzX3LW5Jbb00uvzzZcstCRo4dW8iYbqu33w8AAAAAAAAAAACgCIpLAEAhLr44mTOn7BTlaGpKJk9OFi9OTj+9Spt4brklGTUquemmYucecUTy2GPJIYcUOnbChELHdTu9/X4AAAAAAAAAAAAARWgoOwAA0PM9/nhy1lllp6i95uZkypRk4sRk8OAqHfLSS8nUqcnVVxc7d+utk299KznmmKSurtjZScaPT4YPT5YtK3x06Zqbk/32KzsFAAAAAAAAAAAAQPenuAQAbJZ165Jjj03a2spOUn2DBiWjRydjx1Y27uy3X1U6P380f37y6U8nTzxR7NwPfCC55prkHe8odu7/UVdXKXWdfHLVjijNlClV/nUHAAAAAAAAAAAA6CUUlwCAzXLJJckDD5SdYvONH5/svHOyZk2lhNXYmAwcmAwdmowalYwZU9kgVF9fgzCvvpqcc05y4YXJ+vXFzW1sTM4/v9Im6tevuLlvYOLE5MtfTlpbq35UzTQ1Ve4FAAAAAAAAAAAAwMYpLgEAXbZ8eXL22WWnKMZ99yXf/W4ybFjJQRYtSo45JvmP/yh27h57JNddl4wcWezcDRgyJGlpSa66qmZHVl1LSzJ4cNkpAAAAAAAAAAAAAHqG6v9R+wBArzVjRmU7UW/Q1la5T2nWr08uvriy2qnI0lK/fslXvpLcf39NS0v/a9q0yqKn3qCxsXIfAAAAAAAAAAAAADaN4hIA0CUrVyZz5pSdolhz5iSrVpVw8FNPJfvvn5x2WvLqq8XNffe7k3vuSf7hH5IBA4qb2wnDhiXTp5dydOGmT+8GG7kAAAAAAAAAAAAAehDFJQCgS2bPTlpby05RrNbWyr1qpqOjcuBuuyV33VXs7BNOqGxu2nvvYud2wdSpyV57lZ1i84wbl5x6atkpAAAAAAAAAAAAAHoWxSUAoNM6OpKZM8tOUR0zZ1buV3W/+13y8Y8nkyYlL75Y3Nw3vzm55ZbkiiuSLbcsbu5maGhIrrkmaWwsO0nXNDYms2Yl9fVlJwEAAAAAAAAAAADoWRSXAIBOu+uuZNmyslNUx9Klyd13V/mQW29NRo1Kbryx2LmHH5489ljy0Y8WO7cAI0Yk555bdoquOe+8Sn4AAAAAAAAAAAAAOkdxCQDotHnzyk5QXVW738svJ5/7XKVY9Nxzxc3daqvKSqMbbki22664uQU79dSkpaXsFJ3T0pJMnVp2CgAAAAAAAAAAAICeqaHsAABAz/Pgg2UnqK6q3O/ee5OJE5Ply4udO3588v3vJ+98Z7Fzq6Bfv2TWrOTFF5Nbbik7zcYddlglbz9VfwAAAAAAAAAAAIAu8TZMAKBT2tuThQvLTlFdCxdW7lmIV19N/vZvk7/6q2JLSwMGJF//enLHHT2itPS/+vdPrr8+OfTQspNs2GGHJXPnVvICAAAAAAAAAAAA0DWKSwBApyxdmrS2lp2iulavTpYtK2DQ4sXJX/5l8rWvJevXFzDw/7f77smCBcmpp/bIdUADByY33JC0tJSd5PW1tCQ//nElJwAAAAAAAAAAAABd1/Pe6QoAlGrBgrIT1MZm3XP9+uQb30jGjCl2PVW/fsmZZyb335+MGlXc3BL075/Mnp1ceGHS2Fh2morGxuSiiyq5bFoCAAAAAAAAAAAA2HyKSwBApyxaVHaC2ujyPf/rv5IPfjCZOjVpaysu0Lvfndx9d3L++d2n6bOZ+vVLTj+90u3aa69ys4wbV8lx2mk9cokVAAAAAAAAAAAAQLfkbZkAQKesWFF2gtro9D07OpJrr0123TX5938vNszxxyePPJLss0+xc7uJESOS+fOTGTNq38lqbKxsfZo/v5IDAAAAAAAAAAAAgOIoLgEAnbJmTdkJaqNT93zhheTII5OJE5MXXywuxF/8RXLzzclVVyVbbVXc3G6ooSE544xk8eJk8uSkqam65zU1Vc5ZvLiy9am+vrrnAQAAAAAAAAAAAPRFiksAQKe8+mrZCWqjrW0TH/zpT5NRo5If/7jYAH/918miRcmhhxY7t5sbNiy58srkmWeSSy9NmpuLnd/cXJn7zDOVc4YNK3Y+AAAAAAAAAAAAAH/UUHYAAKBnGTCg7AS10di4kQdefjk57bTkiiuKPXirrSrNmkmTkrq6Ymf3IIMHJyedlJx4YnL33cm8ecmDDyYPP5y0tm76nEGDktGjk7FjkwkTkv3269N/WwEAAAAAAAAAAABqSnEJAOiUgQPLTlAbG7znffcln/508v/+X7GH7rdf8v3vJ+96V7Fze7C6umT8+MpHkrS3J8uWJQsWVBZSrViRrFlT2ZDV2Fj5dRs6tLIEa8yYZPjwpL6+3DsAAAAAAAAAAAAA9FWKSwBApwwdWnaC2njde776ajJ9enL++cn69cUdNmBA8g//kJxyipbNRtTXJ7vsUvkAAAAAAAAAAAAAoHtTXAIAOmXUqLIT1MZr7rlkSWXL0sMPF3vQbrsl115b+Z8AAAAAAAAAAAAA0Iv0KzsAANCzjBlTdoLa+MM9169PvvnN5L3vLba0VFeXTJuWPPCA0hIAAAAAAAAAAAAAvZKNSwBApzQ3J01NSWtr2UmqZ9CgZPjwJP/938mxxyZ33FHsAe96VzJ7dvJXf1XsXAAAAAAAAAAAAADoRmxcAgA6pb4+GT267BTVNXqPjtT/4Lpk112LLy199rPJo48qLQEAAAAAAAAAAADQ6ykuAQCdNnZs2QmqZ5u8kMt+e1Ty6U8nq1YVN3i77ZKbbkquvjrZaqvi5gIAAAAAAAAAAABAN6W4BAB02oQJZSeojg/nX/NYds0e//mjYgcfdliyaFHv/RsHAAAAAAAAAAAAAK9DcQkA6LTx45Phw8tOUZymrM63MyX/moPz1jxb3OAtt0y++93KpqW/+Ivi5gIAAAAAAAAAAABAD6C4BAB0Wl1dMmVK2SmKsVfuz8KMzpRcXuzgffdNHn00+cxnKn/DAAAAAAAAAAAAAKCPUVwCALpk4sSkqansFF3XkLX5as7O/OyTnfOfxQ3u3z+ZMSO5885kxx2LmwsAAAAAAAAAAAAAPYziEgDQJUOGJC0tZafomuY8nl/mfTk756Yh7cUN3nXX5MEHkzPOSOrri5sLAAAAAAAAAAAAAD2Q4hIA0GXTpiWNjWWn2HR1WZ+TcmkeznuzZxYUOLguOf30Smlp992LmwsAAAAAAAAAAAAAPZjiEgDQZcOGJdOnl51i0+yQp/OzfDiX5uRskTXFDX7nO5N///fkwgt7VosLAAAAAAAAAAAAAKpMcQkA2CxTpyZ77VV2ig37ZH6Qx7JrPpSfFzv42GOTRx9Nxo8vdi4AAAAAAAAAAAAA9AKKSwDAZmloSK65pnsuGxqa3+cH+WR+kE9laFYWN3jbbZMbb0xmzUq23rq4uQAAAAAAAAAAAADQiyguAQCbbcSI5Nxzy07xpw7Mz/JYds0nM7fYwR/9aLJoUXL44cXOBQAAAAAAAAAAAIBeRnEJACjEqacmLS1lp0i2SGsuy4n5WQ7KDnmmuMGDBiVXXZXcfHPy5jcXNxcAAAAAAAAAAAAAeqmGsgMAAL1Dv37JrFnJiy8mt9xSToaxeSDX5tMZnl8VO3jvvZPZs5Nhw4qdCwAAAAAAAAAAAAC9mI1LAEBh+vdPrr8+OfTQ2p7bkLU5J3+fe7N3saWl/v2T889P7r5baQkAAAAAAAAAAAAAOklxCQAo1MCByQ03JC0ttTlv5yzLvdk7f5+vpiHtxQ0eOTJ54IHkzDOT+vri5gIAAAAAAAAAAABAH6G4BAAUrn//ZPbs5MILk8bG6pxRl/X5Yr6VhRmdsXmowMF1yamnJg89lOyxR3FzAQAAAAAAAAAAAKCPUVwCAKqiX7/k9NOThQuTvfYqdvZb85v8aw7Kt3JSmvJKcYPf8Y7kjjuSr3+9sjoKAAAAAAAAAAAAAOgyxSUAoKpGjEjmz09mzChm+9KRmZvHsmsOzG2bP+z/mjQpefTR5P3vL3YuAAAAAAAAAAAAAPRRiksAQNU1NCRnnJEsXpxMnpw0NXV+xpCsyJx8KnPzyWyTFcWFe9ObkhtuSK65Jhk8uLi5AAAAAAAAAAAAANDHKS4BADUzbFhy5ZXJM88kl16aNDdv2us+mNvyWHbNp/KDYgMdckiyaFHysY8VOxcAAAAAAAAAAAAASEPZAQCA7q29PVm6NFmwoNLxWbEiWbMmefXVZMCAZODAZOjQZNSoZM89k+HDk/r6Dc8cPDg56aTkxBOTu+9O5s1LHnwwefjhpLX1j89tkdZckDPzN7ms2EsNGpRcckll/VNdXbGzAQAAAAAAAAAAAIAkiksAwJ/p6EjuuuuPZaKFC/+0TLQxgwYle+yRjB2bTJiQjB//xt2gurrK18ePr/x1e3uybFmlJLXitody5M3H5C2rlm32nf7E+96XzJ6dvOc9xc4FAAAAAAAAAAAAAP6E4hIAkCRZubLS57n88sqGpa5avTqZP7/y8c1vJs3NyRe+kEycmAwZsuHX1tcnu+y8Lrv8+GvJD85N1q3repA/19CQfPWryRlnVP53AAAAAAAAAAAAAKCq+pUdAAAo1/LlyQknJDvskJx88uaVll7P0qWVuTvsUDln+fINPPyrXyX77JOcc06xpaVddknuvz/5yleUlgAAAAAAAAAAAACgRhSXAKCPWrcumTEjGTkyueqqpLW1uue1tlbOGTkyufDCpL39/3yxoyOZOTPZY4/kgQeKPfiUU5KHHkre+95i5wIAAAAAAAAAAAAAG6S4BAB90OOPVxYbnXlm0tZW27Pb2pJp0yrnP/54kmeeSQ4+OPniF5NXXinuoLe/Pbn99uSSS5IttihuLgAAAAAAAAAAAACwSRSXAKAPWb8+ueiiZPTo4hcbddb99yfn7XZ9Xtlp1+RnPyt2+DHHJI8+muy/f7FzAQAAAAAAAAAAAIBN1lB2AACgNtauTY47Lpkzp+wkyeCszLdyYo5ZNydZV+DgbbZJrrgi+fjHCxwKAAAAAAAAAAAAAHSF4hIA9AFr1iRHHpncckvZSZL9c3uuybF5e54udvDBByff/W6y/fbFzgUAAAAAAAAAAAAAuqRf2QEAgOpau7Z7lJYG5pV8I1/K7flgsaWlpqZk5szk1luVlgAAAAAAAAAAAACgG7FxCQB6sfXrk+OOK7+09N4syLX5dHbJ48UOHjcuufbaZKedip0LAAAAAAAAAAAAAGw2G5cAoBe7+OJkzpzyzq/Puvxtzst9+ctiS0sNDcm55ya/+IXSEgAAAAAAAAAAAAB0UzYuAUAv9fjjyVlnlXf+e/KfmZ2JeV/uK3Zwc3Ny3XXJmDHFzgUAAAAAAAAAAAAACmXjEgD0QuvWJccem7S1lXF6Rz6X7+SR7FF8aenkk5OHH1ZaAgAAAAAAAAAAAIAewMYlAOiFLrkkeeCB2p/7ljyb7+azOSQ/LXbw296WzJqVfPCDxc4FAAAAAAAAAAAAAKrGxiUA6GWWL0/OPrv2534sN+Sx7Fp4aemlw1qSxx5TWgIAAAAAAAAAAACAHkZxCQB6mRkzkra22p23dVbl+5mYG/LxbJsXCpv7+wzNkZmbU998XTJkSGFzAQAAAAAAAAAAAIDaUFwCgF5k5cpkzpzanff+/Hsey66ZmGsLnfuv+XBGZVF+lCMzZ06yalWh4wEAAAAAAAAAAACAGlBcAoBeZPbspLW1+uc0Zk0uztT8e/bPO/Lfhc1tzRb5Qmbm4Pw0z+atlc+1Vu4FAAAAAAAAAAAAAPQsiksA0Et0dCQzZ1b/nD2yMAsyJlPzjULn3p+9skceyXfyhSR1f/K1mTMr9wMAAAAAAAAAAAAAeg7FJQDoJe66K1m2rHrz+6U9Z+b83J9xGZklhc1dl/qclenZJ/Pzn9n5dZ9ZujS5++7CjgQAAAAAAAAAAAAAaqCh7AAAQDHmzave7HdneWZnYvbJvYXOfTzN+XSuzYLsudFn581Lxo8v9HgAAAAAAAAAAAAAoIpsXAKAXuLBB6sxtSPH56r8R3YvvLT0j/mbvDcPb1JpKanW/QAAAAAAAAAAAACAarFxCQB6gfb2ZOHCYme+Of+TqzI5h+Ynhc59OjvkuMzKz/OhTr1u4cLKPevrC40DAAAAAAAAAAAAAFSJjUsA0AssXZq0thY376/zz3ksuxZeWvqnHJ1d81inS0tJsnp1smxZoXEAAAAAAAAAAAAAgCpSXAKAXmDBgmLmbJ1VmZVj88/5WLbL74oZmuT3GZqj8sO05J+yMkO7PKeoewIAAAAAAAAAAAAA1ddQdgAAYPMtWrT5M/bLXZmdiXln/mvzh/0fP8uB+Uy+l2eyw2bPKuKeAAAAAAAAAAAAAEBt2LgEAL3AihVdf21j1uSinJZ/zwcKLS21Zot8Md/KQfnXQkpLyebdEwAAAAAAAAAAAACoLRuXAKAXWLOma6/bPY/k2nw6u6bYVUYPZGw+nWvzqwwvdG5X7wkAAAAAAAAAAAAA1J6NSwDQC7z6auee75f2TMsFeSB7FVpaWpf6nJO/zz6ZX3hpKUna2gofCQAAAAAAAAAAAABUiY1LANALDBiw6c/umF9ndiZm38wvNMOy7Jxjcl0eythC5/5fjY1VGw0AAAAAAAAAAAAAFMzGJQDoBQYO3JSnOvLZXJ3/yO6Fl5Yuy4kZnYVVLS0lm3pPAAAAAAAAAAAAAKA7sHEJAHqBoUM3/PW/yHO5KpNzWG4p9Nzf5K05LrNyWw4sdO4b2dg9AQAAAAAAAAAAAIDuw8YlAOgFRo16469NyE15LLsWXlr6QT6ZXfNYzUpLyYbvCQAAAAAAAAAAAAB0L4pLANALjBnz2s9tlRfz3XwmN+Xw/EWeL+ysFRmSo/NP+VR+kBXZprC5m+L17gkAAAAAAAAAAAAAdE8NZQcAADZfc3PS1JS0tlb++q9yd76fSdkxTxZ6zr/lQ/lMvpff5G2Fzt0UgwYlw4fX/FgAAAAAAAAAAAAAoItsXAKAXqC+Phk9OhmQtszIGbkz7y+0tPRKBuakXJqD8q+llJaSyv3q60s5GgAAAAAAAAAAAADoAhuXAKCXOOxdj2bm/GOyWx4rdO5DGZNjcl2WpbnQuZ01dmypxwMAAAAAAAAAAAAAnWTjEgD0dO3tyYUX5rS5exZaWlqX+nw1Z+d9+WXppaUkmTCh7AQAAAAAAAAAAAAAQGfYuAQAPdkTTySTJiX33FNoG/lX2SmfzrV5IOMKnNp1zc3JfvuVnQIAAAAAAAAAAAAA6AwblwCgJ+roSL73vWS33ZJ77il09LczJaOzsNuUlpJkypSkrq7sFAAAAAAAAAAAAABAZ9i4BAA9zW9/m5xwQjJvXqFjn8n2+Uy+l5/loELnbq6mpmTixLJTAAAAAAAAAAAAAACdZeMSAPQkN9+cjBpVeGnp+nwiu+axbldaSpKWlmTw4LJTAAAAAAAAAAAAAACdpbgEAD3BSy8ln/1sMmFC8vzzhY1dmcFpyXU5KnPz+7ypsLlFaWxMpk0rOwUAAAAAAAAAAAAA0BUNZQcAADbiF79IJk5Mnnii0LG3Z/8cm2vydN5e6NwiTZ+eDBtWdgoAAAAAAAAAAAAAoCtsXAKA7qqtrbJuaL/9Ci0tvZKBOTnfzIdyW7cuLY0bl5x6atkpAAAAAAAAAAAAAICusnEJALqjxx5LjjkmefTRQscuyHvz6Vybx7NLoXOL1tiYzJqV1NeXnQQAAAAAAAAAAAAA6CoblwCgO2lvT77+9WTPPQstLbWnX87N3+V9+WW3Ly0lyXnnJSNGlJ0CAAAAAAAAAAAAANgcNi4BQHfx5JPJpEnJ3XcXOva5LYflr1++NvflfYXOrZaWlmTq1LJTAAAAAAAAAAAAAACby8YlAChbR0dyzTXJbrsVXlrK5z+fbf7rkWx3aM8oLR12WDJrVtLPTygAAAAAAAAAAAAA0ON5WzAAlOn555OPfSw57rjkpZeKm/uWtyS33ppcfnn6D90y11+fHHpoceOr4bDDkrlzk/79y04CAAAAAAAAAAAAABRBcQkAyvKTnySjRiU33VTs3COOSB57LDnkkD98auDA5IYbkpaWYo8qSktL8uMfV3ICAAAAAAAAAAAAAL2D4hIA1NpLLyWTJ1dWIP32t8XN3XrrZPbs5Ec/Srbd9jVf7t+/8uULL0waG4s7dnM0NiYXXVTJZdMSAAAAAAAAAAAAAPQuiksAUEvz5yd77JFcfXWxcz/wgcqWpU9/Oqmre8PH+vVLTj89Wbgw2WuvYiN01rhxlRynnVbJBQAAAAAAAAAAAAD0Lt4mDAC18OqryZe/nOy3X/LrXxc3t7ExueSS5Oc/T97xjk1+2YgRlQ7VjBm1377U2FjZ+jR/fiUHAAAAAAAAAAAAANA7KS4BQLUtWlRZL3TBBcn69cXN3WOPZMGC5JRTurSyqKEhOeOMZPHiZPLkpKmpuGivp6mpcs7ixZWtT/X11T0PAAAAAAAAAAAAACiX4hIAVMv69cnFFydjxiSPPFLc3H79kq98Jbn//mTkyM0eN2xYcuWVyTPPJJdemjQ3F5Dx/2hursx95pnKOcOGFTsfAAAAAAAAAAAAAOieGsoOAAC90lNPJZMmJXfdVezcd787ufbaZO+9i52bZPDg5KSTkhNPTO6+O5k3L3nwweThh5PW1k2fM2hQMnp0MnZsMmFCst9+SV1d4XEBAAAAAAAAAAAAgG5OcQkAitTRkcyenfzN3yQvvljs7BNOqGxw2nLLYuf+mbq6ZPz4ykeStLcny5YlCxYkixYlK1Yka9YkbW1JY2MycGAydGgyalRludTw4Ul9fVUjAgAAAAAAAAAAAAA9gOISABTld79LPve55MYbi5375jcnV1+dfPSjxc7dRPX1yS67VD4AAAAAAAAAAAAAADaV4hIAFOHWW5PPfjZ57rli5x5+eHLFFcl22xU7FwAAAAAAAAAAAACgyvqVHQAAerSXX65sWfroR4stLW21VXLNNckNNygtAQAAAAAAAAAAAAA9ko1LANBVjz6afOxjyfLlxc4dPz75/veTd76z2LkAAAAAAAAAAAAAADVk4xIAdNV22yUrVhQ3b8CA5OtfT+64Q2kJAAAAAAAAAAAAAOjxFJcAoKu23z75zneKmbX77smCBcmppyb9/OsZAAAAAAAAAAAAAOj5vDMaADbHJz6RHHNM11/fr19y5pnJ/fcno0YVlwsAAAAAAAAAAAAAoGSKSwCwuS67LHnb2zr/une/O7n77uT885PGxuJzAQAAAAAAAAAAAACUSHEJADbXkCHJ97/fuddMnpw88kiyzz7VSAQAAAAAAAAAAAAAUDrFJQAowv77J1/60saf+4u/SG6+ObnyymSrraoeCwAAAAAAAAAAAACgLIpLAFCUr30t2WWXN/76X/91smhRcuihNYsEAAAAAAAAAAAAAFAWxSUAKMoWWyTXXZc0NPzp57faKpk1K7nxxmS77crJBgAAAAAAAAAAAABQY4pLAFCk0aOTr371j3+9337Jo48mxx6b1NWVFgsAAAAAAAAAAAAAoNYaNv4IANApZ5yR/PznySGHJKecktTXl50IAAAAAAAAAAAAAKDmFJcAoGgNDZXiUj+LDQEAAAAAAAAAAACAvss7qgGgGpSWAAAAAAAAAAAAAIA+zsYlAIAaaG9Pli5NFixIFi1KVqxI1qxJXn01GTAgGTgwGTo0GTUq2XPPZPjwpL6+7NQAAAAAAAAAAAAA0HWKSwAAVdDRkdx1VzJvXvLgg8nChUlr66a/ftCgZI89krFjkwkTkvHjk7q6qsUFAAAAAAAAAAAAgMIpLgEAFGjlymT27OTyyysblrpq9epk/vzKxze/mTQ3J1/4QjJxYjJkSEFhAQAAAAAAAAAAAKCK+pUdAACgN1i+PDnhhGSHHZKTT9680tLrWbq0MneHHSrnLF9e7HwAAAAAAAAAAAAAKJriEgDAZli3LpkxIxk5MrnqqqS1tbrntbZWzhk5MrnwwqS9vbrnAQAAAAAAAAAAAEBXKS4BAHTR448n++yTnHlm0tZW27Pb2pJp0yrnP/54bc8GAAAAAAAAAAAAgE2huAQA0Enr1ycXXZSMHp088EC5We6/v5LjoosquQAAAAAAAAAAAACgu1BcAgDohLVrk4kTkzPOqP2WpTfS1lbJM3FiJR8AAAAAAAAAAAAAdAeKSwAAm2jNmuSII5I5c8pO8vrmzKnkW7Om7CQAAAAAAAAAAAAAoLgEALBJ1q5NjjwyueWWspNs2C23JEcdZfMSAAAAAAAAAAAAAOVTXAIA2Ij165Pjjuv+paX/dfPNlbzr15edBAAAAAAAAAAAAIC+THEJAGAjLr44mTOn7BSdM2dOcsklZacAAAAAAAAAAAAAoC9TXAIA2IDHH0/OOqvsFF3zd39XyQ8AAAAAAAAAAAAAZVBcAgB4A+vWJccem7S1lZ2ka9rakuOOS9rby04CAAAAAAAAAAAAQF+kuAQA8AYuuSR54IGyU2ye++9PLr647BQAAAAAAAAAAAAA9EWKSwAAr2P58uTss8tOUYyzz67cBwAAAAAAAAAAAABqSXEJAOB1zJiRtLWVnaIYbW2V+wAAAAAAAAAAAABALSkuAQD8mZUrkzlzyk5RrDlzklWryk4BAAAAAAAAAAAAQF+iuAQA8Gdmz05aW8tOUazW1sq9AAAAAAAAAAAAAKBWGsoOAAC9QXt7snRpsmBBsmhRsmJFsmZN8uqryYABycCBydChyahRyZ57JsOHJ/X1Zafm9XR0JDNnlp2iOmbOTE48MamrKzsJAAAAAAAAAAAAAH2B4hIAdEFHR3LXXcm8ecmDDyYLF3ZuQ8+gQckeeyRjxyYTJiTjxyuTdBd33ZUsW1Z2iupYujS5++7K9xsAAAAAAAAAAAAAVJviEgB0wsqVyezZyeWXV0ogXbV6dTJ/fuXjm99MmpuTL3whmTgxGTKkoLB0ybx5ZSeornnzFJcAAAAAAAAAAAAAqI1+ZQcAgJ5g+fLkhBOSHXZITj5580pLr2fp0srcHXaonLN8ebHz2XQPPlh2gurq7fcDAAAAAAAAAAAAoPtQXAKADVi3LpkxIxk5MrnqqqS1tbrntbZWzhk5MrnwwqS9vbrn8afa25OFC8tOUV0LF/q+AgAAAAAAAAAAAKA2FJcA4A08/niyzz7JmWcmbW21PbutLZk2rXL+44/X9uy+bOnS6pfTyrZ6dbJsWdkpAAAAAAAAAAAAAOgLFJcA4M+sX59cdFEyenTywAPlZrn//kqOiy6q5KK6FiwoO0Ft9JV7AgAAAAAAAAAAAFAuxSUA+D/Wrk0mTkzOOKP2W5beSFtbJc/EiZV8VM+iRWUnqI2+ck8AAAAAAAAAAAAAyqW4BAD/vzVrkiOOSObMKTvJ65szp5JvzZqyk/ReK1aUnaA2+so9AQAAAAAAAAAAACiX4hIApLLJ6Mgjk1tuKTvJht1yS3LUUTYvVUtfKYX1lXsCAAAAAAAAAAAAUC7FJQD6vPXrk+OO6/6lpf91882VvOvXl52k93n11bIT1EZbW9kJAAAAAAAAAAAAAOgLFJcA6PMuvjiZM6fsFJ0zZ05yySVlp+h9BgwoO0FtNDaWnQAAAAAAAAAAAACAvkBxCYA+7fHHk7POKjtF1/zd31XyU5yBA8tOUBt95Z4AAAAAAAAAAAAAlEtxCYA+a9265Nhjk7a2spN0TVtbctxxSXt72Ul6j6FDy05QG33lngAAAAAAAAAAAACUS3EJgD7rkkuSBx4oO8Xmuf/+5OKLy07Re4waVXaC2ugr9wQAAAAAAAAAAACgXIpLAPRJy5cnZ59ddopinH125T5svjFjyk5QG33lngAAAAAAAAAAAACUS3EJgD5pxoykra3sFMVoa6vch83X3Jw0NZWdoroGDUqGDy87BQAAAAAAAAAAAAB9geISAH3OypXJnDllpyjWnDnJqlVlp+j56uuT0aPLTlFdo0dX7gkAAAAAAAAAAAAA1aa4BECfM3t20tpadopitbZW7sXmGzu27ATV1dvvBwAAAAAAAAAAAED3obgEQJ/S0ZHMnFl2iuqYObNyPzbPhAllJ6iu3n4/AAAAAAAAAAAAALoPxSUA+pS77kqWLSs7RXUsXZrcfXfZKXq+8eOT4cPLTlEdzc3JfvuVnQIAAAAAAAAAAACAvkJxCYA+Zd68shNUV2+/Xy3U1SVTppSdojqmTKncDwAAAAAAAAAAAABqQXEJgD7lwQfLTlBdvf1+tTJxYtLUVHaKYjU1Ve4FAAAAAAAAAAAAALWiuARAn9HenixcWHaK6lq4sHJPNs+QIUlLS9kpitXSkgweXHYKAAAAAAAAAAAAAPoSxSUA+oylS5PW1rJTVNfq1cmyZWWn6B2mTUsaG8tOUYzGxsp9AAAAAAAAAAAAAKCWFJcA6DMWLCg7QW30lXtW27BhyfTpZacoxvTplfsAAAAAAAAAAAAAQC0pLgHQZyxaVHaC2ugr96yFqVOTvfYqO8XmGTcuOfXUslMAAAAAAAAAAAAA0BcpLgHQZ6xYUXaC2ugr96yFhobkmmuSxsayk3RNY2Mya1ZSX192EgAAAAAAAAAAAAD6IsUlAPqMNWvKTlAbfeWetTJiRHLuuWWn6JrzzqvkBwAAAAAAAAAAAIAyKC4B0Ge8+mrZCWqjra3sBL3PqacmLS1lp+iclpZk6tSyUwAAAAAAAAAAAADQlykuAdBnDBhQdoLaaGwsO0Hv069fMmtWcuihZSfZNIcdVsnbz096AAAAAAAAAAAAAJTI21kB6DMGDiw7QW30lXvWWv/+yfXXd//y0mGHJXPnVvICAAAAAAAAAAAAQJkUlwDoM4YOLTtBbfSVe5Zh4MDkhhuSlpayk7y+lpbkxz9WXgMAAAAAAAAAAACge1BcAqDPGDWq7AS10VfuWZb+/ZPZs5MLL0waG8tOU9HYmFx0USWXTUsAAAAAAAAAAAAAdBeKSwD0GWPGlJ2gNvrKPcvUr19y+unJwoXJXnuVm2XcuEqO006r5AIAAAAAAAAAAACA7sLbWwHoM5qbk6amslNU16BByfDhZafoO0aMSObPT2bMqP32pcbGytan+fMrOQAAAAAAAAAAAACgu1FcAqDPqK9PRo8uO0V1jR5duSe109CQnHFGsnhxMnly9ctxTU2VcxYvrmx98usNAAAAAAAAAAAAQHeluARAnzJ2bNkJqqu33687GzYsufLK5JlnkksvrWz4KlJzc2XuM89Uzhk2rNj5AAAAAAAAAAAAAFA0xSUA+pQJE8pOUF29/X49weDByUknJUuWJHfemZxySrLvvp3fxDRoUOV1p5xSmbNkSWXu4MHVSA0AAAAAAAAAAAAAxWsoOwAA1NL48cnw4cmyZWUnKV5zc7LffmWn4H/V1VW+38aPr/x1e3vl+27BgmTRomTFimTNmqStLWlsTAYOTIYOTUaNSsaMqXyf1teXewcAAAAAAAAAAAAA2ByKSwD0KXV1yZQpycknl52keFOmVO5H91Rfn+yyS+UDAAAAAAAAAAAAAPqCfmUHAIBamzgxaWoqO0Wxmpoq9wIAAAAAAAAAAAAA6C4UlwDoc4YMSVpayk5RrJaWZPDgslMAAAAAAAAAAAAAAPyR4hIAfdK0aUljY9kpitHYWLkPAAAAAAAAAAAAAEB3orgEQJ80bFgyfXrZKYoxfXrlPgAAAAAAAAAAAAAA3YniEgB91tSpyV57lZ1i84wbl5x6atkpAAAAAAAAAAAAAABeq6HsAEAx1q5dm6VLl2bRokVZvHhxFi1alKeffjorV67MypUrs2rVqtTX12fgwIHZZptt8ta3vjU77rhjdtttt4wdOzZ77713BgwYUPY1oKYaGpJrrklGj07a2spO03mNjcmsWUl9fdlJAAAAAAAAAAAAAABeS3EJeqj169dn4cKFueOOO3L77bfnnnvuSWtr6wZfs27durS1tWXVqlV54oknMn/+/D98rampKQceeGAmTZqUj370o2lo8NsDfcOIEcm55yZnnFF2ks4777xKfgAAAAAAAAAAAACA7kgzAXqQdevW5fbbb8/cuXMzb968/P73vy9sdmtra2666abcdNNN2XHHHXPmmWfms5/9bOqtcqEPOPXU5D/+I5kzp+wkm66lJZk6tewUAAAAAAAAAAAAAABvrF/ZAYCNW7x4cSZPnpy3vOUtOeiggzJr1qxCS0t/7oknnsjnPve57LXXXlm4cGHVzoHuol+/ZNas5NBDy06yaQ47rJK3n3+LAwAAAAAAAAAAAADdmLc8Qw9wyy235Oqrr84LL7xQ03MffvjhvO9978sVV1xR03OhDP37J9df3/3LS4cdlsydW8kLAAAAAAAAAAAAANCdKS4BG9TW1pbPf/7zOeecc8qOAlU3cGByww1JS0vZSV5fS0vy4x9XcgIAAAAAAAAAAAAAdHcNZQcAildfX5+RI0dmxIgR2XHHHbPttttm0KBBWbNmTV544YU8++yz+cUvfpFly5Zt8szp06enqakp06ZNq2JyKF///sns2cnuuydnnZW0tZWdKGlsTM47L5k6NemncgwAAAAAAAAAAAAA9BCKS9BLNDc359BDD83BBx+ccePGpampaaOvefbZZ3PllVfmsssuywsvvLDR57/85S9n1113zSGHHFJEZOi2+vVLTj89+ehHk2OPTR54oLws48Yls2YlI0aUlwEAAAAAAAAAAAAAoCvsbYAebMiQIfnSl76UBQsW5PHHH8+FF16YD3zgA5tUWkqS7bffPuecc06eeuqpHH/88Rt9vqOjI8cff3xWrly5mcmhZxgxIpk/P5kxo7L1qJYaG5MLL6ycr7QEAAAAAAAAAAAAAPREikvQA73nPe/JFVdckd/85jf5xje+kfe+972bNW/QoEG56qqr8v3vfz/19fUbfPbZZ5/NjBkzNus86EkaGpIzzkgWL04mT042sRfYZU1NlXMWL65sfdrIP5IAAAAAAAAAAAAAAN2W4hL0IDvvvHOuu+66LF26NCeccMImb1baVBMnTsxll1220ecuu+yyvPjii4WeDd3dsGHJlVcmzzyTXHpp0txc7Pzm5srcZ56pnDNsWLHzAQAAAAAAAAAAAABqTXEJeoA3v/nNmTlzZhYvXpyWlpaNbkXaHF/4whcyceLEDT6zevXqXH/99VXLAN3Z4MHJSSclS5Ykd96ZnHJKsu++nd/ENGhQ5XWnnFKZs2RJZe7gwdVIDQAAAAAAAAAAAABQe3UdHR0dZYcAupff/OY32XnnndPa2vqGz3zkIx/JT37ykxqm6n5GjhyZJUuWvObzu+yySxYvXlxCIsrU3p4sW5YsWJAsWpSsWJGsWZO0tSWNjcnAgcnQocmoUcmYMcnw4UkVO4gAAAAAAAAAAAAAQDfSV99/3lB2AKD72WGHHXL00Ufnu9/97hs+c88992T9+vXp18/iNkgqJaRddql8AAAAAAAAAAAAAACQaBwAr+ujH/3oBr/+4osv5qmnnqpRGgAAAAAAAAAAAAAAoKdRXAJe13777bfRZ37961/XIAkAAAAAAAAAAAAAANATKS4Br2ubbbbJgAEDNvjMypUraxMGAAAAAAAAAAAAAADocRSXgDe07bbbbvDrr7zySo2SAAAAAAAAAAAAAAAAPY3iEvCGWltbN/j1gQMH1igJAAAAAAAAAAAAAADQ0yguAa/rpZdeyqpVqzb4zNChQ2uUBgAAAAAAAAAAAAAA6GkUl4DXtXDhwnR0dGzwmWHDhtUoDQAAAAAAAAAAAAAA0NMoLgGv69Zbb93g17feeuu84x3vqFEaAAAAAAAAAAAAAACgp1FcAl6jvb09c+fO3eAz++67b/r181sIAAAAAAAAAAAAAADw+rQOgNe46aab8tRTT23wmcMOO6xGaQAAAAAAAAAAAAAAgJ5IcQn4E+3t7Tn77LM3+MyAAQPyiU98okaJAAAAAAAAAAAAAACAnkhxCfgTl19+eZYsWbLBZyZNmpRtttmmRokAAAAAAAAAAAAAAICeSHEJ+IMnn3wyX/7ylzf4TP/+/TNt2rQaJQIAAAAAAAAAAAAAAHqqhrIDAN1De3t7Jk2alJdffnmDz33pS1/KsGHDapSqa7797W9n5syZVT9n+fLlVT8DAAAAAAAAAAAAAAB6KsUlIEly1lln5e67797gM29/+9tz1lln1ShR1z3//PNZsmRJ2TEAAAAAAAAAAAAAAKBP61d2AKB8t9xySy644IINPlNXV5fvfe972WqrrWqUCgAAAAAAAAAAAAAA6MkUl6CPW7RoUVpaWtLR0bHB50488cR88IMfrFEqAAAAAAAAAAAAAACgp1Ncgj7st7/9bQ499NC89NJLG3xu7Nix+frXv16jVAAAAAAAAAAAAAAAQG+guAR91Msvv5xDDjkkTz755Aafe9Ob3pQf/ehHGTBgQG2CAQAAAAAAAAAAAAAAvUJD2QGA2nv11Vdz+OGHZ8GCBRt8bosttsi8efPyzne+s0bJirHddttll112qfo5y5cvT1tbW9XPAQAAAAAAAAAAAACAnkhxCfqY9vb2HH300fn5z3++wef69++fH/3oR9lnn31qlKw4X/ziF/PFL36x6ueMHDkyS5Ysqfo5AAAAAAAAAAAAAADQE/UrOwBQOx0dHTn++ONz4403bvC5fv36Zfbs2fnIRz5So2QAAAAAAAAAAAAAAEBvo7gEfcjJJ5+ca665ZqPPfec738knP/nJ6gcCAAAAAAAAAAAAAAB6LcUl6CO+8pWv5LLLLtvocxdffHEmT55cg0QAAAAAAAAAAAAAAEBvprgEfcDXvva1nH/++Rt97qtf/WqmTp1ag0QAAAAAAAAAAAAAAEBvp7gEvdw//uM/5m//9m83+tzpp5+es88+uwaJAAAAAAAAAAAAAACAvkBxCXqxK6+8Ml/60pc2+tyJJ56YCy+8sPqBAAAAAAAAAAAAAACAPkNxCXqpa6+9Np///Oc3+txnP/vZXHrppTVIBAAAAAAAAAAAAAAA9CWKS9AL/ehHP8pxxx2Xjo6ODT539NFH58orr0xdXV2NkgEAAAAAAAAAAAAAAH2F4hL0MjfffHNaWlrS3t6+wecOP/zwzJ49O/36+W0AAAAAAAAAAAAAAAAonsYC9CI/+9nPcuSRR2bt2rUbfO7ggw/OD3/4wzQ0NNQoGQAAAAAAAAAAAAAA0NcoLkEvceedd+bwww9PW1vbBp/bf//9c+ONN2bAgAE1SgYAAAAAAAAAAAAAAPRFikvQC/zyl7/MoYcemldeeWWDz+277765+eabM3DgwBolAwAAAAAAAAAAAAAA+irFJejhFixYkIMPPjgvv/zyBp8bO3Zsbr311gwaNKhGyQAAAAAAAAAAAAAAgL5McQl6sMceeywf/vCHs2rVqg0+t/vuu+dnP/tZtt566xolAwAAAAAAAAAAAAAA+jrFJeihfvWrX+VDH/pQXnjhhQ0+t8suu+S2227L0KFDa5QMAAAAAAAAAAAAAABAcQl6pCeffDIHHHBAnnvuuQ0+t9NOO+XnP/95tttuuxolAwAAAAAAAAAAAAAAqFBcgh7mmWeeyQEHHJCnn356g8+9613vyh133JHtt9++RskAAAAAAAAAAAAAAAD+SHEJepDnn38+BxxwQH79619v8Lm3ve1tueOOO/K2t72tRskAAAAAAAAAAAAAAAD+lOIS9BArV67MgQcemKVLl27wube85S254447suOOO9YoGQAAAAAAAAAAAAAAwGspLkEP8PLLL+fggw/OI488ssHntt1229x+++3ZaaedahMMAAAAAAAAAAAAAADgDTSUHQDYuKOPPjr33XffRp876qijcu+99+bee++tQapk++23z0c+8pGanAUAAAAAAAAAAAAAAPQsikvQAzz22GOb9Ny3v/3tKif5U+PHj1dcAgAAAAAAAAAAAAAAXle/sgMAAAAAAAAAAAAAAAAAvY/iEgAAAAAAAAAAAAAAAFA4xSUAAAAAAAAAAAAAAACgcIpLAAAAAAAAAAAAAAAAQOEUlwAAAAAAAAAAAAAAAIDCNZQdANi4J598suwIAAAAAAAAAAAAAAAAnWLjEgAAAAAAAAAAAAAAAFA4xSUAAAAAAAAAAAAAAACgcIpLAAAAAAAAAAAAAAAAQOEUlwAAAAAAAAAAAAAAAIDCKS4BAAAAAAAAAAAAAAAAhVNcAgAAAAAAAAAAAAAAAAqnuAQAAAAAAAAAAAAAAAAUTnEJAAAAAAAAAAAAAAAAKJziEgAAAAAAAAAAAAAAAFA4xSUAAAAAAAAAAAAAAACgcIpLAAAAAAAAAAAAAAAAQOEUlwAAAAAAAAAAAAAAAIDCKS4BAAAAAAAAAAAAAAAAhVNcAgAAAAAAAAAAAAAAAAqnuAQAAAAAAAAAAAAAAAAUTnEJAAAAAAAAAAAAAAAAKJziEgAAAAAAAAAAAAAAAFC4uo6Ojo6yQwD0RFtttVVefvnl13y+sbExw4YNKyERAAAAAAAAAAAAAADd0fLly9PW1vaaz2+55ZZ56aWXSkhUG4pLAF00cODA1/0XBwAAAAAAAAAAAAAAbIrGxsasWbOm7BhV06/sAAAAAAAAAAAAAAAAAEDvo7gEAAAAAAAAAAAAAAAAFE5xCQAAAAAAAAAAAAAAACic4hIAAAAAAAAAAAAAAABQuIayAwD0VEOGDMnKlStf8/n+/fvnHe94R+0D0W0sX748bW1tr/l8Y2Njhg0bVkIiAKA38jMHAFALfuYAAGrBzxwAQK34uQMAqAU/c/BG/uu//itr1659zeeHDBlS+zA1pLgE0EX/8z//U3YEuqmRI0dmyZIlr/n8sGHDsnjx4hISAQC9kZ85AIBa8DMHAFALfuYAAGrFzx0AQC34mQP+VL+yAwAAAAAAAAAAAAAAAAC9j+ISAAAAAAAAAAAAAAAAUDjFJQAAAAAAAAAAAAAAAKBwiksAAAAAAAAAAAAAAABA4RSXAAAAAAAAAAAAAAAAgMIpLgEAAAAAAAAAAAAAAACFU1wCAAAAAAAAAAAAAAAACqe4BAAAAAAAAAAAAAAAABROcQkAAAAAAAAAAAAAAAAonOISAAAAAAAAAAAAAAAAUDjFJQAAAAAAAAAAAAAAAKBwiksAAAAAAAAAAAAAAABA4RSXAAAAAAAAAAAAAAAAgMIpLgEAAAAAAAAAAAAAAACFU1wCAAAAAAAAAAAAAAAACqe4BAAAAAAAAAAAAAAAABROcQkAAAAAAAAAAAAAAAAonOISAAAAAAAAAAAAAAAAUDjFJQAAAAAAAAAAAAAAAKBwiksAAAAAAAAAAAAAAABA4RSXAAAAAAAAAAAAAAAAgMIpLgEAAAAAAAAAAAAAAACFU1wCAAAAAAAAAAAAAAAACqe4BAAAAAAAAAAAAAAAABSuoewAANDbTJkyJc8///xrPr/ddtuVkAYA6K38zAEA1IKfOQCAWvAzBwBQK37uAABqwc8c8KfqOjo6OsoOAQAAAAAAAAAAAAAAAPQu/coOAAAAAAAAAAAAAAAAAPQ+iksAAAAAAAAAAAAAAABA4RSXAAAAAAAAAAAAAAAAgMIpLgEAAAAAAAAAAAAAAACFU1wCAAAAAAAAAAAAAAAACqe4BAAAAAAAAAAAAAAAABROcQkAAAAAAAAAAAAAAAAonOISAAAAAAAAAAAAAAAAUDjFJQAAAAAAAAAAAAAAAKBwiksAAAAAAAAAAAAAAABA4RSXAAAAAAAAAAAAAAAAgMIpLgEAAAAAAAAAAAAAAACFU1wCAAAAAAAAAAAAAAAACqe4BAAAAAAAAAAAAAAAABROcQkAAAAAAAAAAAAAAAAonOISAAAAAAAAAAAAAAAAUDjFJQAAAAAAAAAAAAAAAKBwiksAAAAAAAAAAAAAAABA4RSXAAAAAAAAAAAAAAAAgMIpLgEAAAAAAAAAAAAAAACFU1wCAAAAAAAAAAAAAAAACqe4BAAAAAAAAAAAAAAAABROcQkAAAAAAAAAAAAAAAAonOISAAAAAAAAAAAAAAAAUDjFJQAAAAAAAAAAAAAAAKBwiksAAAAAAAAAAAAAAABA4RSXAAAAAAAAAAAAAAAAgMIpLgEAAAAAAAAAAAAAAACFU1wCAAAAAAAAAAAAAAAACtdQdgAA6E3a2tryq1/9Kk8//XReeumltLa2pqmpKVtttVXe9ra3Zfjw4RkwYEDZMQEAAAAAAAAA+oy1a9fmySefzLPPPpvnn38+r7zyStauXZsBAwZkiy22yLbbbpvtt98+73rXu9K/f/+y4wIAbNC6deuyfPnyPPnkk3nppZfy8ssvZ+DAgdl6662z/fbbZ/jw4Wlqaio7JvyB4hIAbKb77rsvN910U376059m8eLFaW9vf8Nn6+vrM3LkyBxyyCGZMGFC/vIv/7KGSQGAnmTt2rVZunRpFi1alMWLF2fRokV5+umns3LlyqxcuTKrVq1KfX19Bg4cmG222SZvfetbs+OOO2a33XbL2LFjs/feeytMAwAAAD3KkiVLcscdd2TRokX51a9+9Yc337z00ktZv359Bg0alC233DLbbLNN3v3ud2fYsGEZPnx49tprr4waNSr19fVlXwEA6CZWr16df/mXf8ntt9+e+fPnZ9myZVm7du1GX9e/f/80Nzdn3333zQEHHJCDDz7Ym34BgG7hsccey4033ph/+Zd/ySOPPJJXX331DZ+tq6vLTjvtlIMOOiiHHXZY9t9//9TV1dUwLfypuo6Ojo6yQwBAT/TDH/4wF110UR5++OEuzxgzZkxOP/30HHXUUQUmAwB6ovXr12fhwoW54447cvvtt+eee+5Ja2trl+c1NTXlwAMPzKRJk/LRj340DQ3+7BIAoBgrVqzIiBEj8txzz2302UmTJuWaa66pfigAoMd6/PHHc/XVV+eHP/xhnnnmmS7PGTRoUPbaa68cdNBB+chHPpKRI0cWmBIA6CkWLVqUiy++OD/60Y+yevXqzZ635ZZb5qijjsppp52W5ubmAhICALXy5JNP5qGHHvrDx4IFC7Jy5coNvqY7Vit+9rOf5YILLsidd97Z5Rk777xzTjnllEyePNkf/EIpFJcAoJOWLl2az33uc7n77rsLm/n+978/3/nOdzJ8+PDCZgIA3d+6dety++23Z+7cuZk3b15+//vfV+WcHXfcMWeeeWY++9nP+g9QAMBm+8xnPpNZs2Zt0rOKSwDAG3n44Ydz5pln5rbbbqvK/JEjR2bRokVVmQ0AdD//8z//k2nTpuXaa6+tyhuO6+rq8pnPfCYXXHBBtt1228LnAwCb5+mnn35NSel3v/tdp+d0p2rFb37zm5x00kn553/+58Jm7r777rniiisybty4wmbCplBcAoBOuPHGGzNp0qS8/PLLhc/ecsstM3v27Bx++OGFzwYAupfFixfnm9/8Zv75n/85L7zwQs3Ofe9735urr746o0ePrtmZAEDvcscdd+SAAw7Y5OcVlwCAP7dq1aqcfPLJmT17dlXfDDR48OCN/inKAEDv8C//8i+ZNGlSl96c3Flvectbct1113Xqv48AAMV67rnn8uCDD/5JUem5554rZHZ3qVbcc889+fjHP57f/va3hc/u379//vEf/zFf+MIXCp8Nb6Rf2QEAoKf49re/nY9//ONVKS0lycsvv5wjjjgiM2fOrMp8AKD7uOWWW3L11VfXtLSUVP4k4/e973254ooranouANA7vPLKKznhhBPKjgEA9GC/+MUvsvvuu+f73/9+t3kjEADQs11++eU59NBDa1JaSiqbnQ466KDMnj27JucBAK/14Q9/OIceemi++tWv5tZbby2stNRdzJs3LwcccEBVSktJsnbt2kyZMiVnnnlmVebD61FcAoBN8P3vfz8nnXRS1f+faB0dHTnxxBP9By4AoGra2try+c9/Puecc07ZUQCAHuacc87J8uXLy44BAPRQP/jBD3LAAQfkqaeeKjsKANBLzJo1K1OmTMn69etreu66dety7LHH5vrrr6/puQBA73fbbbflqKOOytq1a6t+1owZM3LuuedW/RxIkoayAwBAd/fAAw9k8uTJm1Ra2nvvvfOpT30qe++9d971rndlq622yksvvZRf//rXuffeezNnzpzcf//9G5zR0dGRyZMnZ8SIERk7dmxR1wAAerD6+vqMHDkyI0aMyI477phtt902gwYNypo1a/LCCy/k2WefzS9+8YssW7Zsk2dOnz49TU1NmTZtWhWTAwC9xcKFC/ONb3yj7BgAQA/17W9/u1N/QNyWW26ZvfbaKzvttFPe+c53Zsstt0z//v2zcuXKrFy5Ms8//3weffTRLFq0KGvWrKlyegCgO3rooYfyuc99bpOf33PPPXPwwQdnn332yXve855ss8022WqrrfLiiy9mxYoVWbp0ae6999785Cc/yaOPPrrReR0dHZk0aVJGjhyZkSNHbs5VAACSJE8++WSOPPLItLW1bfTZXXfdNZ/+9KfzV3/1V9lpp50yePDgrF69Ov/93/+d++67L3Pnzs3tt9++0f8Wc/bZZ2e33XbLhAkTiroGvK66DvvXAeANvfjii9ljjz3yxBNPbPC5nXbaKZdffnkOOOCAjc78t3/7t0yZMmWjf0LxjjvumEceeSRbb711pzIDAN3fBRdckC9/+csbfKa5uTmHHnpoDj744IwbNy5NTU0bnfvss8/myiuvzGWXXZYXXnhho8/X1dXlJz/5SQ455JBNzg4A9D3t7e0ZO3ZsFi5c2OnXTpo0Kddcc03xoQCAHmPu3Lk5+uijN/pGmS222CJHH310Jk6cmH322ScNDRv/c1jb29uzZMmS/PSnP828efNy3333/WHjwuDBg7Ny5coirgAAdDPr1q3L7rvvniVLlmz02X333Tfnn39+9t13302ef/vtt+fMM8/MQw89tNFn99xzzzzwwAOpq6vb5PkAwObZY4898h//8R9VmV1WtWLdunXZZ5998sADD2zwuTe/+c257LLL8olPfGKjMx988MF8/vOfz8MPP7zB54YOHZpHHnkk73jHOzqVGTqjX9kBAKA7O/vsszdaWvrgBz+YBx98cJNKS0ly4IEH5qGHHsoHPvCBDT73xBNP5O///u83NSoA0AsMGTIkX/rSl7JgwYI8/vjjufDCC/OBD3xgk0pLSbL99tvnnHPOyVNPPZXjjz9+o893dHTk+OOP9yYeAGCDLr744jcsLb373e+ucRoAoCf5xS9+kYkTJ270TT/HH398li9fnu9+97sZP378JpWWksqW6l133TVnnHFG5s+fn2effTYXXHBB3vnOdxYRHwDopmbPnr1JpaWzzjord955Z6dKS0lywAEH5N57783UqVM3+uxDDz2UuXPndmo+AFB773rXu3LggQeWHeMNfetb39poaWn33XfPww8/vEmlpSQZO3Zs7r333hx99NEbfG7FihX50pe+tKlRoUtsXAKAN7BkyZLsvvvuWbdu3Rs+8773vS8///nPN/nNxP/X6tWrs//++2/wh82GhoY8+uijGTFiRKfnAwDd159vXHrPe96T008/Pcccc0yXfq54I7Nnz85nPvOZtLe3b/C5M888M+eff35h5wIAvcfy5cuz66675pVXXnnN1/bee+988IMfzPTp09/w9TYuAUDftWLFiuy22255+umn3/CZoUOH5p/+6Z9y0EEHFXp2e3t7brvttsLnAgDdw+67755HH310g898+ctfzte+9rXNPuvkk0/OpZdeusFnxo0bl/vuu2+zzwIANs3GNi69/e1vz5577pkxY8Zkzz33zJ577pk3velNefLJJ7PjjjtucHYZ1Yrnn38+O+20U1atWvWGz7znPe/Jvffem+22267T89vb23PEEUdk3rx5G3zutttuywc/+MFOz4dNYeMSALyBr371qxssLW2zzTaZO3dul99cPGjQoFx//fUZMmTIGz6zbt26Db75BwDo2Xbeeedcd911+f/au/e4r+f7f+DPq+PV6eqcstJJDjGqKUNmji3STghtYhSykcOGXzfEdw7bHEbLIXOIIaJJmkJpcprosJESikyUzikdrq7fH1/bzXfr8/5cXb0/n+t0v99u/tDzeb2ez/aPz67P6/F+z58/P4YMGZJqaCki4rTTTouRI0dm7Rs5cmSsXbs21dkAQNVw9tlnbze0VLt27bjrrruioKCgHLYCACqDIUOGJIaWdt1113jppZdyEi6qWbOm0BIAVFFvvfVW1tBS796949prr01l3i233BK9evVK7Pnb3/4W77//firzAIAds+uuu0b//v3jmmuuiUmTJsWyZcvio48+ivHjx8fw4cOjT58+0bx58/JeM9GNN96YGFqqU6dOPPbYY2UKLUX87+9JxowZEx06dEjsu/LKK8t0PpSG4BIAbMcHH3wQTzzxRGLPr3/962jXrt1OzWnfvn1cffXViT3jxo2LxYsX79QcAKBi2WWXXeL222+Pt99+OwYOHBg1a9bM2axzzz03TjvttMSeL774Ih577LGc7QAAVE733ntvTJ06dbu1iy++OPbdd988bwQAVBaTJk2Kxx9/PGO9UaNG8Ze//CW6du2ax60AgKog0+8qvu76669P7WErNWrUiBtuuCFr3/PPP5/KPAAgu1/84hcxceLEWLp0afzzn/+MCRMmxBVXXBHHHntsmcM95WXt2rVx1113JfYMGzYsunfvvlNzGjduHLfeemtiz6uvvhozZszYqTmQieASAGzHqFGjori4OGO9S5cuMWTIkFRmDR06NDp16pSxXlxcHKNGjUplFgBQMZxxxhlx7rnnRq1atfIy77rrrsv6Nqcnn3wyL7sAAJXDZ599Fpdccsl2a506dfLUPQAgoy1btsTFF1+c2HPnnXfG/vvvn6eNAICqZNasWYn1PffcM3r37p3qzMMPPzx23333xJ433ngj1ZkAQGZnnnlm9OvXL1q3bl3eq+y0MWPGJL5tqUmTJjF8+PBUZvXv3z8OPfTQxJ7bbrstlVnwnwSXAOA/FBcXxyOPPJLYc+GFF6b2ZoRatWrF+eefn9jz8MMPx7Zt21KZBwBUP9/4xjfilFNOSeyZMWOGzxsAwL+df/75sWrVqu3Wbr/99qhXr16eNwIAKot77rknFixYkLHev3//OPXUU/O4EQBQlbz//vuJ9WOOOSYnc/v06ZNYf++993IyFwCo2h588MHE+pAhQ6KoqCi1edkeNjNx4sTEIBWUleASAPyHadOmxdKlSzPWCwsL4yc/+UmqMwcNGhR16tTJWP/kk09i+vTpqc4EAKqXfv36JdbXrl0bH374YZ62AQAqsokTJ8Zjjz223dqAAQOyXtQBAKqvbdu2xc0335yxXrNmzfjNb36Tx40AgKom04NW/mW//fbLydxs537++ec5mQsAVF0LFy6MmTNnJvYMHjw41ZnHH398tGnTJmN906ZN8cQTT6Q6EyIElwDgv0ycODGxftxxx0WjRo1SndmkSZPo27dvYk+2vQAAknznO9/J2vPBBx/kYRMAoCJbt25dDB06dLu1Jk2axO9///v8LgQAVCpPPfVULFy4MGP9xz/+cey111553AgAqGo2bdqUWG/RokVO5rZs2TKxvnHjxpzMBQCqrmx3Qr/1rW/F7rvvnurMGjVqxEknnZTY464quSC4BAD/4fnnn0+sH3fccTmZm+3c5557LidzAYDqoVmzZolveIyIWL16dX6WAQAqrMsuuyw+/vjj7dauv/76aN26dZ43AgAqk/vuuy+xfs455+RpEwCgqmrcuHFivUGDBjmZm+3coqKinMwFAKquinpX9YUXXoji4uKczKb6ElwCgK9ZunRpvPPOO4k9Rx11VE5mH3300Yn1t99+Oz799NOczAYAqodsTxn0NEAAqN5eeeWVuOOOO7ZbO+igg+Lss8/O80YAQGWyevXqmDx5csZ6mzZt4rvf/W7+FgIAqqTmzZsn1lesWJGTudnOzbYXAMDXbd26NV588cXEnlzdVT300EOjsLAwY33NmjUxc+bMnMym+hJcAoCvef311xPr7dq1i3bt2uVkdocOHaJNmzaJPT4MAgA7Y8OGDYn1pF9MAQBV2+bNm+Oss86KkpKS/6rVqlUr7rrrrigoKCiHzQCAyuLPf/5zbN68OWO9X79+Pk8AADuta9euifVcPRA227mdOnXKyVwAoGp6++2344svvshYr127dvTq1SsnswsLC6N79+6JPe6qkjbBJQD4mlmzZiXWe/TokdP5BxxwQGJ99uzZOZ0PAFRd69atizVr1iT2NG3aNE/bAAAVzbXXXpvxLdQXXXRRfPOb38zzRgBAZfPcc88l1o844og8bQIAVGWHHnpoYn3GjBk5mZvtjQi9e/fOyVwAoGrKdle1a9euUbdu3ZzNd1eVfBNcAoCvmTNnTmJ9v/32y+n8bOf7MAgAlNXs2bO3+waFr+vcuXOetgEAKpJ58+bFDTfcsN1ahw4d4qqrrsrzRgBAZTR9+vTE+oEHHpifRQCAKu2II46IwsLCjPVp06bFpk2bUp25cePGmDZtWsZ6jRo14vDDD091JgBQtbmrSnVTq7wXAICK5N13302sd+nSJafzd99998T6woULczofAKi6Jk2alFgvKiqK3XbbLU/bAAAVxbZt2+Kss86KzZs3b7d+++23R/369fO8FQBQ2bz33nuxdOnSjPUmTZpEx44ds56zdevWWLhwYSxatCjWrFkTmzZtivr160ejRo2iXbt20aFDh2jYsGGaqwMAlUzTpk1j4MCBcc8992y3vnr16rjjjjti2LBhqc0cOXJkrF27NmP9+OOPj7Zt26Y2DwCo+txVpboRXAKAr5SUlMTixYsTe7J9WNtZ2c7Pth8AwPYUFxfHo48+mtjTu3fvqFHDi5kBoLoZNWpUvPrqq9utnXTSSdG3b988bwQAVEbZnhKc9P3H559/Hg899FBMnDgxZsyYkTFQHRFRUFAQe++9d/Tu3Tu+//3vx1FHHRV16tQp69oAQCV1ySWXxIMPPpjxc8N1110XJ554YnzjG9/Y6VkffvhhxjdV/8tFF12003MAgOpl0aJFifXyvqv6xRdfxPLly6Nly5Y53YPqw40kAPjKZ599Fl9++WViz6677prTHbKd/8UXX8SyZctyugMAUPU8+eST8eGHHyb29O/fP0/bAAAVxZIlS2L48OHbrTVu3Dh+//vf53chAKDSeuuttxLrnTt3/q8/W7ZsWZx77rmx2267xbBhw2Lq1KmJoaWI/30I3bx582L06NFx3HHHRdu2bePqq6+OVatW7dT+AEDlstdee8WVV16Zsb58+fLo169frFu3bqfmrFy5Mvr27Zv4WeOMM86I73znOzs1BwCoXkpKSrLe4cj1XdXWrVtnfbhttnAV7AjBJQD4yieffJK1p3Xr1jndoTTnl2ZPAIB/KS4uTvzyLiKiTp06ceKJJ+ZpIwCgohg6dGjGCzzXXXddtGnTJs8bAQCV1bx58xLru+yyy//593vuuSf23HPPuPPOO2Pjxo1lnrt8+fIYMWJE7LHHHnH33XeX+RwAoPK57LLL4phjjslYnzNnTvTs2TPmzp1bpvP/9re/xQEHHBDvvPNOxp7OnTvHLbfcUqbzAYDqa9WqVVkfsp/ru6q1atWK5s2bJ/a4q0qaBJcA4CsrVqxIrBcVFUXdunVzukP9+vWjYcOGiT3Z9gQA+Lo77rgj6+WhQYMGRbNmzfK0EQBQEYwdOzaefvrp7da+/e1vxznnnJPnjQCAymzJkiWJ9ZYtW0ZExJYtW+LMM8+Ms846K1avXp3a/M8//zyGDBkSP/7xj2Pt2rWpnQsAVFw1a9aMJ598Mg477LCMPQsWLIhevXrFz372s1IHmGbOnBkDBw6M3r17J75loG3btvH8889H48aNd3h3AKB6K80d0FatWuV8j/980Mx/cleVNNUq7wUAoKJYuXJlYr2oqCgvexQVFcX69esz1rPtCQDwL4sXL47LL788sad27dpx6aWX5mkjAKAiWLlyZVxwwQXbrdWqVSvuuuuuqFHDc88AgNJbunRpYr2oqCi2bt0ap5xySjzxxBM522P8+PGxaNGimDJlyr/DUgBA1VWvXr2YPHlyXHzxxXH77bdvt2fz5s1x3333xX333Re77rprHHLIIdGlS5do2rRpNGzYMNatWxerVq2KBQsWxMsvvxyfffZZ1rk9evSIcePGRYcOHVL+GwEA1UFp7oDm475qthnuqpImwSUA+MqqVasS640aNcrLHtnm+DAIAJRGcXFxDBo0KDEQHRExbNiw6Ny5c562AgAqgosuuiiWLVu23dqFF14Y++23X543AgAqu08//TSxXqdOnRg6dGhOQ0v/Mnv27DjiiCPi5ZdfzttD6QCA8lNYWBijRo2Kfv36xaWXXhr/+Mc/MvZ+8sknMW7cuDLPqlOnTpx//vlx7bXXRp06dcp8DgBQvWW7q1qvXr2oWbNmzvdwV5V88shEAPjKl19+mVhv0KBBXvZo2LBhYj3bngAAERFXXHFFvPjii4k97dq1iyuuuCJPGwEAFcHzzz8fY8aM2W6tffv2MWLEiPwuBABUel9++WVs2rQpseexxx6Lu+++O2O9Xr160a9fv7j77rvjzTffjI8//jg2bdoUy5Yti7///e8xbty4OO2006J58+al2umtt96Kk08+OUpKSnbo7wIAVF59+/aNuXPnxvjx46Nfv35RWFiY2tlFRUVxzjnnxHvvvRe/+93vhJYAgJ3irirVkTcuAcBXNm/enFivVSs//9nMNifbngAAEydOjBtuuCGxp6CgIO699968vVUSACh/GzZsiLPPPjtjfdSoUVG/fv08bgQAVAUbN27M2vPCCy9s988LCgripz/9afzmN7+J1q1b/1e9ZcuW0bJly/jmN78ZJ5xwQmzcuDF+85vfxG9/+9usc5955pkYOXJknH/++aX7iwAAlV5BQUH88Ic/jL333jseeuihuPHGG3fqwm3t2rXjV7/6VQwfPjzq1auX4qYAQHXmrirVkTcuAcBXfBgEAKqCt956KwYOHJj1icI///nP46ijjsrTVgBARXDllVfGBx98sN3aCSecEMcdd1yeNwIAqoKyXgauX79+PPPMMzFmzJjthpa2p169ejFixIiYO3dudOjQIWv/5ZdfHp988kmZ9gMAKpetW7fGAw88EPvuu2/svffe8etf/3qn3xKwZcuWuPbaa6Njx45xzjnnxIIFC1LaFgCoztxVpToSXAKAr2zbti2xXrNmzbzskW1OcXFxXvYAACqfZcuWxfHHHx/r1q1L7OvZs2fceOONedoKAKgI3nzzzfj973+/3VpRUVHcdttt+V0IAKgytmzZssM/06hRo3j22WejT58+ZZrZpUuXmDFjRuyxxx6JfRs2bIhrrrmmTDMAgMpj0qRJ0aVLlxg0aFC8/fbbqZ//2WefxV133RVdu3aNE088Md5///3UZwAA1Ye7qlRHgksA8JVs6fGtW7fmZY9sc2rXrp2XPQCAymX9+vVx7LHHxuLFixP7mjdvHuPGjYs6derkZzEAoNxt3bo1zjrrrIxfMF133XXRpk2bPG8FAFQVZblMM3LkyDjkkEN2am7btm1L9TuO+++/Pz7//POdmgUAVEwbN26MoUOHRr9+/bJ+P5KGbdu2xeOPPx7dunWLe++9N+fzAICqyV1VqiPBJQD4SrYvtvL1YTDbkwldMgYA/tPmzZvjhz/8Ybz55puJffXq1YsJEyZE+/bt87QZAFAR3HjjjTFnzpzt1nr16hXnnntufhcCAKqUHf3eon///jFo0KBUZu+3335x5ZVXJvZs2rQp7rvvvlTmAQAVx8aNG6Nfv35xxx13ZO2tWbNmHH300fE///M/MW3atHj33XdjxYoVsWXLlvj888/j3XffjalTp8Y111wTRx11VNSokXytcv369XHmmWfGeeedl9ZfBwCoRtxVpTpKjusBQDWSLR2+efPmvOzhwyAAsCOKi4vjlFNOieeffz6xr3bt2jFu3LidfpoxAFC5vPfee3H11Vdvt1arVq246667sl7GAQBIsqPfW1x77bWpzr/44ovjlltuiRUrVmTseeKJJ+KXv/xlqnMBgPKzefPm6N+/f0ybNi2xr3bt2jFkyJC46KKLolOnTtvtad68eTRv3jy6dOkSRxxxREREvP/++3HzzTfH6NGjEy8O33777VFQUBB/+MMfyv6XAQCqHXdVqY58GwkAX2nYsGFiff369XnZY926dYn1bHsCANVHSUlJnHXWWTF+/PjEvho1asQDDzwQxx13XJ42AwAqiiFDhsSXX3653doFF1wQ3bp1y+9CAECVU79+/VL3HnroobHvvvumOr+wsDDOOOOMxJ6ZM2fG559/nupcAKD8XHXVVVkf6Na+ffuYMWNG/OEPf8gYWsqkc+fOMWrUqPjrX/8a7dq1S+wdNWpU3HnnnTt0PgBQvbmrSnUkuAQAX2nWrFlife3atXnZI9ucbHsCANXHBRdcEPfff3/WvjvvvDNOPvnk3C8EAFQo99xzT7zwwgvbrbVv3z7jm5gAAHZE7dq1o1GjRqXqPf3003OyQ7bg0rZt2+L111/PyWwAIL9eeeWV+O1vf5vY06VLl3jjjTfiwAMP3KlZBx98cLz55pvRuXPnxL5LLrkk3n///Z2aBQBUH9nugG7ZsiXjQ+nS5K4q+SS4BABfad68eWJ99erVedljzZo1ifVsewIA1cP/+3//L0aOHJm176abborBgwfnYSMAoCL57LPP4pe//GXG+h/+8Ido0KBBHjcCAKqy0n53ccghh+Rk/t577x1NmjRJ7Jk1a1ZOZgMA+XXZZZfFtm3bMtabNWsWkyZNihYtWqQyr2XLljFp0qTEzxpffPFF4u9hAAC+rjS/R8nHfdVsM9xVJU2CSwDwlWy/tNq0aVPOPwyuXLkyNm/enNjjwyAAcN1118X111+fte/qq6+Oiy66KA8bAQAVzc9//vNYtWrVdms//vGPo1+/fnneCACoykpzMbhp06axxx575GR+QUFB9OrVK7HHWxAAoPKbOXNmzJgxI7FnxIgR0aVLl1Tn7rnnnnHllVcm9kyYMMHnDQCgVErze5RPP/0053tkm+GuKmkSXAKAr+y2225Zez777LOc7lCa80uzJwBQdd16660xfPjwrH2//OUvs36JBgBUTU899VQ8/vjj260VFRXFbbfdlueNAICqrjTfXey9995RUFCQsx26du2aWF+yZEnOZgMA+XHvvfcm1tu1axdDhgzJyeyhQ4dG27ZtM9a3bdsWd911V05mAwBVS/369bOGgnJ9V3XDhg2xbt26xJ727dvndAeqF8ElAPhKw4YNs34Y/PDDD3O6w+LFixPrrVq1igYNGuR0BwCg4ho9enQMGzYsa9/Pf/7z+O1vf5v7hQCACinpjYu//vWvY9ddd83jNgBAddCxY8esPU2aNMnpDk2bNk2sr1y5MqfzAYDce+GFFxLrAwYMiLp16+Zkdt26deOkk05K7Jk6dWpOZgMAVU+HDh0S67m+q1qa87PtCDuiVnkvAAAVSceOHWPFihUZ6wsXLoxjjjkmZ/Pfe++9xHppvvgDAKqmBx98MM4555ysfWeeeaa3KABANff5559v98+Lioqibt268cc//jG1WbNmzUqsL1y4MOu8ww47LLp06ZLaTgBA/nXq1ClrT66DS9nO37BhQ07nAwC5tWzZsliwYEFiTy7vc/zr/Jtvvjljfe7cubF27dooKirK6R4AQOXXsWPHePPNNzPWFy5cmNP52e6q7rLLLlG/fv2c7kD1IrgEAF+zzz77xBtvvJGxnu2XYDsr2/n77LNPTucDABXTuHHj4owzzoiSkpLEvlNOOSVGjx4dBQUFedoMAKhM1q5dG2effXZeZ77yyivxyiuvJPbcd999gksAUMntu+++WXvq1auX0x2ynb9169aczgcAcmvRokVZe3r16pXTHQ488MDEenFxcSxcuDC+9a1v5XQPAKDy22effeLxxx/PWHdXlaqmRnkvAAAVSY8ePRLrs2fPzun8bE8p7t69e07nAwAVz1NPPRUDBw6M4uLixL4f/vCH8cADD0SNGv6vPgAAAJBf3bt3z/o7iTVr1uR0h2zn5zo4BQDk1ooVKxLrderUicaNG+d0hyZNmkTt2rUTe7LtCQAQ4a4q1Y/bTADwNdk+DM6ZMyfrpeGy2rp1a8ydOzexx4dBAKhepkyZEieddFJs2bIlsa9v374xduzYqFXLi5UBAACA/GvUqFHsscceiT2rV6/O6Q6rVq1KrDds2DCn8wGA3Mr23/rmzZvnZY9scwSXAIDSyHZX9eOPP45ly5blbP6bb76ZWHdXlbQJLgHA1xxwwAFRWFiYsb5+/fqsH9jK6vXXX48NGzZkrBcWFnqdOABUI9OnT48f/vCHsWnTpsS+I444IsaPHx916tTJ02YAAAAA/613796J9VxetinN+d/4xjdyOh8AyK2aNWsm1rN9n5KWL7/8MrFeUFCQlz0AgMqtbdu20b59+8Se6dOn52T2J598Eu+++25iT7bf88COElwCgK8pLCyMQw45JLHnueeey8ns559/PrF+6KGHJoaqAICq49VXX43jjz8+Nm7cmNjXu3fveOqpp3xGAAAAAMpdnz59Euvz5s1LfIDbznrjjTcS69kuAwEAFVuDBg0S66tWrYri4uKc7rBly5asb5GsX79+TncAAKqOo446KrFeXndVu3Tp4vcopE5wCQD+w9FHH51YHz9+fE7mPv7444n1Y445JidzAYCK5c0334y+ffvG+vXrE/t69uwZkyZNyvpFHQAAAEA+HHXUUYlvQti6dWvWcFFZbdiwIf7xj38k9uy///45mQ0A5Efr1q0T6yUlJfHPf/4zpzt8/PHHWXt22WWXnO4AAFQd2e6qPvXUUzkJZrurSnkQXAKA/3DCCSck1mfNmhULFixIdeZbb72V+IVaQUFB1r0AgMrvH//4R/Tp0yfWrFmT2Lf//vvHlClToqioKE+bAQCVyerVq6OkpCQv/1x11VWJuwwaNCjrGaeffnp+/ocBAHKqSZMmWS+2PPvsszmZPXXq1KwXeQ488MCczAYA8qNjx45Ze6ZNm5bTHaZOnZq1pzR7AgBERBx33HGJb2tctmxZ1rcj7aiVK1fGlClTEntOPPHEVGdChOASAPyXzp07x7e//e3EnpEjR6Y687bbbkusH3zwwdGhQ4dUZwIAFcu7774bRx99dKxYsSKxr2vXrvHcc89F06ZN87QZAAAAQOkMGjQosX7PPffEli1bUp97xx13JNY7dOgQe+65Z+pzAYD8adGiRbRt2zaxZ/LkyTnd4Zlnnkmst27dOlq1apXTHQCAqqNhw4bRv3//xJ6076reeeedsXnz5oz1du3axXe+851UZ0KE4BIAbNfPfvazxPp9990XS5cuTWXWxx9/HA8++GBijycPA0DVtnjx4jjyyCPjs88+S+zr0qVLPP/889GyZcs8bQYAAABQet///vejRYsWGeuffvppjBs3LtWZCxcuzPqk4B/84AepzgQAysfBBx+cWB8/fnwsWrQoJ7Pnz58fEyZMSOw56KCDcjIbAKi6st1V/ctf/hJz5sxJZdb69euzBqFOO+20KCgoSGUefJ3gEgBsx09/+tPEp+Bs2LAhLrvsslRmXXrppfHll19mrO+yyy7x05/+NJVZAEDF88knn8SRRx4ZH3/8cWJfhw4dYtq0adGmTZs8bQYAAACwYwoLC+OCCy5I7Lnkkkti1apVqcwrKSmJIUOGxLZt2xL7Bg8enMo8AKB8ZXsjwZYtW+KKK67Iyezhw4dHcXFxYs/xxx+fk9kAQNV19NFHx3777ZexXlJSEsOGDUtl1vXXXx+ffvppxnrdunXjF7/4RSqz4D8JLgHAdpTmi7UHHngg/vznP+/UnMceeywefvjhxJ5hw4ZF3bp1d2oOAFAxLV++PI488sj44IMPEvvatm0b06ZNi7Zt2+ZpMwAAAICy+fnPfx6NGzfOWF+6dGkMHTo0lVm33nprTJ8+PbHnmGOOia5du6YyDwAoX/3794+GDRsm9jz00EMxevToVOfedNNNMX78+MSewsJCb3kEAMrk0ksvTaz/9a9/jVtuuWWnZrzyyivx29/+NrHn9NNPj1122WWn5kAmgksAkMGwYcOiXbt2iT2DBg2K119/vUznv/baa3HmmWcm9rRv3z5rgAoAqJxWr14dxxxzTMyfPz+xr3Xr1jFt2rTo2LFjnjYDAAAAKLsmTZrENddck9gzduzYGDp0aJSUlJR5zj333BMXX3xxYk9BQUHccMMNZZ4BAFQsjRo1KtWbFM8777wYO3ZsKjPvvffe+NWvfpW174wzzoimTZumMhMAqF5OOeWU6NmzZ2LPpZdeGhMnTizT+QsXLowTTjghtm7dmrGnUaNGMWLEiDKdD6UhuAQAGdSvXz9uvvnmxJ5169bFMcccE08//fQOnT1hwoTo06dPrF+/PrHvpptuinr16u3Q2QBAxbd+/fro27dvzJkzJ7GvRYsWMXXq1OjSpUt+FgMAAABIwXnnnRc9evRI7Lnjjjvi5JNPjuXLl+/Q2Zs2bYoRI0bE4MGDY9u2bYm955xzTnTv3n2HzgcAKrZf/epXiW93jIjYunVrnHLKKXHeeefFhg0byjRn3bp1ccYZZ8SZZ56Z9TNHgwYN4vLLLy/THACAgoKC+MMf/hAFBQUZe7Zs2RInnnhi/PGPf9yhs19++eU47LDDYunSpYl9V111VbRu3XqHzoYdUVCyM48wAoBqYODAgfHwww8n9hQUFMQpp5wSV1xxRey1114Z++bNmxfXXHNNPProo6Wa+6c//WmH9wUAKr7jjz++VMHn8847L7p165b7hb7Spk2bOO644/I2DwCo/EaMGBFXX311xvqgQYPi/vvvz99CAECF8c4770SvXr2yPsStSZMmMXz48PjJT36SeEFm/fr1MXHixLjiiivi/fffzzp/zz33jFmzZkX9+vV3eHcAoGK7884749xzzy1Vb/PmzWPo0KFx1llnxW677Za1f9GiRTF69Oi48847Y/Xq1aWaccstt8SwYcNK1QsApOPFF1+Md999d4d+ZsWKFXHZZZcl9tx99907vMthhx2WygNphw8fHtddd13Wvu9973txzTXXJL6l6cMPP4zf/OY3cffddye+aSnif/efOnVq1KxZc4d3htISXAKALNavXx8HHHBALFiwoFT93bt3j4MPPjg6duwYDRs2jHXr1sWiRYvi5Zdfjrlz55bqjL322itmzpwZDRs23JnVAYAKqkOHDvHhhx+W9xr/5bDDDovp06eX9xoAQCUiuAQAJBk3blwMGDAgSnMtoaCgIL797W9Hjx49YpdddonmzZvH2rVr47PPPov58+fHCy+8EJs2bSrV3BYtWsQrr7ziLdYAUIWdeuqp8cgjj+zQz3To0CF69+4dbdu2jWbNmkWjRo1i7dq1sXLlyliyZEm89NJL8dFHH+3QmT/60Y/i8ccfT3xDAgCQvtNPPz3GjBlT3mtERMR9990Xp59++k6fU1xcHEcccUS8+OKLperfa6+94tBDD40uXbpEUVFRfPHFF7FkyZL429/+Fq+99lqpfh/TqlWrmD17duy66647uz4kqlXeCwBARdewYcOYMmVKHHroobFkyZKs/bNnz47Zs2eXed5uu+0WU6ZMEVoCAAAAAAAqtRNPPDGWL18e5513XtbekpKSePXVV+PVV1/dqZlNmzaNSZMmCS0BQBV37733xqpVq2Ly5Mml/pnFixfH4sWLU9vhiCOOiAcffFBoCQBIRc2aNePJJ5+Mww8/vFQPyZ8/f37Mnz+/zPOaNGkSU6ZMEVoiL2qU9wIAUBm0b98+pk2bFp07d87pnN133z2mTZtWqteTAwAAAAAAVHRDhw6N0aNHR+3atXM+q127dvHiiy9Gr169cj4LAChfhYWF8eSTT8Zpp51WLvMHDBgQTz/9dNSvX79c5gMAVVPTpk3jueeeiwMOOCCnc1q1ahVTpkyJbt265XQO/IvgEgCU0u677x4zZ86MPn365OT8733vezFz5sych6MAAAAAAADyafDgwTF9+vRo27ZtzmZ8//vfjzlz5sS+++6bsxkAQMVSt27dGDNmTNx9993RpEmTvMwsKiqK22+/PcaOHRv16tXLy0wAoHpp2bJlzJgxI2cB7Z49e8Ybb7zhwS/kleASAOyApk2bxuTJk+P++++PVq1apXJmq1atYsyYMfHMM8/k7RdpAAAAAAAA+XTwwQfHO++8E5deemnUqVMntXP32GOPmDBhQjz55JPRrFmz1M4FACqPs846KxYsWBDnn39+zsJEhYWFMXTo0FiwYEGce+65OZkBAPAvhYWFMWbMmHj66aejU6dOqZzZqFGjuPnmm+PVV1+Ndu3apXImlJbgEgCUwaBBg+KDDz6IUaNGxd57712mM7p27RqjRo2KRYsWldurywEAAAAAAPKlYcOGccMNN8TixYvjqquuKvMbmOrUqRPHHntsPPnkk/HOO+9E//79U94UAKhsWrVqFbfeemt89NFHcdttt8VBBx0UNWvW3Kkza9SoEQceeGDccsst8dFHH8WoUaOidevWKW0MAJDdcccdF/Pnz48HH3wwevbsWaYz2rdvH9dff30sXrw4Lrzwwp3+jARlUVBSUlJS3ksAQGX37rvvxuTJk2PWrFnx9ttvxz//+c9Yt25dbNiwIerXrx+NGjWKtm3bRteuXaNHjx7Rt2/f6NKlS3mvDQAAALBTpk+fHtOnT89Y79atW/zgBz/I2z4AQOUzd+7ceO6552Lu3Lkxf/78//MdS+3ataNBgwbRunXr6NixY+y7775x0EEHxXe/+91o3Lhxea8OAFRwa9asiRdffDFmz54db7/9dnz44Yfx6aefxqpVq+LLL7+MLVu2RO3ataOwsDCaNm0arVu3jvbt20fXrl2jW7du8Z3vfCeaNm1a3n8NAIB/W7JkSTzzzDMxc+bMmDdvXnz44Yexdu3a2LBhQ9StWzcaNWoUbdq0ib333ju6desWffr0if3337+81wbBJQAAAAAAAAAAAAAAACB9Ncp7AQAAAAAAAAAAAAAAAKDqEVwCAAAAAAAAAAAAAAAAUie4BAAAAAAAAAAAAAAAAKROcAkAAAAAAAAAAAAAAABIneASAAAAAAAAAAAAAAAAkDrBJQAAAAAAAAAAAAAAACB1gksAAAAAAAAAAAAAAABA6gSXAAAAAAAAAAAAAAAAgNQJLgEAAAAAAAAAAAAAAACpE1wCAAAAAAAAAAAAAAAAUie4BAAAAAAAAAAAAAAAAKROcAkAAAAAAAAAAAAAAABIneASAAAAAAAAAAAAAAAAkDrBJQAAAAAAAAAAAAAAACB1gksAAAAAAAAAAAAAAABA6gSXAAAAAAAAAAAAAAAAgNQJLgEAAAAAAAAAAAAAAACpE1wCAAAAAAAAAAAAAAAAUie4BAAAAAAAAAAAAAAAAKROcAkAAAAAAAAAAAAAAABIneASAAAAAAAAAAAAAAAAkDrBJQAAAAAAAAAAAAAAACB1gksAAAAAAAAAAAAAAABA6gSXAAAAAAAAAAAAAAAAgNQJLgEAAAAAAAAAAAAAAACpE1wCAAAAAAAAAAAAAAAAUie4BAAAAAAAAAAAAAAAAKROcAkAAAAAAAAAAAAAAABIneASAAAAAAAAAAAAAAAAkDrBJQAAAAAAAAAAAAAAACB1gksAAAAAAAAAAAAAAABA6gSXAAAAAAAAAAAAAAAAgNQJLgEAAAAAAAAAAAAAAACpE1wCAAAAAAAAAAAAAAAAUie4BAAAAAAAAAAAAAAAAKROcAkAAAAAAAAAAAAAAABIneASAAAAAAAAAAAAAAAAkDrBJQAAAAAAAAAAAAAAACB1gksAAAAAAAAAAAAAAABA6gSXAAAAAAAAAAAAAAAAgNQJLgEAAAAAAAAAAAAAAACpE1wCAAAAAAAAAAAAAAAAUie4BAAAAAAAAAAAAAAAAKROcAkAAAAAAAAAAAAAAABIneASAAAAAAAAAAAAAAAAkDrBJQAAAAAAAAAAAAAAACB1gksAAAAAAAAAAAAAAABA6gSXAAAAAAAAAAAAAAAAgNQJLgEAAAAAAAAAAAAAAACpE1wCAAAAAAAAAAAAAAAAUie4BAAAAAAAAAAAAAAAAKROcAkAAAAAAAAAAAAAAABIneASAAAAAAAAAAAAAAAAkDrBJQAAAAAAAAAAAAAAACB1gksAAAAAAAAAAAAAAABA6gSXAAAAAAAAAAAAAAAAgNQJLgEAAAAAAAAAAAAAAACpE1wCAAAAAAAAAAAAAAAAUie4BAAAAAAAAAAAAAAAAKROcAkAAAAAAAAAAAAAAABIneASAAAAAAAAAAAAAAAAkDrBJQAAAAAAAAAAAAAAACB1gksAAAAAAAAAAAAAAABA6gSXAAAAAAAAAAAAAAAAgNQJLgEAAAAAAAAAAAAAAACpE1wCAAAAAAAAAAAAAAAAUie4BAAAAAAAAERJSUl873vfi4KCgoz/NGjQIObPn5+zHW6++ebE+QUFBXH33XfnbD4AAAAAAJCugpKSkpLyXgIAAAAAAAAof8uWLYtu3brF0qVLM/bst99+8be//S0KCwtTnT1z5sw45JBDYsuWLRl7BgwYEGPHjk11LgAAAAAAkDveuAQAAAAAAABERESrVq3iT3/6U9SokflrxL///e9x4YUXpjp37dq1cfLJJyeGljp16hSjR49OdS4AAAAAAJBbgksAAAAAAADAvx1xxBExfPjwxJ4777wznnjiidRmDh48OD744IOM9dq1a8fYsWOjqKgotZkAAAAAAEDuFZSUlJSU9xIAAAAAAABAxVFcXByHH354zJgxI2NPkyZNYvbs2dGhQ4edmjV69Og4++yzE3tuuummuOiii3ZqDgAAAAAAkH+CSwAAAAAAAMB/+fjjj6Nbt26xYsWKjD3f/va3Y8aMGVGrVq0yzXjrrbeiV69esXHjxow9xx57bDz99NNRUFBQphkAAAAAAED5qVHeCwAAAAAAAAAVT9u2beP+++9P7Hnttddi+PDhZTp/w4YNMWDAgMTQ0q677hpjxowRWgIAAAAAgEpKcAkAAAAAAADYrn79+sWFF16Y2PO73/0upkyZssNn/+IXv4h58+ZlrNesWTMefvjhaNGixQ6fDQAAAAAAVAwFJSUlJeW9BAAAAAAAAFAxbd68OQ455JB44403Mva0atUq5syZE23atCnVmY888kiceuqpiT1XXXVVjBgxYkdWBQAAAAAAKhjBJQAAAAAAACDR+++/Hz169Ii1a9dm7DnyyCPj2WefjRo1aiSe9d5770WPHj1i3bp1GXsOO+ywmDp1atSsWbPMOwMAAAAAAOUv+VsDAAAAAAAAoNrr3LlzjB49OrFn6tSpcd111yX2bN68OU4++eTE0FKLFi3ioYceEloCAAAAAIAqQHAJAAAAAAAAyGrAgAExePDgxJ4RI0bESy+9lLH+q1/9Kt58882M9YKCgrj//vvjG9/4Rpn3BAAAAAAAKo6CkpKSkvJeAgAAAAAAAKj4Nm7cGL169Yq33norY0+7du1izpw50axZs//z5xMnToz+/fsnnn/RRRfFTTfdlMquAAAAAABA+RNcAgAAAAAAAEpt3rx50bNnz9iwYUPGnv79+8eECRP+/e9LliyJbt26xcqVKzP+TM+ePePll1+O2rVrp7ovAAAAAABQfmqU9wIAAAAAAABA5dG1a9cYOXJkYs9TTz0Vt956a0REFBcXx6mnnpoYWioqKoqxY8cKLQEAAAAAQBXjjUsAAAAAAADADhs4cGA8/PDDGet16tSJV199NcaPHx/XXntt4lljx46NAQMGpL0iAAAAAABQzgSXAAAAAAAAgB22bt266NGjR7z33nsZe3bdddf49NNPY9u2bRl7Bg8eHKNHj87FigAAAAAAQDkTXAIAAAAAAADKZNasWXHQQQfF5s2by/Tz++yzT8ycOTPq1auX8mYAAAAAAEBFUKO8FwAAAAAAAAAqpx49esTvfve7Mv1svXr14tFHHxVaAgAAAACAKkxwCQAAAAAAACiz888/P77//e/v8M/ddtttsc8+++RgIwAAAAAAoKIoKCkpKSnvJQAAAAAAAIDKa+XKldGtW7dYsmRJqfoHDBgQY8eOzfFWAAAAAABAeRNcAgAAAAAAAHbayy+/HIcddlgUFxcn9nXq1Clmz54dRUVFedoMAAAAAAAoLzXKewEAAAAAAACg8vv888+zhpYiIs4991yhJQAAAAAAqCa8cQkAAAAAAADYKUuWLIlu3brFypUrs/YWFRXF7Nmzo1OnTnnYDAAAAAAAKE/euAQAAAAAAACUWXFxcZx66qmlCi1FRKxduzZOPvnk2LJlS443AwAAAAAAypvgEgAAAAAAAFBmI0aMiJdeemmHfmbmzJlx+eWX52gjAAAAAACgoigoKSkpKe8lAAAAAAAAgMpn2rRpcfTRR8e2bdt2+GcLCgpi0qRJ0bdv3xxsBgAAAAAAVASCSwAAAAAAAMAOW758eey///6xdOnSjD0FBQWR9HVky5YtY+7cudGmTZtcrAgAAAAAAJSzGuW9AAAAAAAAAFC5lJSUxGmnnZYYWmrUqFE8++yz0aRJk4w9y5cvj5/85CdlemMTAAAAAABQ8QkuAQAAAAAAADvkxhtvjMmTJyf23HHHHXHUUUfF3Xffndg3bdq0uO6669JcDwAAAAAAqCAKSkpKSsp7CQAAAAAAAKByeP3116N3796xZcuWjD2nn3563Hffff/+93POOSfuuuuujP01a9aM6dOnR+/evVPdFQAAAAAAKF+CSwAAAAAAAECprFmzJrp37x6LFi3K2LPXXnvFG2+8EQ0aNPj3n3355ZfRs2fPeOuttzL+XLt27WLOnDnRrFmzVHcGAAAAAADKT43yXgAAAAAAAACoHIYMGZIYWiosLIyxY8f+n9DSv/780UcfjXr16mX82SVLlsTPfvaz1HYFAAAAAADKn+ASAAAAAAAAkNXo0aPjscceS+y56aabYv/9999urWvXrnHrrbcm/vyECRNi5MiRZd4RAAAAAACoWApKSkpKynsJAAAAAAAAoOJ6++23o2fPnrFx48aMPT/60Y/iiSeeyHrWgAEDEgNQdevWjddeey26detWllUBAAAAAIAKRHAJAAAAAAAAyGjjxo1xwAEHxLx58zL2tG/fPmbPnh1NmzbNet6aNWuie/fusWjRoow9e+yxR8yaNSsaNGhQpp0BAAAAAICKoUZ5LwAAAAAAAABUXOeff35iaKlWrVrx8MMPlyq0FBHRuHHjGDt2bNSuXTtjz7vvvhtDhw7d4V0BAAAAAICKRXAJAAAAAAAA2K5HH300/vjHPyb2XH311XHwwQfv0Lm9evWKa6+9NrHngQceiD/96U87dC4AAAAAAFCxFJSUlJSU9xIAAAAAAABAxfLBBx9E9+7dY+3atRl7jjzyyHj22WejRo0df15iSUlJHHvssTF58uSMPQ0bNoxZs2ZFly5ddvh8AAAAAACg/AkuAQAAAAAAAP/Hli1b4pBDDomZM2dm7GnVqlXMnTs3WrduXeY5y5Yti/333z8+/fTTjD09evSIV199NerUqVPmOQAAAAAAQPnY8UefAQAAAAAAAFXa5ZdfnhhaKigoiAceeGCnQksR/xt+evDBBxPf2DRr1qz45S9/uVNzAAAAAACA8iG4BAAAAAAAAPzbX/7yl7j55psTey655JLo06dPKvOOOuqouPTSSxN7brvttpg4cWIq8wAAAAAAgPwpKCkpKSnvJQAAAAAAAIDyt3Tp0th///1j+fLlGXsOPPDAmDFjRtSuXTu1uVu3bo3DDjssXnnllYw9zZs3jzlz5kTbtm1TmwsAAAAAAOSWNy4BAAAAAAAAsW3bthg4cGBiaKlx48bxyCOPpBpaioioVatWPPzww9GkSZOMPStWrIiBAwdGcXFxqrMBAAAAAIDcEVwCAAAAAAAA4te//nW88MILiT2jR4+Ojh075mR++/bt45577knsefHFF+Oaa67JyXwAAAAAACB9BSUlJSXlvQQAAAAAAABQfmbMmBGHH3544tuMBg8eHKNHj875LkOHDo077rgjY71GjRoxderU+O53v5vzXQAAAAAAgJ0juAQAAAAAAAAAAAAAAACkrkZ5LwAAAAAAAAAAAAAAAABUPYJLAAAAAAAAAAAAAAAAQOoElwAAAAAAAAAAAAAAAIDUCS4BAAAAAAAAAAAAAAAAqRNcAgAAAAAAAAAAAAAAAFInuAQAAAAAAAAAAAAAAACkTnAJAAAAAAAAAAAAAAAASJ3gEgAAAAAAAAAAAAAAAJA6wSUAAAAAAAAAAAAAAAAgdYJLAAAAAAAAAAAAAAAAQOoElwAAAAAAAAAAAAAAAIDUCS4BAAAAAAAAAAAAAAAAqRNcAgAAAAAAAAAAAAAAAFInuAQAAAAAAAAAAAAAAACkTnAJAAAAAAAAAAAAAAAASJ3gEgAAAAAAAAAAAAAAAJA6wSUAAAAAAAAAAAAAAAAgdYJLAAAAAAAAAAAAAAAAQOoElwAAAAAAAAAAAAAAAIDUCS4BAAAAAAAAAAAAAAAAqRNcAgAAAAAAAAAAAAAAAFInuAQAAAAAAAAAAAAAAACkTnAJAAAAAAAAAAAAAAAASJ3gEgAAAAAAAAAAAAAAAJA6wSUAAAAAAAAAAAAAAAAgdYJLAAAAAAAAAAAAAAAAQOoElwAAAAAAAAAAAAAAAIDUCS4BAAAAAAAAAAAAAAAAqRNcAgAAAAAAAAAAAAAAAFInuAQAAAAAAAAAAAAAAACkTnAJAAAAAAAAAAAAAAAASJ3gEgAAAAAAAAAAAAAAAJA6wSUAAAAAAAAAAAAAAAAgdYJLAAAAAAAAAAAAAAAAQOoElwAAAAAAAAAAAAAAAIDUCS4BAAAAAAAAAAAAAAAAqRNcAgAAAAAAAAAAAAAAAFInuAQAAAAAAAAAAAAAAACkTnAJAAAAAAAAAAAAAAAASJ3gEgAAAAAAAAAAAAAAAJA6wSUAAAAAAAAAAAAAAAAgdYJLAAAAAAAAAAAAAAAAQOoElwAAAAAAAAAAAAAAAIDUCS4BAAAAAAAAAAAAAAAAqRNcAgAAAAAAAAAAAAAAAFInuAQAAAAAAAAAAAAAAACkTnAJAAAAAAAAAAAAAAAASJ3gEgAAAAAAAAAAAAAAAJA6wSUAAAAAAAAAAAAAAAAgdYJLAAAAAAAAAAAAAAAAQOoElwAAAAAAAAAAAAAAAIDUCS4BAAAAAAAAAAAAAAAAqRNcAgAAAAAAAAAAAAAAAFInuAQAAAAAAAAAAAAAAACkTnAJAAAAAAAAAAAAAAAASJ3gEgAAAAAAAAAAAAAAAJA6wSUAAAAAAAAAAAAAAAAgdYJLAAAAAAAAAAAAAAAAQOoElwAAAAAAAAAAAAAAAIDUCS4BAAAAAAAAAAAAAAAAqRNcAgAAAAAAAAAAAAAAAFInuAQAAAAAAAAAAAAAAACkTnAJAAAAAAAAAAAAAAAASJ3gEgAAAAAAAAAAAAAAAJA6wSUAAAAAAAAAAAAAAAAgdYJLAAAAAAAAAAAAAAAAQOoElwAAAAAAAAAAAAAAAIDUCS4BAAAAAAAAAAAAAAAAqRNcAgAAAAAAAAAAAAAAAFInuAQAAAAAAAAAAAAAAACkTnAJAAAAAAAAAAAAAAAASJ3gEgAAAAAAAAAAAAAAAJA6wSUAAAAAAAAAAAAAAAAgdYJLAAAAAAAAAAAAAAAAQOoElwAAAAAAAAAAAAAAAIDUCS4BAAAAAAAAAAAAAAAAqfv/chm1pREMFAAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# 主函数\n", + "if __name__ == \"__main__\":\n", + " # 初始化w和b\n", + " w,b = 0,0\n", + " # 设置学习率\n", + " alpha = 0.01\n", + " # 设置迭代次数\n", + " num_iter = 1000\n", + " # 进行梯度下降\n", + " w,b = gradient_descent(w,b,alpha,num_iter)\n", + " print(\"w:\", w)\n", + " print(\"b:\", b)\n", + " # 计算损失\n", + " loss = compute_loss(w,b)\n", + " print(\"loss:\", loss)\n", + "\n", + " plt.figure(dpi=600)\n", + " #plt.switch_backend('Agg') # 使用 Agg 渲染器\n", + " # 绘制数据点\n", + " plt.scatter(x, y, color='blue', label='original data')\n", + "\n", + " # 绘制回归直线\n", + " plt.plot(x, w*x + b, color='red', label='regression line')\n", + "\n", + " # 添加标题和标签\n", + " plt.title('linear regression')\n", + " plt.xlabel('x')\n", + " plt.ylabel('y')\n", + "\n", + " # 显示图例\n", + " plt.legend()\n", + "\n", + " # 显示图像\n", + " plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "pt", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.14" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/linear regression/1.py b/linear regression/1.py deleted file mode 100644 index bb8bf92..0000000 --- a/linear regression/1.py +++ /dev/null @@ -1,310 +0,0 @@ -import numpy as np -import torch -import torch.nn as nn -import torch.optim as optim -from torch.utils.data import DataLoader, TensorDataset -from matplotlib import pyplot as plt - - -def run1(): - def compute_error_for_line_given_points(b, w, points): - totalError = 0 - N = float(len(points)) - for i in range(len(points)): - x = points[i][0] - y = points[i][1] - totalError += (y - (w * x + b)) ** 2 - return totalError / N - - def step_gradient(b_current, w_current, points, learningRate): - b_gradient = torch.tensor(0.0, device=points.device, dtype=torch.float32) - w_gradient = torch.tensor(0.0, device=points.device, dtype=torch.float32) - N = float(len(points)) - for i in range(len(points)): - x = points[i][0] - y = points[i][1] - b_gradient += -(2 / N) * (y - (w_current * x + b_current)) - w_gradient += -(2 / N) * x * (y - (w_current * x + b_current)) - new_b = b_current - (learningRate * b_gradient) - new_w = w_current - (learningRate * w_gradient) - return [new_b, new_w] - - def gradient_descent_runner(points, starting_b, starting_w, learningRate, num_iterations): - b = torch.tensor(starting_b, device=points.device, dtype=torch.float32) - w = torch.tensor(starting_w, device=points.device, dtype=torch.float32) - for i in range(num_iterations): - b, w = step_gradient(b, w, points, learningRate) - return [b, w] - - def run(): - # 修改为生成数据的文件路径 - points_np = np.genfromtxt("data1.csv", delimiter=',').astype(np.float32) - points = torch.tensor(points_np, device='mps') - learning_rate = 0.0001 # 使用较小的学习率 - initial_b = 0.0 - initial_w = 0.0 - num_iterations = 1000 - print("Starting gradient descent at b={0},w={1},error={2}".format(initial_b, initial_w, - compute_error_for_line_given_points(initial_b, - initial_w, - points))) - print("running...") - [b, w] = gradient_descent_runner(points, initial_b, initial_w, learning_rate, num_iterations) - print("After gradient descent at b={0},w={1},error={2}".format(b.item(), w.item(), - compute_error_for_line_given_points(b, w, - points))) - - run() - -def run1_cuda(): - def compute_error_for_line_given_points(b, w, points): - totalError = 0 - N = float(len(points)) - for i in range(len(points)): - x = points[i][0] - y = points[i][1] - totalError += (y - (w * x + b)) ** 2 - return totalError / N - - def step_gradient(b_current, w_current, points, learningRate): - b_gradient = torch.tensor(0.0, device=points.device) - w_gradient = torch.tensor(0.0, device=points.device) - N = float(len(points)) - for i in range(len(points)): - x = points[i][0] - y = points[i][1] - b_gradient += -(2 / N) * (y - (w_current * x + b_current)) - w_gradient += -(2 / N) * x * (y - (w_current * x + b_current)) - new_b = b_current - (learningRate * b_gradient) - new_w = w_current - (learningRate * w_gradient) - return [new_b, new_w] - - def gradient_descent_runner(points, starting_b, starting_w, learningRate, num_iterations): - b = torch.tensor(starting_b, device=points.device) - w = torch.tensor(starting_w, device=points.device) - for i in range(num_iterations): - b, w = step_gradient(b, w, points, learningRate) - print("round:", i) - return [b, w] - - def run(): - points_np = np.genfromtxt("data1.csv", delimiter=',').astype(np.float32) - points = torch.tensor(points_np, device='cuda') - learning_rate = 0.0001 - initial_b = 0.0 - initial_w = 0.0 - num_iterations = 100000 - [b, w] = gradient_descent_runner(points, initial_b, initial_w, learning_rate, num_iterations) - print("After gradient descent at b={0}, w={1}, error={2}".format(b.item(), w.item(), - compute_error_for_line_given_points(b, w, - points))) - return b.item(), w.item() - - # 运行线性回归 - final_b, final_w = run() - - # 绘制图像 - points_np = np.genfromtxt("data1.csv", delimiter=',').astype(np.float32) - x = points_np[:, 0] - y = points_np[:, 1] - - x_range = np.linspace(min(x), max(x), 100) - y_pred = final_w * x_range + final_b - - plt.figure(figsize=(8, 6)) - plt.scatter(x, y, color='blue', label='Original data') - plt.plot(x_range, y_pred, color='red', label='Fitted line') - plt.xlabel('X') - plt.ylabel('Y') - plt.title('Fitting a line to random data') - plt.legend() - plt.grid(True) - plt.savefig('print1.png') - plt.show() - -def run1x(): - # 线性回归训练代码 - def compute_error_for_line_given_points(b, w, points): - totalError = 0 - N = float(len(points)) - for i in range(len(points)): - x = points[i][0] - y = points[i][1] - totalError += (y - (w * x + b)) ** 2 - return totalError / N - - def step_gradient(b_current, w_current, points, learningRate): - b_gradient = torch.tensor(0.0, device=points.device, dtype=torch.float32) - w_gradient = torch.tensor(0.0, device=points.device, dtype=torch.float32) - N = float(len(points)) - for i in range(len(points)): - x = points[i][0] - y = points[i][1] - b_gradient += -(2 / N) * (y - (w_current * x + b_current)) - w_gradient += -(2 / N) * x * (y - (w_current * x + b_current)) - new_b = b_current - (learningRate * b_gradient) - new_w = w_current - (learningRate * w_gradient) - return [new_b, new_w] - - def gradient_descent_runner(points, starting_b, starting_w, learningRate, num_iterations): - b = torch.tensor(starting_b, device=points.device, dtype=torch.float32) - w = torch.tensor(starting_w, device=points.device, dtype=torch.float32) - for i in range(num_iterations): - b, w = step_gradient(b, w, points, learningRate) - return [b, w] - - def run(): - points_np = np.genfromtxt("data1.csv", delimiter=',').astype(np.float32) - points = torch.tensor(points_np, device='mps') - learning_rate = 0.0001 - initial_b = 0.0 - initial_w = 0.0 - num_iterations = 5000 - [b, w] = gradient_descent_runner(points, initial_b, initial_w, learning_rate, num_iterations) - print("After gradient descent at b={0},w={1},error={2}".format(b.item(), w.item(), - compute_error_for_line_given_points(b, w, - points))) - return b.item(), w.item() - - # 运行线性回归 - final_b, final_w = run() - - # 绘制图像 - points_np = np.genfromtxt("data1.csv", delimiter=',').astype(np.float32) - x = points_np[:, 0] - y = points_np[:, 1] - - x_range = np.linspace(min(x), max(x), 100) - y_pred = final_w * x_range + final_b - - plt.figure(figsize=(8, 6)) - plt.scatter(x, y, color='blue', label='Original data') - plt.plot(x_range, y_pred, color='red', label='Fitted line') - plt.xlabel('X') - plt.ylabel('Y') - plt.title('Fitting a line to random data') - plt.legend() - plt.grid(True) - plt.savefig('print1.png') - plt.show() - -def run_m1(): - # 检查是否支持MPS(Apple Metal Performance Shaders) - device = torch.device("mps" if torch.backends.mps.is_available() else "cpu") - print(f"使用设备: {device}") - - # 生成示例数据 - # y = 3x + 2 + 噪声 - torch.manual_seed(0) - X = torch.linspace(-10, 10, steps=100).reshape(-1, 1) - y = 3 * X + 2 + torch.randn(X.size()) * 2 - - # 创建数据集和数据加载器 - dataset = TensorDataset(X, y) - dataloader = DataLoader(dataset, batch_size=10, shuffle=True) - - # 定义线性回归模型 - class LinearRegressionModel(nn.Module): - def __init__(self): - super(LinearRegressionModel, self).__init__() - self.linear = nn.Linear(1, 1) # 输入和输出都是1维 - - def forward(self, x): - return self.linear(x) - - # 实例化模型并移动到设备 - model = LinearRegressionModel().to(device) - - # 定义损失函数和优化器 - criterion = nn.MSELoss() - optimizer = optim.SGD(model.parameters(), lr=0.01) - - # 训练模型 - num_epochs = 100 - for epoch in range(num_epochs): - for batch_X, batch_y in dataloader: - batch_X = batch_X.to(device) - batch_y = batch_y.to(device) - - # 前向传播 - outputs = model(batch_X) - loss = criterion(outputs, batch_y) - - # 反向传播和优化 - optimizer.zero_grad() - loss.backward() - optimizer.step() - - if (epoch + 1) % 10 == 0: - print(f"Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}") - - # 保存整个模型 - torch.save(model.state_dict(), 'm1.pth') - print("整个模型已保存为 m1.pth") - - # 评估模型 - model.eval() - with torch.no_grad(): - X_test = torch.linspace(-10, 10, steps=100).reshape(-1, 1).to(device) - y_pred = model(X_test).cpu() - - plt.scatter(X.numpy(), y.numpy(), label='真实数据') - plt.plot(X_test.cpu().numpy(), y_pred.numpy(), color='red', label='预测线') - plt.legend() - plt.xlabel('X') - plt.ylabel('y') - plt.title('线性回归结果') - plt.show() - -def run_m1_test(): - # 定义线性回归模型结构 - class LinearRegressionModel(nn.Module): - def __init__(self): - super(LinearRegressionModel, self).__init__() - self.linear = nn.Linear(1, 1) # 输入和输出都是1维 - - def forward(self, x): - return self.linear(x) - - def main(): - # 检查是否支持MPS(Apple Metal Performance Shaders) - device = torch.device("mps" if torch.backends.mps.is_available() else "cpu") - print(f"使用设备: {device}") - - # 实例化模型并加载保存的模型参数 - model = LinearRegressionModel().to(device) - model.load_state_dict(torch.load('m1.pth')) - with open('m1.pth', 'rb') as f: - f.seek(0, 2) - size = f.tell() - print(f"模型文件大小: {size} 字节") - model.eval() - # 输出模型大小 - model_size = sum(p.numel() for p in model.parameters()) - print(f"模型大小: {model_size} 个参数") - print("模型参数已加载") - - # 生成测试数据 - X_test = torch.linspace(-10, 10, steps=100).reshape(-1, 1).to(device) - - # 使用加载的模型进行预测 - with torch.no_grad(): - y_pred = model(X_test).cpu() - - # 将测试数据移至CPU并转换为NumPy数组 - X_test_numpy = X_test.cpu().numpy() - y_pred_numpy = y_pred.numpy() - - # 可视化预测结果 - plt.scatter(X_test_numpy, 3 * X_test_numpy + 2, label='真实线性关系', color='blue') - plt.plot(X_test_numpy, y_pred_numpy, color='red', label='模型预测线') - plt.legend() - plt.xlabel('X') - plt.ylabel('y') - plt.title('加载模型后的线性回归预测结果') - plt.show() - - main() - -if __name__ == '__main__': - print("start") diff --git a/linear regression/data1.csv b/linear regression/data1.csv deleted file mode 100644 index 508fd99..0000000 --- a/linear regression/data1.csv +++ /dev/null @@ -1,100 +0,0 @@ -0.0,3.267264598063918 -0.10101010101010101,3.3715980311448757 -0.20202020202020202,3.624529195538264 -0.30303030303030304,2.2426026435865785 -0.40404040404040403,2.881354128303834 -0.5050505050505051,4.108915299601898 -0.6060606060606061,3.2833072841616344 -0.7070707070707071,3.401314666490608 -0.8080808080808081,3.4471224977820083 -0.9090909090909091,4.597483332850038 -1.0101010101010102,4.1948230194917615 -1.1111111111111112,4.770110614428998 -1.2121212121212122,4.3466984672473545 -1.3131313131313131,4.085374736788284 -1.4141414141414141,4.860667770156386 -1.5151515151515151,5.367460741298345 -1.6161616161616161,5.1076464505556585 -1.7171717171717171,4.517380143483942 -1.8181818181818181,6.028333717306668 -1.9191919191919191,5.268642728341781 -2.0202020202020203,5.2032646463511885 -2.121212121212121,5.776924577040542 -2.2222222222222223,5.914239664440679 -2.323232323232323,6.195294604152318 -2.4242424242424243,6.67461745554651 -2.525252525252525,6.62895898059055 -2.6262626262626263,6.423496434474387 -2.727272727272727,6.520626001853953 -2.8282828282828283,6.252851138402289 -2.929292929292929,7.045662416151556 -3.0303030303030303,7.062687254815803 -3.131313131313131,6.950015155958233 -3.2323232323232323,7.71420449451215 -3.3333333333333335,7.536987534120887 -3.4343434343434343,8.408446293914908 -3.5353535353535355,8.281116903817127 -3.6363636363636362,6.862064335470844 -3.7373737373737375,8.455114086555362 -3.8383838383838382,8.610569256326439 -3.9393939393939394,8.695172603505283 -4.040404040404041,7.987174933011048 -4.141414141414141,8.484042583282307 -4.242424242424242,8.152218590549857 -4.343434343434343,8.810112829362456 -4.444444444444445,9.098520210970904 -4.545454545454545,9.315991463976044 -4.646464646464646,9.266562387635002 -4.747474747474747,8.457655714255173 -4.848484848484849,8.577190426286784 -4.94949494949495,9.992687218959654 -5.05050505050505,9.949888900251127 -5.151515151515151,10.112370557219064 -5.252525252525253,10.250084050804231 -5.353535353535354,9.675169646286898 -5.454545454545454,9.790565255890696 -5.555555555555555,9.91666488079517 -5.656565656565657,10.325538746448835 -5.757575757575758,9.77548528051785 -5.858585858585858,10.55371401462777 -5.959595959595959,10.757696722894282 -6.0606060606060606,10.893354131765726 -6.161616161616162,12.049342074375708 -6.262626262626262,10.936118426966079 -6.363636363636363,11.031578580287063 -6.4646464646464645,11.713471927909302 -6.565656565656566,12.343664117608101 -6.666666666666667,12.067856620638729 -6.767676767676767,11.814430199711552 -6.8686868686868685,11.123516182999314 -6.96969696969697,12.496962644202316 -7.070707070707071,12.767487737755147 -7.171717171717171,12.632934104476211 -7.2727272727272725,12.728225932468364 -7.373737373737374,12.97630338885533 -7.474747474747475,12.896220727223701 -7.575757575757575,13.047808359849581 -7.6767676767676765,13.110443597152527 -7.777777777777778,12.921358752181128 -7.878787878787879,13.30038615173782 -7.979797979797979,13.836945395153705 -8.080808080808081,13.054484897082014 -8.181818181818182,14.01038452336861 -8.282828282828282,13.643336312636018 -8.383838383838384,14.564671365817466 -8.484848484848484,14.040540515755758 -8.585858585858587,14.57992522742261 -8.686868686868687,14.88631275019171 -8.787878787878787,14.021963220008606 -8.88888888888889,15.068155050128949 -8.98989898989899,15.083538874549268 -9.09090909090909,15.417748308319911 -9.191919191919192,14.89714205401168 -9.292929292929292,14.534676091762206 -9.393939393939394,15.556467883324295 -9.494949494949495,15.525938847099864 -9.595959595959595,15.560767751324764 -9.696969696969697,15.982790914773943 -9.797979797979798,16.062079721169738 -9.8989898989899,16.232818049890696 -10.0,17.053472736980353 diff --git a/linear regression/liner regression.ipynb b/linear regression/liner regression.ipynb deleted file mode 100644 index bc0cf52..0000000 --- a/linear regression/liner regression.ipynb +++ /dev/null @@ -1,5234 +0,0 @@ -{ - "nbformat": 4, - "nbformat_minor": 0, - "metadata": { - "colab": { - "provenance": [], - "gpuType": "T4", - "mount_file_id": "1kCjTIM3v5mm8NXbKPLmlRKl7twd9xU94", - "authorship_tag": "ABX9TyOLIwV8MmfP7m3yiBMZyYF+" - }, - "kernelspec": { - "name": "python3", - "display_name": "Python 3" - }, - "language_info": { - "name": "python" - }, - "accelerator": "GPU" - }, - "cells": [ - { - "cell_type": "code", - "source": [ - "!pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121\n", - "!pip install numpy pandas pillow matplotlib" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "d5k_A4uC6e3f", - "executionInfo": { - "status": "ok", - "timestamp": 1718270822835, - "user_tz": -480, - "elapsed": 94497, - "user": { - "displayName": "wolves li", - "userId": "01742783151929573764" - } - }, - "outputId": "15326d01-d0fe-400f-bdc9-915e4ab959b8" - }, - "execution_count": 9, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Looking in indexes: https://download.pytorch.org/whl/cu121\n", - "Requirement already satisfied: torch in /usr/local/lib/python3.10/dist-packages (2.3.0+cu121)\n", - "Requirement already satisfied: torchvision in /usr/local/lib/python3.10/dist-packages (0.18.0+cu121)\n", - "Requirement already satisfied: torchaudio in /usr/local/lib/python3.10/dist-packages (2.3.0+cu121)\n", - "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from torch) (3.14.0)\n", - "Requirement already satisfied: typing-extensions>=4.8.0 in /usr/local/lib/python3.10/dist-packages (from torch) (4.12.2)\n", - "Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch) (1.12.1)\n", - "Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch) (3.3)\n", - "Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch) (3.1.4)\n", - "Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from torch) (2023.6.0)\n", - "Collecting nvidia-cuda-nvrtc-cu12==12.1.105 (from torch)\n", - " Downloading https://download.pytorch.org/whl/cu121/nvidia_cuda_nvrtc_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (23.7 MB)\n", - "\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m23.7/23.7 MB\u001B[0m \u001B[31m63.2 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\n", - "\u001B[?25hCollecting nvidia-cuda-runtime-cu12==12.1.105 (from torch)\n", - " Downloading https://download.pytorch.org/whl/cu121/nvidia_cuda_runtime_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (823 kB)\n", - "\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m823.6/823.6 kB\u001B[0m \u001B[31m60.4 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\n", - "\u001B[?25hCollecting nvidia-cuda-cupti-cu12==12.1.105 (from torch)\n", - " Downloading https://download.pytorch.org/whl/cu121/nvidia_cuda_cupti_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (14.1 MB)\n", - "\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m14.1/14.1 MB\u001B[0m \u001B[31m91.0 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\n", - "\u001B[?25hCollecting nvidia-cudnn-cu12==8.9.2.26 (from torch)\n", - " Downloading https://download.pytorch.org/whl/cu121/nvidia_cudnn_cu12-8.9.2.26-py3-none-manylinux1_x86_64.whl (731.7 MB)\n", - "\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m731.7/731.7 MB\u001B[0m \u001B[31m2.3 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\n", - "\u001B[?25hCollecting nvidia-cublas-cu12==12.1.3.1 (from torch)\n", - " Downloading https://download.pytorch.org/whl/cu121/nvidia_cublas_cu12-12.1.3.1-py3-none-manylinux1_x86_64.whl (410.6 MB)\n", - "\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m410.6/410.6 MB\u001B[0m \u001B[31m2.8 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\n", - "\u001B[?25hCollecting nvidia-cufft-cu12==11.0.2.54 (from torch)\n", - " Downloading https://download.pytorch.org/whl/cu121/nvidia_cufft_cu12-11.0.2.54-py3-none-manylinux1_x86_64.whl (121.6 MB)\n", - "\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m121.6/121.6 MB\u001B[0m \u001B[31m9.0 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\n", - "\u001B[?25hCollecting nvidia-curand-cu12==10.3.2.106 (from torch)\n", - " Downloading https://download.pytorch.org/whl/cu121/nvidia_curand_cu12-10.3.2.106-py3-none-manylinux1_x86_64.whl (56.5 MB)\n", - "\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m56.5/56.5 MB\u001B[0m \u001B[31m12.9 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\n", - "\u001B[?25hCollecting nvidia-cusolver-cu12==11.4.5.107 (from torch)\n", - " Downloading https://download.pytorch.org/whl/cu121/nvidia_cusolver_cu12-11.4.5.107-py3-none-manylinux1_x86_64.whl (124.2 MB)\n", - "\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m124.2/124.2 MB\u001B[0m \u001B[31m8.2 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\n", - "\u001B[?25hCollecting nvidia-cusparse-cu12==12.1.0.106 (from torch)\n", - " Downloading https://download.pytorch.org/whl/cu121/nvidia_cusparse_cu12-12.1.0.106-py3-none-manylinux1_x86_64.whl (196.0 MB)\n", - "\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m196.0/196.0 MB\u001B[0m \u001B[31m6.6 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\n", - "\u001B[?25hCollecting nvidia-nccl-cu12==2.20.5 (from torch)\n", - " Downloading https://download.pytorch.org/whl/cu121/nvidia_nccl_cu12-2.20.5-py3-none-manylinux2014_x86_64.whl (176.2 MB)\n", - "\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m176.2/176.2 MB\u001B[0m \u001B[31m6.3 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\n", - "\u001B[?25hCollecting nvidia-nvtx-cu12==12.1.105 (from torch)\n", - " Downloading https://download.pytorch.org/whl/cu121/nvidia_nvtx_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (99 kB)\n", - "\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m99.1/99.1 kB\u001B[0m \u001B[31m14.9 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\n", - "\u001B[?25hRequirement already satisfied: triton==2.3.0 in /usr/local/lib/python3.10/dist-packages (from torch) (2.3.0)\n", - "Collecting nvidia-nvjitlink-cu12 (from nvidia-cusolver-cu12==11.4.5.107->torch)\n", - " Downloading https://download.pytorch.org/whl/cu121/nvidia_nvjitlink_cu12-12.1.105-py3-none-manylinux1_x86_64.whl (19.8 MB)\n", - "\u001B[2K \u001B[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001B[0m \u001B[32m19.8/19.8 MB\u001B[0m \u001B[31m86.4 MB/s\u001B[0m eta \u001B[36m0:00:00\u001B[0m\n", - "\u001B[?25hRequirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from torchvision) (1.25.2)\n", - "Requirement already satisfied: pillow!=8.3.*,>=5.3.0 in /usr/local/lib/python3.10/dist-packages (from torchvision) (9.4.0)\n", - "Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch) (2.1.5)\n", - "Requirement already satisfied: mpmath<1.4.0,>=1.1.0 in /usr/local/lib/python3.10/dist-packages (from sympy->torch) (1.3.0)\n", - "Installing collected packages: nvidia-nvtx-cu12, nvidia-nvjitlink-cu12, nvidia-nccl-cu12, nvidia-curand-cu12, nvidia-cufft-cu12, nvidia-cuda-runtime-cu12, nvidia-cuda-nvrtc-cu12, nvidia-cuda-cupti-cu12, nvidia-cublas-cu12, nvidia-cusparse-cu12, nvidia-cudnn-cu12, nvidia-cusolver-cu12\n", - "Successfully installed nvidia-cublas-cu12-12.1.3.1 nvidia-cuda-cupti-cu12-12.1.105 nvidia-cuda-nvrtc-cu12-12.1.105 nvidia-cuda-runtime-cu12-12.1.105 nvidia-cudnn-cu12-8.9.2.26 nvidia-cufft-cu12-11.0.2.54 nvidia-curand-cu12-10.3.2.106 nvidia-cusolver-cu12-11.4.5.107 nvidia-cusparse-cu12-12.1.0.106 nvidia-nccl-cu12-2.20.5 nvidia-nvjitlink-cu12-12.1.105 nvidia-nvtx-cu12-12.1.105\n", - "Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (1.25.2)\n", - "Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (2.0.3)\n", - "Requirement already satisfied: pillow in /usr/local/lib/python3.10/dist-packages (9.4.0)\n", - "Requirement already satisfied: matplotlib in /usr/local/lib/python3.10/dist-packages (3.7.1)\n", - "Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas) (2.8.2)\n", - "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas) (2023.4)\n", - "Requirement already satisfied: tzdata>=2022.1 in /usr/local/lib/python3.10/dist-packages (from pandas) (2024.1)\n", - "Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (1.2.1)\n", - "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (0.12.1)\n", - "Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (4.53.0)\n", - "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (1.4.5)\n", - "Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (24.1)\n", - "Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib) (3.1.2)\n", - "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.2->pandas) (1.16.0)\n" - ] - } - ] - }, - { - "cell_type": "code", - "source": [ - "# cuda\n", - "import matplotlib.pyplot as plt\n", - "import numpy as np\n", - "import torch\n", - "\n", - "# 线性回归训练代码\n", - "def compute_error_for_line_given_points(b, w, points):\n", - " totalError = 0\n", - " N = float(len(points))\n", - " for i in range(len(points)):\n", - " x = points[i][0]\n", - " y = points[i][1]\n", - " totalError += (y - (w * x + b)) ** 2\n", - " return totalError / N\n", - "\n", - "def step_gradient(b_current, w_current, points, learningRate):\n", - " b_gradient = torch.tensor(0.0, device=points.device)\n", - " w_gradient = torch.tensor(0.0, device=points.device)\n", - " N = float(len(points))\n", - " for i in range(len(points)):\n", - " x = points[i][0]\n", - " y = points[i][1]\n", - " b_gradient += -(2 / N) * (y - (w_current * x + b_current))\n", - " w_gradient += -(2 / N) * x * (y - (w_current * x + b_current))\n", - " new_b = b_current - (learningRate * b_gradient)\n", - " new_w = w_current - (learningRate * w_gradient)\n", - " return [new_b, new_w]\n", - "\n", - "def gradient_descent_runner(points, starting_b, starting_w, learningRate, num_iterations):\n", - " b = torch.tensor(starting_b, device=points.device)\n", - " w = torch.tensor(starting_w, device=points.device)\n", - " for i in range(num_iterations):\n", - " print(\"round:\" + str(i))\n", - " b, w = step_gradient(b, w, points, learningRate)\n", - " return [b, w]\n", - "\n", - "def run():\n", - " points_np = np.genfromtxt(\"/content/drive/MyDrive/PT/data1.csv\", delimiter=',').astype(np.float64)\n", - " points = torch.tensor(points_np, device='cuda')\n", - " learning_rate = 0.0001\n", - " initial_b = 0.0\n", - " initial_w = 0.0\n", - " num_iterations = 100000\n", - " [b, w] = gradient_descent_runner(points, initial_b, initial_w, learning_rate, num_iterations)\n", - " print(\"After gradient descent at b={0}, w={1}, error={2}\".format(b.item(), w.item(),\n", - " compute_error_for_line_given_points(b, w, points)))\n", - " return b.item(), w.item()\n", - "\n", - "# 运行线性回归\n", - "final_b, final_w = run()\n", - "\n", - "# 绘制图像\n", - "points_np = np.genfromtxt(\"/content/drive/MyDrive/PT/data1.csv\", delimiter=',').astype(np.float64)\n", - "x = points_np[:, 0]\n", - "y = points_np[:, 1]\n", - "\n", - "x_range = np.linspace(min(x), max(x), 100)\n", - "y_pred = final_w * x_range + final_b\n", - "\n", - "plt.figure(figsize=(8, 6))\n", - "plt.scatter(x, y, color='blue', label='Original data')\n", - "plt.plot(x_range, y_pred, color='red', label='Fitted line')\n", - "plt.xlabel('X')\n", - "plt.ylabel('Y')\n", - "plt.title('Fitting a line to random data')\n", - "plt.legend()\n", - "plt.grid(True)\n", - "plt.savefig('/content/drive/MyDrive/PT/print1.png')\n", - "plt.show()\n" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 0 - }, - "id": "4uVNEBT96_HK", - "executionInfo": { - "status": "ok", - "timestamp": 1718272497978, - "user_tz": -480, - "elapsed": 1187345, - "user": { - "displayName": "wolves li", - "userId": "01742783151929573764" - } - }, - "outputId": "7f495cb6-2e31-4569-f0f2-38587cb48f89" - }, - "execution_count": 17, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "\u001B[1;30;43m流式输出内容被截断,只能显示最后 5000 行内容。\u001B[0m\n", - "round:95001\n", - "round:95002\n", - "round:95003\n", - "round:95004\n", - "round:95005\n", - "round:95006\n", - "round:95007\n", - "round:95008\n", - "round:95009\n", - "round:95010\n", - "round:95011\n", - "round:95012\n", - "round:95013\n", - "round:95014\n", - "round:95015\n", - "round:95016\n", - "round:95017\n", - "round:95018\n", - "round:95019\n", - "round:95020\n", - "round:95021\n", - "round:95022\n", - "round:95023\n", - "round:95024\n", - "round:95025\n", - "round:95026\n", - "round:95027\n", - "round:95028\n", - "round:95029\n", - "round:95030\n", - "round:95031\n", - "round:95032\n", - "round:95033\n", - "round:95034\n", - "round:95035\n", - "round:95036\n", - "round:95037\n", - "round:95038\n", - "round:95039\n", - "round:95040\n", - "round:95041\n", - "round:95042\n", - "round:95043\n", - "round:95044\n", - "round:95045\n", - "round:95046\n", - "round:95047\n", - "round:95048\n", - "round:95049\n", - "round:95050\n", - "round:95051\n", - "round:95052\n", - "round:95053\n", - "round:95054\n", - "round:95055\n", - "round:95056\n", - "round:95057\n", - "round:95058\n", - "round:95059\n", - "round:95060\n", - "round:95061\n", - "round:95062\n", - "round:95063\n", - "round:95064\n", - "round:95065\n", - "round:95066\n", - "round:95067\n", - "round:95068\n", - "round:95069\n", - "round:95070\n", - "round:95071\n", - "round:95072\n", - "round:95073\n", - "round:95074\n", - "round:95075\n", - "round:95076\n", - "round:95077\n", - "round:95078\n", - "round:95079\n", - "round:95080\n", - "round:95081\n", - "round:95082\n", - "round:95083\n", - "round:95084\n", - "round:95085\n", - "round:95086\n", - "round:95087\n", - "round:95088\n", - "round:95089\n", - "round:95090\n", - "round:95091\n", - "round:95092\n", - "round:95093\n", - "round:95094\n", - "round:95095\n", - "round:95096\n", - "round:95097\n", - "round:95098\n", - "round:95099\n", - "round:95100\n", - "round:95101\n", - "round:95102\n", - "round:95103\n", - "round:95104\n", - "round:95105\n", - "round:95106\n", - "round:95107\n", - "round:95108\n", - "round:95109\n", - "round:95110\n", - "round:95111\n", - "round:95112\n", - "round:95113\n", - "round:95114\n", - "round:95115\n", - "round:95116\n", - "round:95117\n", - "round:95118\n", - "round:95119\n", - "round:95120\n", - "round:95121\n", - "round:95122\n", - "round:95123\n", - "round:95124\n", - "round:95125\n", - "round:95126\n", - "round:95127\n", - "round:95128\n", - "round:95129\n", - "round:95130\n", - "round:95131\n", - "round:95132\n", - "round:95133\n", - "round:95134\n", - "round:95135\n", - "round:95136\n", - "round:95137\n", - "round:95138\n", - "round:95139\n", - "round:95140\n", - "round:95141\n", - "round:95142\n", - "round:95143\n", - "round:95144\n", - "round:95145\n", - "round:95146\n", - "round:95147\n", - "round:95148\n", - "round:95149\n", - "round:95150\n", - "round:95151\n", - "round:95152\n", - "round:95153\n", - "round:95154\n", - "round:95155\n", - "round:95156\n", - "round:95157\n", - "round:95158\n", - "round:95159\n", - "round:95160\n", - "round:95161\n", - "round:95162\n", - "round:95163\n", - "round:95164\n", - "round:95165\n", - "round:95166\n", - "round:95167\n", - "round:95168\n", - "round:95169\n", - "round:95170\n", - "round:95171\n", - "round:95172\n", - "round:95173\n", - "round:95174\n", - "round:95175\n", - "round:95176\n", - "round:95177\n", - "round:95178\n", - "round:95179\n", - "round:95180\n", - "round:95181\n", - "round:95182\n", - "round:95183\n", - "round:95184\n", - "round:95185\n", - "round:95186\n", - "round:95187\n", - "round:95188\n", - "round:95189\n", - "round:95190\n", - "round:95191\n", - "round:95192\n", - "round:95193\n", - "round:95194\n", - "round:95195\n", - "round:95196\n", - "round:95197\n", - "round:95198\n", - "round:95199\n", - "round:95200\n", - "round:95201\n", - "round:95202\n", - "round:95203\n", - "round:95204\n", - "round:95205\n", - "round:95206\n", - "round:95207\n", - "round:95208\n", - "round:95209\n", - "round:95210\n", - "round:95211\n", - "round:95212\n", - "round:95213\n", - "round:95214\n", - "round:95215\n", - "round:95216\n", - "round:95217\n", - "round:95218\n", - "round:95219\n", - "round:95220\n", - "round:95221\n", - "round:95222\n", - "round:95223\n", - "round:95224\n", - "round:95225\n", - "round:95226\n", - "round:95227\n", - "round:95228\n", - "round:95229\n", - "round:95230\n", - "round:95231\n", - "round:95232\n", - "round:95233\n", - "round:95234\n", - "round:95235\n", - "round:95236\n", - "round:95237\n", - "round:95238\n", - "round:95239\n", - "round:95240\n", - "round:95241\n", - "round:95242\n", - "round:95243\n", - "round:95244\n", - "round:95245\n", - "round:95246\n", - "round:95247\n", - "round:95248\n", - "round:95249\n", - "round:95250\n", - "round:95251\n", - "round:95252\n", - "round:95253\n", - "round:95254\n", - "round:95255\n", - "round:95256\n", - "round:95257\n", - "round:95258\n", - "round:95259\n", - "round:95260\n", - "round:95261\n", - "round:95262\n", - "round:95263\n", - "round:95264\n", - "round:95265\n", - "round:95266\n", - "round:95267\n", - "round:95268\n", - "round:95269\n", - "round:95270\n", - "round:95271\n", - "round:95272\n", - "round:95273\n", - "round:95274\n", - "round:95275\n", - "round:95276\n", - "round:95277\n", - "round:95278\n", - "round:95279\n", - "round:95280\n", - "round:95281\n", - "round:95282\n", - "round:95283\n", - "round:95284\n", - "round:95285\n", - "round:95286\n", - "round:95287\n", - "round:95288\n", - "round:95289\n", - "round:95290\n", - "round:95291\n", - "round:95292\n", - "round:95293\n", - "round:95294\n", - "round:95295\n", - "round:95296\n", - "round:95297\n", - "round:95298\n", - "round:95299\n", - "round:95300\n", - "round:95301\n", - "round:95302\n", - "round:95303\n", - "round:95304\n", - "round:95305\n", - "round:95306\n", - "round:95307\n", - "round:95308\n", - "round:95309\n", - "round:95310\n", - "round:95311\n", - "round:95312\n", - "round:95313\n", - "round:95314\n", - "round:95315\n", - "round:95316\n", - "round:95317\n", - "round:95318\n", - "round:95319\n", - "round:95320\n", - "round:95321\n", - "round:95322\n", - "round:95323\n", - "round:95324\n", - "round:95325\n", - "round:95326\n", - "round:95327\n", - "round:95328\n", - "round:95329\n", - "round:95330\n", - "round:95331\n", - "round:95332\n", - "round:95333\n", - "round:95334\n", - "round:95335\n", - "round:95336\n", - "round:95337\n", - "round:95338\n", - "round:95339\n", - "round:95340\n", - "round:95341\n", - "round:95342\n", - "round:95343\n", - "round:95344\n", - "round:95345\n", - "round:95346\n", - "round:95347\n", - "round:95348\n", - "round:95349\n", - "round:95350\n", - "round:95351\n", - "round:95352\n", - "round:95353\n", - "round:95354\n", - "round:95355\n", - "round:95356\n", - "round:95357\n", - "round:95358\n", - "round:95359\n", - "round:95360\n", - "round:95361\n", - "round:95362\n", - "round:95363\n", - "round:95364\n", - "round:95365\n", - "round:95366\n", - "round:95367\n", - "round:95368\n", - "round:95369\n", - "round:95370\n", - "round:95371\n", - "round:95372\n", - "round:95373\n", - "round:95374\n", - "round:95375\n", - "round:95376\n", - "round:95377\n", - "round:95378\n", - "round:95379\n", - "round:95380\n", - "round:95381\n", - "round:95382\n", - "round:95383\n", - "round:95384\n", - "round:95385\n", - "round:95386\n", - "round:95387\n", - "round:95388\n", - "round:95389\n", - "round:95390\n", - "round:95391\n", - "round:95392\n", - "round:95393\n", - "round:95394\n", - "round:95395\n", - "round:95396\n", - "round:95397\n", - "round:95398\n", - "round:95399\n", - "round:95400\n", - "round:95401\n", - "round:95402\n", - "round:95403\n", - "round:95404\n", - "round:95405\n", - "round:95406\n", - "round:95407\n", - "round:95408\n", - "round:95409\n", - "round:95410\n", - "round:95411\n", - "round:95412\n", - "round:95413\n", - "round:95414\n", - "round:95415\n", - "round:95416\n", - "round:95417\n", - "round:95418\n", - "round:95419\n", - "round:95420\n", - "round:95421\n", - "round:95422\n", - "round:95423\n", - "round:95424\n", - "round:95425\n", - "round:95426\n", - "round:95427\n", - "round:95428\n", - "round:95429\n", - "round:95430\n", - "round:95431\n", - "round:95432\n", - "round:95433\n", - "round:95434\n", - "round:95435\n", - "round:95436\n", - "round:95437\n", - "round:95438\n", - "round:95439\n", - "round:95440\n", - "round:95441\n", - "round:95442\n", - "round:95443\n", - "round:95444\n", - "round:95445\n", - "round:95446\n", - "round:95447\n", - "round:95448\n", - "round:95449\n", - "round:95450\n", - "round:95451\n", - "round:95452\n", - "round:95453\n", - "round:95454\n", - "round:95455\n", - "round:95456\n", - "round:95457\n", - "round:95458\n", - "round:95459\n", - "round:95460\n", - "round:95461\n", - "round:95462\n", - "round:95463\n", - "round:95464\n", - "round:95465\n", - "round:95466\n", - "round:95467\n", - "round:95468\n", - "round:95469\n", - "round:95470\n", - "round:95471\n", - "round:95472\n", - "round:95473\n", - "round:95474\n", - "round:95475\n", - "round:95476\n", - "round:95477\n", - "round:95478\n", - "round:95479\n", - "round:95480\n", - "round:95481\n", - "round:95482\n", - "round:95483\n", - "round:95484\n", - "round:95485\n", - "round:95486\n", - "round:95487\n", - "round:95488\n", - "round:95489\n", - "round:95490\n", - "round:95491\n", - "round:95492\n", - "round:95493\n", - "round:95494\n", - "round:95495\n", - "round:95496\n", - "round:95497\n", - "round:95498\n", - "round:95499\n", - "round:95500\n", - "round:95501\n", - "round:95502\n", - "round:95503\n", - "round:95504\n", - "round:95505\n", - "round:95506\n", - "round:95507\n", - "round:95508\n", - "round:95509\n", - "round:95510\n", - "round:95511\n", - "round:95512\n", - "round:95513\n", - "round:95514\n", - "round:95515\n", - "round:95516\n", - "round:95517\n", - "round:95518\n", - "round:95519\n", - "round:95520\n", - "round:95521\n", - "round:95522\n", - "round:95523\n", - "round:95524\n", - "round:95525\n", - "round:95526\n", - "round:95527\n", - "round:95528\n", - "round:95529\n", - "round:95530\n", - "round:95531\n", - "round:95532\n", - "round:95533\n", - "round:95534\n", - "round:95535\n", - "round:95536\n", - "round:95537\n", - "round:95538\n", - "round:95539\n", - "round:95540\n", - "round:95541\n", - "round:95542\n", - "round:95543\n", - "round:95544\n", - "round:95545\n", - "round:95546\n", - "round:95547\n", - "round:95548\n", - "round:95549\n", - "round:95550\n", - "round:95551\n", - "round:95552\n", - "round:95553\n", - "round:95554\n", - "round:95555\n", - "round:95556\n", - "round:95557\n", - "round:95558\n", - "round:95559\n", - "round:95560\n", - "round:95561\n", - "round:95562\n", - "round:95563\n", - "round:95564\n", - "round:95565\n", - "round:95566\n", - "round:95567\n", - "round:95568\n", - "round:95569\n", - "round:95570\n", - "round:95571\n", - "round:95572\n", - "round:95573\n", - "round:95574\n", - "round:95575\n", - "round:95576\n", - "round:95577\n", - "round:95578\n", - "round:95579\n", - "round:95580\n", - "round:95581\n", - "round:95582\n", - "round:95583\n", - "round:95584\n", - "round:95585\n", - "round:95586\n", - "round:95587\n", - "round:95588\n", - "round:95589\n", - "round:95590\n", - "round:95591\n", - "round:95592\n", - "round:95593\n", - "round:95594\n", - "round:95595\n", - "round:95596\n", - "round:95597\n", - "round:95598\n", - "round:95599\n", - "round:95600\n", - "round:95601\n", - "round:95602\n", - "round:95603\n", - "round:95604\n", - "round:95605\n", - "round:95606\n", - "round:95607\n", - "round:95608\n", - "round:95609\n", - "round:95610\n", - "round:95611\n", - "round:95612\n", - "round:95613\n", - "round:95614\n", - "round:95615\n", - "round:95616\n", - "round:95617\n", - "round:95618\n", - "round:95619\n", - "round:95620\n", - "round:95621\n", - "round:95622\n", - "round:95623\n", - "round:95624\n", - "round:95625\n", - "round:95626\n", - "round:95627\n", - "round:95628\n", - "round:95629\n", - "round:95630\n", - "round:95631\n", - "round:95632\n", - "round:95633\n", - "round:95634\n", - "round:95635\n", - "round:95636\n", - "round:95637\n", - "round:95638\n", - "round:95639\n", - "round:95640\n", - "round:95641\n", - "round:95642\n", - "round:95643\n", - "round:95644\n", - "round:95645\n", - "round:95646\n", - "round:95647\n", - "round:95648\n", - "round:95649\n", - "round:95650\n", - "round:95651\n", - "round:95652\n", - "round:95653\n", - "round:95654\n", - "round:95655\n", - "round:95656\n", - "round:95657\n", - "round:95658\n", - "round:95659\n", - "round:95660\n", - "round:95661\n", - "round:95662\n", - "round:95663\n", - "round:95664\n", - "round:95665\n", - "round:95666\n", - "round:95667\n", - "round:95668\n", - "round:95669\n", - "round:95670\n", - "round:95671\n", - "round:95672\n", - "round:95673\n", - "round:95674\n", - "round:95675\n", - "round:95676\n", - "round:95677\n", - "round:95678\n", - "round:95679\n", - "round:95680\n", - "round:95681\n", - "round:95682\n", - "round:95683\n", - "round:95684\n", - "round:95685\n", - "round:95686\n", - "round:95687\n", - "round:95688\n", - "round:95689\n", - "round:95690\n", - "round:95691\n", - "round:95692\n", - "round:95693\n", - "round:95694\n", - "round:95695\n", - "round:95696\n", - "round:95697\n", - "round:95698\n", - "round:95699\n", - "round:95700\n", - "round:95701\n", - "round:95702\n", - "round:95703\n", - "round:95704\n", - "round:95705\n", - "round:95706\n", - "round:95707\n", - "round:95708\n", - "round:95709\n", - "round:95710\n", - "round:95711\n", - "round:95712\n", - "round:95713\n", - "round:95714\n", - "round:95715\n", - "round:95716\n", - "round:95717\n", - "round:95718\n", - "round:95719\n", - "round:95720\n", - "round:95721\n", - "round:95722\n", - "round:95723\n", - "round:95724\n", - "round:95725\n", - "round:95726\n", - "round:95727\n", - "round:95728\n", - "round:95729\n", - "round:95730\n", - "round:95731\n", - "round:95732\n", - "round:95733\n", - "round:95734\n", - "round:95735\n", - "round:95736\n", - "round:95737\n", - "round:95738\n", - "round:95739\n", - "round:95740\n", - "round:95741\n", - "round:95742\n", - "round:95743\n", - "round:95744\n", - "round:95745\n", - "round:95746\n", - "round:95747\n", - "round:95748\n", - "round:95749\n", - "round:95750\n", - "round:95751\n", - "round:95752\n", - "round:95753\n", - "round:95754\n", - "round:95755\n", - "round:95756\n", - "round:95757\n", - "round:95758\n", - "round:95759\n", - "round:95760\n", - "round:95761\n", - "round:95762\n", - "round:95763\n", - "round:95764\n", - "round:95765\n", - "round:95766\n", - "round:95767\n", - "round:95768\n", - "round:95769\n", - "round:95770\n", - "round:95771\n", - "round:95772\n", - "round:95773\n", - "round:95774\n", - "round:95775\n", - "round:95776\n", - "round:95777\n", - "round:95778\n", - "round:95779\n", - "round:95780\n", - "round:95781\n", - "round:95782\n", - "round:95783\n", - "round:95784\n", - "round:95785\n", - "round:95786\n", - "round:95787\n", - "round:95788\n", - "round:95789\n", - "round:95790\n", - "round:95791\n", - "round:95792\n", - "round:95793\n", - "round:95794\n", - "round:95795\n", - "round:95796\n", - "round:95797\n", - "round:95798\n", - "round:95799\n", - "round:95800\n", - "round:95801\n", - "round:95802\n", - "round:95803\n", - "round:95804\n", - "round:95805\n", - "round:95806\n", - "round:95807\n", - "round:95808\n", - "round:95809\n", - "round:95810\n", - "round:95811\n", - "round:95812\n", - "round:95813\n", - "round:95814\n", - "round:95815\n", - "round:95816\n", - "round:95817\n", - "round:95818\n", - "round:95819\n", - "round:95820\n", - "round:95821\n", - "round:95822\n", - "round:95823\n", - "round:95824\n", - "round:95825\n", - "round:95826\n", - "round:95827\n", - "round:95828\n", - "round:95829\n", - "round:95830\n", - "round:95831\n", - "round:95832\n", - "round:95833\n", - "round:95834\n", - "round:95835\n", - "round:95836\n", - "round:95837\n", - "round:95838\n", - "round:95839\n", - "round:95840\n", - "round:95841\n", - "round:95842\n", - "round:95843\n", - "round:95844\n", - "round:95845\n", - "round:95846\n", - "round:95847\n", - "round:95848\n", - "round:95849\n", - "round:95850\n", - "round:95851\n", - "round:95852\n", - "round:95853\n", - "round:95854\n", - "round:95855\n", - "round:95856\n", - "round:95857\n", - "round:95858\n", - "round:95859\n", - "round:95860\n", - "round:95861\n", - "round:95862\n", - "round:95863\n", - "round:95864\n", - "round:95865\n", - "round:95866\n", - "round:95867\n", - "round:95868\n", - "round:95869\n", - "round:95870\n", - "round:95871\n", - "round:95872\n", - "round:95873\n", - "round:95874\n", - "round:95875\n", - "round:95876\n", - "round:95877\n", - "round:95878\n", - "round:95879\n", - "round:95880\n", - "round:95881\n", - "round:95882\n", - "round:95883\n", - "round:95884\n", - "round:95885\n", - "round:95886\n", - "round:95887\n", - "round:95888\n", - "round:95889\n", - "round:95890\n", - "round:95891\n", - "round:95892\n", - "round:95893\n", - "round:95894\n", - "round:95895\n", - "round:95896\n", - "round:95897\n", - "round:95898\n", - "round:95899\n", - "round:95900\n", - "round:95901\n", - "round:95902\n", - "round:95903\n", - "round:95904\n", - "round:95905\n", - "round:95906\n", - "round:95907\n", - "round:95908\n", - "round:95909\n", - "round:95910\n", - "round:95911\n", - "round:95912\n", - "round:95913\n", - "round:95914\n", - "round:95915\n", - "round:95916\n", - "round:95917\n", - "round:95918\n", - "round:95919\n", - "round:95920\n", - "round:95921\n", - "round:95922\n", - "round:95923\n", - "round:95924\n", - "round:95925\n", - "round:95926\n", - "round:95927\n", - "round:95928\n", - "round:95929\n", - "round:95930\n", - "round:95931\n", - "round:95932\n", - "round:95933\n", - "round:95934\n", - "round:95935\n", - "round:95936\n", - "round:95937\n", - "round:95938\n", - "round:95939\n", - "round:95940\n", - "round:95941\n", - "round:95942\n", - "round:95943\n", - "round:95944\n", - "round:95945\n", - "round:95946\n", - "round:95947\n", - "round:95948\n", - "round:95949\n", - "round:95950\n", - "round:95951\n", - "round:95952\n", - "round:95953\n", - "round:95954\n", - "round:95955\n", - "round:95956\n", - "round:95957\n", - "round:95958\n", - "round:95959\n", - "round:95960\n", - "round:95961\n", - "round:95962\n", - "round:95963\n", - "round:95964\n", - "round:95965\n", - "round:95966\n", - "round:95967\n", - "round:95968\n", - "round:95969\n", - "round:95970\n", - "round:95971\n", - "round:95972\n", - "round:95973\n", - "round:95974\n", - "round:95975\n", - "round:95976\n", - "round:95977\n", - "round:95978\n", - "round:95979\n", - "round:95980\n", - "round:95981\n", - "round:95982\n", - "round:95983\n", - "round:95984\n", - "round:95985\n", - "round:95986\n", - "round:95987\n", - "round:95988\n", - "round:95989\n", - "round:95990\n", - "round:95991\n", - "round:95992\n", - "round:95993\n", - "round:95994\n", - "round:95995\n", - "round:95996\n", - "round:95997\n", - "round:95998\n", - "round:95999\n", - "round:96000\n", - "round:96001\n", - "round:96002\n", - "round:96003\n", - "round:96004\n", - "round:96005\n", - "round:96006\n", - "round:96007\n", - "round:96008\n", - "round:96009\n", - "round:96010\n", - "round:96011\n", - "round:96012\n", - "round:96013\n", - "round:96014\n", - "round:96015\n", - "round:96016\n", - "round:96017\n", - "round:96018\n", - "round:96019\n", - "round:96020\n", - "round:96021\n", - "round:96022\n", - "round:96023\n", - "round:96024\n", - "round:96025\n", - "round:96026\n", - "round:96027\n", - "round:96028\n", - "round:96029\n", - "round:96030\n", - "round:96031\n", - "round:96032\n", - "round:96033\n", - "round:96034\n", - "round:96035\n", - "round:96036\n", - "round:96037\n", - "round:96038\n", - "round:96039\n", - "round:96040\n", - "round:96041\n", - "round:96042\n", - "round:96043\n", - "round:96044\n", - "round:96045\n", - "round:96046\n", - "round:96047\n", - "round:96048\n", - "round:96049\n", - "round:96050\n", - "round:96051\n", - "round:96052\n", - "round:96053\n", - "round:96054\n", - "round:96055\n", - "round:96056\n", - "round:96057\n", - "round:96058\n", - "round:96059\n", - "round:96060\n", - "round:96061\n", - "round:96062\n", - "round:96063\n", - "round:96064\n", - "round:96065\n", - "round:96066\n", - "round:96067\n", - "round:96068\n", - "round:96069\n", - "round:96070\n", - "round:96071\n", - "round:96072\n", - "round:96073\n", - "round:96074\n", - "round:96075\n", - "round:96076\n", - "round:96077\n", - "round:96078\n", - "round:96079\n", - "round:96080\n", - "round:96081\n", - "round:96082\n", - "round:96083\n", - "round:96084\n", - "round:96085\n", - "round:96086\n", - "round:96087\n", - "round:96088\n", - "round:96089\n", - "round:96090\n", - "round:96091\n", - "round:96092\n", - "round:96093\n", - "round:96094\n", - "round:96095\n", - "round:96096\n", - "round:96097\n", - "round:96098\n", - "round:96099\n", - "round:96100\n", - "round:96101\n", - "round:96102\n", - "round:96103\n", - "round:96104\n", - "round:96105\n", - "round:96106\n", - "round:96107\n", - "round:96108\n", - "round:96109\n", - "round:96110\n", - "round:96111\n", - "round:96112\n", - "round:96113\n", - "round:96114\n", - "round:96115\n", - "round:96116\n", - "round:96117\n", - "round:96118\n", - "round:96119\n", - "round:96120\n", - "round:96121\n", - "round:96122\n", - "round:96123\n", - "round:96124\n", - "round:96125\n", - "round:96126\n", - "round:96127\n", - "round:96128\n", - "round:96129\n", - "round:96130\n", - "round:96131\n", - "round:96132\n", - "round:96133\n", - "round:96134\n", - "round:96135\n", - "round:96136\n", - "round:96137\n", - "round:96138\n", - "round:96139\n", - "round:96140\n", - "round:96141\n", - "round:96142\n", - "round:96143\n", - "round:96144\n", - "round:96145\n", - "round:96146\n", - "round:96147\n", - "round:96148\n", - "round:96149\n", - "round:96150\n", - "round:96151\n", - "round:96152\n", - "round:96153\n", - "round:96154\n", - "round:96155\n", - "round:96156\n", - "round:96157\n", - "round:96158\n", - "round:96159\n", - "round:96160\n", - "round:96161\n", - "round:96162\n", - "round:96163\n", - "round:96164\n", - "round:96165\n", - "round:96166\n", - "round:96167\n", - "round:96168\n", - "round:96169\n", - "round:96170\n", - "round:96171\n", - "round:96172\n", - "round:96173\n", - "round:96174\n", - "round:96175\n", - "round:96176\n", - "round:96177\n", - "round:96178\n", - "round:96179\n", - "round:96180\n", - "round:96181\n", - "round:96182\n", - "round:96183\n", - "round:96184\n", - "round:96185\n", - "round:96186\n", - "round:96187\n", - "round:96188\n", - "round:96189\n", - "round:96190\n", - "round:96191\n", - "round:96192\n", - "round:96193\n", - "round:96194\n", - "round:96195\n", - "round:96196\n", - "round:96197\n", - "round:96198\n", - "round:96199\n", - "round:96200\n", - "round:96201\n", - "round:96202\n", - "round:96203\n", - "round:96204\n", - "round:96205\n", - "round:96206\n", - "round:96207\n", - "round:96208\n", - "round:96209\n", - "round:96210\n", - "round:96211\n", - "round:96212\n", - "round:96213\n", - "round:96214\n", - "round:96215\n", - "round:96216\n", - "round:96217\n", - "round:96218\n", - "round:96219\n", - "round:96220\n", - "round:96221\n", - "round:96222\n", - "round:96223\n", - "round:96224\n", - "round:96225\n", - "round:96226\n", - "round:96227\n", - "round:96228\n", - "round:96229\n", - "round:96230\n", - "round:96231\n", - "round:96232\n", - "round:96233\n", - "round:96234\n", - "round:96235\n", - "round:96236\n", - "round:96237\n", - "round:96238\n", - "round:96239\n", - "round:96240\n", - "round:96241\n", - "round:96242\n", - "round:96243\n", - "round:96244\n", - "round:96245\n", - "round:96246\n", - "round:96247\n", - "round:96248\n", - "round:96249\n", - "round:96250\n", - "round:96251\n", - "round:96252\n", - "round:96253\n", - "round:96254\n", - "round:96255\n", - "round:96256\n", - "round:96257\n", - "round:96258\n", - "round:96259\n", - "round:96260\n", - "round:96261\n", - "round:96262\n", - "round:96263\n", - "round:96264\n", - "round:96265\n", - "round:96266\n", - "round:96267\n", - "round:96268\n", - "round:96269\n", - "round:96270\n", - "round:96271\n", - "round:96272\n", - "round:96273\n", - "round:96274\n", - "round:96275\n", - "round:96276\n", - "round:96277\n", - "round:96278\n", - "round:96279\n", - "round:96280\n", - "round:96281\n", - "round:96282\n", - "round:96283\n", - "round:96284\n", - "round:96285\n", - "round:96286\n", - "round:96287\n", - "round:96288\n", - "round:96289\n", - "round:96290\n", - "round:96291\n", - "round:96292\n", - "round:96293\n", - "round:96294\n", - "round:96295\n", - "round:96296\n", - "round:96297\n", - "round:96298\n", - "round:96299\n", - "round:96300\n", - "round:96301\n", - "round:96302\n", - "round:96303\n", - "round:96304\n", - "round:96305\n", - "round:96306\n", - "round:96307\n", - "round:96308\n", - "round:96309\n", - "round:96310\n", - "round:96311\n", - "round:96312\n", - "round:96313\n", - "round:96314\n", - "round:96315\n", - "round:96316\n", - "round:96317\n", - "round:96318\n", - "round:96319\n", - "round:96320\n", - "round:96321\n", - "round:96322\n", - "round:96323\n", - "round:96324\n", - "round:96325\n", - "round:96326\n", - "round:96327\n", - "round:96328\n", - "round:96329\n", - "round:96330\n", - "round:96331\n", - "round:96332\n", - "round:96333\n", - "round:96334\n", - "round:96335\n", - "round:96336\n", - "round:96337\n", - "round:96338\n", - "round:96339\n", - "round:96340\n", - "round:96341\n", - "round:96342\n", - "round:96343\n", - "round:96344\n", - "round:96345\n", - "round:96346\n", - "round:96347\n", - "round:96348\n", - "round:96349\n", - "round:96350\n", - "round:96351\n", - "round:96352\n", - "round:96353\n", - "round:96354\n", - "round:96355\n", - "round:96356\n", - "round:96357\n", - "round:96358\n", - "round:96359\n", - "round:96360\n", - "round:96361\n", - "round:96362\n", - "round:96363\n", - "round:96364\n", - "round:96365\n", - "round:96366\n", - "round:96367\n", - "round:96368\n", - "round:96369\n", - "round:96370\n", - "round:96371\n", - "round:96372\n", - "round:96373\n", - "round:96374\n", - "round:96375\n", - "round:96376\n", - "round:96377\n", - "round:96378\n", - "round:96379\n", - "round:96380\n", - "round:96381\n", - "round:96382\n", - "round:96383\n", - "round:96384\n", - "round:96385\n", - "round:96386\n", - "round:96387\n", - "round:96388\n", - "round:96389\n", - "round:96390\n", - "round:96391\n", - "round:96392\n", - "round:96393\n", - "round:96394\n", - "round:96395\n", - "round:96396\n", - "round:96397\n", - "round:96398\n", - "round:96399\n", - "round:96400\n", - "round:96401\n", - "round:96402\n", - "round:96403\n", - "round:96404\n", - "round:96405\n", - "round:96406\n", - "round:96407\n", - "round:96408\n", - "round:96409\n", - "round:96410\n", - "round:96411\n", - "round:96412\n", - "round:96413\n", - "round:96414\n", - "round:96415\n", - "round:96416\n", - "round:96417\n", - "round:96418\n", - "round:96419\n", - "round:96420\n", - "round:96421\n", - "round:96422\n", - "round:96423\n", - "round:96424\n", - "round:96425\n", - "round:96426\n", - "round:96427\n", - "round:96428\n", - "round:96429\n", - "round:96430\n", - "round:96431\n", - "round:96432\n", - "round:96433\n", - "round:96434\n", - "round:96435\n", - "round:96436\n", - "round:96437\n", - "round:96438\n", - "round:96439\n", - "round:96440\n", - "round:96441\n", - "round:96442\n", - "round:96443\n", - "round:96444\n", - "round:96445\n", - "round:96446\n", - "round:96447\n", - "round:96448\n", - "round:96449\n", - "round:96450\n", - "round:96451\n", - "round:96452\n", - "round:96453\n", - "round:96454\n", - "round:96455\n", - "round:96456\n", - "round:96457\n", - "round:96458\n", - "round:96459\n", - "round:96460\n", - "round:96461\n", - "round:96462\n", - "round:96463\n", - "round:96464\n", - "round:96465\n", - "round:96466\n", - "round:96467\n", - "round:96468\n", - "round:96469\n", - "round:96470\n", - "round:96471\n", - "round:96472\n", - "round:96473\n", - "round:96474\n", - "round:96475\n", - "round:96476\n", - "round:96477\n", - "round:96478\n", - "round:96479\n", - "round:96480\n", - "round:96481\n", - "round:96482\n", - "round:96483\n", - "round:96484\n", - "round:96485\n", - "round:96486\n", - "round:96487\n", - "round:96488\n", - "round:96489\n", - "round:96490\n", - "round:96491\n", - "round:96492\n", - "round:96493\n", - "round:96494\n", - "round:96495\n", - "round:96496\n", - "round:96497\n", - "round:96498\n", - "round:96499\n", - "round:96500\n", - "round:96501\n", - "round:96502\n", - "round:96503\n", - "round:96504\n", - "round:96505\n", - "round:96506\n", - "round:96507\n", - "round:96508\n", - "round:96509\n", - "round:96510\n", - "round:96511\n", - "round:96512\n", - "round:96513\n", - "round:96514\n", - "round:96515\n", - "round:96516\n", - "round:96517\n", - "round:96518\n", - "round:96519\n", - "round:96520\n", - "round:96521\n", - "round:96522\n", - "round:96523\n", - "round:96524\n", - "round:96525\n", - "round:96526\n", - "round:96527\n", - "round:96528\n", - "round:96529\n", - "round:96530\n", - "round:96531\n", - "round:96532\n", - "round:96533\n", - "round:96534\n", - "round:96535\n", - "round:96536\n", - "round:96537\n", - "round:96538\n", - "round:96539\n", - "round:96540\n", - "round:96541\n", - "round:96542\n", - "round:96543\n", - "round:96544\n", - "round:96545\n", - "round:96546\n", - "round:96547\n", - "round:96548\n", - "round:96549\n", - "round:96550\n", - "round:96551\n", - "round:96552\n", - "round:96553\n", - "round:96554\n", - "round:96555\n", - "round:96556\n", - "round:96557\n", - "round:96558\n", - "round:96559\n", - "round:96560\n", - "round:96561\n", - "round:96562\n", - "round:96563\n", - "round:96564\n", - "round:96565\n", - "round:96566\n", - "round:96567\n", - "round:96568\n", - "round:96569\n", - "round:96570\n", - "round:96571\n", - "round:96572\n", - "round:96573\n", - "round:96574\n", - "round:96575\n", - "round:96576\n", - "round:96577\n", - "round:96578\n", - "round:96579\n", - "round:96580\n", - "round:96581\n", - "round:96582\n", - "round:96583\n", - "round:96584\n", - "round:96585\n", - "round:96586\n", - "round:96587\n", - "round:96588\n", - "round:96589\n", - "round:96590\n", - "round:96591\n", - "round:96592\n", - "round:96593\n", - "round:96594\n", - "round:96595\n", - "round:96596\n", - "round:96597\n", - "round:96598\n", - "round:96599\n", - "round:96600\n", - "round:96601\n", - "round:96602\n", - "round:96603\n", - "round:96604\n", - "round:96605\n", - "round:96606\n", - "round:96607\n", - "round:96608\n", - "round:96609\n", - "round:96610\n", - "round:96611\n", - "round:96612\n", - "round:96613\n", - "round:96614\n", - "round:96615\n", - "round:96616\n", - "round:96617\n", - "round:96618\n", - "round:96619\n", - "round:96620\n", - "round:96621\n", - "round:96622\n", - "round:96623\n", - "round:96624\n", - "round:96625\n", - "round:96626\n", - "round:96627\n", - "round:96628\n", - "round:96629\n", - "round:96630\n", - "round:96631\n", - "round:96632\n", - "round:96633\n", - "round:96634\n", - "round:96635\n", - "round:96636\n", - "round:96637\n", - "round:96638\n", - "round:96639\n", - "round:96640\n", - "round:96641\n", - "round:96642\n", - "round:96643\n", - "round:96644\n", - "round:96645\n", - "round:96646\n", - "round:96647\n", - "round:96648\n", - "round:96649\n", - "round:96650\n", - "round:96651\n", - "round:96652\n", - "round:96653\n", - "round:96654\n", - "round:96655\n", - "round:96656\n", - "round:96657\n", - "round:96658\n", - "round:96659\n", - "round:96660\n", - "round:96661\n", - "round:96662\n", - "round:96663\n", - "round:96664\n", - "round:96665\n", - "round:96666\n", - "round:96667\n", - "round:96668\n", - "round:96669\n", - "round:96670\n", - "round:96671\n", - "round:96672\n", - "round:96673\n", - "round:96674\n", - "round:96675\n", - "round:96676\n", - "round:96677\n", - "round:96678\n", - "round:96679\n", - "round:96680\n", - "round:96681\n", - "round:96682\n", - "round:96683\n", - "round:96684\n", - "round:96685\n", - "round:96686\n", - "round:96687\n", - "round:96688\n", - "round:96689\n", - "round:96690\n", - "round:96691\n", - "round:96692\n", - "round:96693\n", - "round:96694\n", - "round:96695\n", - "round:96696\n", - "round:96697\n", - "round:96698\n", - "round:96699\n", - "round:96700\n", - "round:96701\n", - "round:96702\n", - "round:96703\n", - "round:96704\n", - "round:96705\n", - "round:96706\n", - "round:96707\n", - "round:96708\n", - "round:96709\n", - "round:96710\n", - "round:96711\n", - "round:96712\n", - "round:96713\n", - "round:96714\n", - "round:96715\n", - "round:96716\n", - "round:96717\n", - "round:96718\n", - "round:96719\n", - "round:96720\n", - "round:96721\n", - "round:96722\n", - "round:96723\n", - "round:96724\n", - "round:96725\n", - "round:96726\n", - "round:96727\n", - "round:96728\n", - "round:96729\n", - "round:96730\n", - "round:96731\n", - "round:96732\n", - "round:96733\n", - "round:96734\n", - "round:96735\n", - "round:96736\n", - "round:96737\n", - "round:96738\n", - "round:96739\n", - "round:96740\n", - "round:96741\n", - "round:96742\n", - "round:96743\n", - "round:96744\n", - "round:96745\n", - "round:96746\n", - "round:96747\n", - "round:96748\n", - "round:96749\n", - "round:96750\n", - "round:96751\n", - "round:96752\n", - "round:96753\n", - "round:96754\n", - "round:96755\n", - "round:96756\n", - "round:96757\n", - "round:96758\n", - "round:96759\n", - "round:96760\n", - "round:96761\n", - "round:96762\n", - "round:96763\n", - "round:96764\n", - "round:96765\n", - "round:96766\n", - "round:96767\n", - "round:96768\n", - "round:96769\n", - "round:96770\n", - "round:96771\n", - "round:96772\n", - "round:96773\n", - "round:96774\n", - "round:96775\n", - "round:96776\n", - "round:96777\n", - "round:96778\n", - "round:96779\n", - "round:96780\n", - "round:96781\n", - "round:96782\n", - "round:96783\n", - "round:96784\n", - "round:96785\n", - "round:96786\n", - "round:96787\n", - "round:96788\n", - "round:96789\n", - "round:96790\n", - "round:96791\n", - "round:96792\n", - "round:96793\n", - "round:96794\n", - "round:96795\n", - "round:96796\n", - "round:96797\n", - "round:96798\n", - "round:96799\n", - "round:96800\n", - "round:96801\n", - "round:96802\n", - "round:96803\n", - "round:96804\n", - "round:96805\n", - "round:96806\n", - "round:96807\n", - "round:96808\n", - "round:96809\n", - "round:96810\n", - "round:96811\n", - "round:96812\n", - "round:96813\n", - "round:96814\n", - "round:96815\n", - "round:96816\n", - "round:96817\n", - "round:96818\n", - "round:96819\n", - "round:96820\n", - "round:96821\n", - "round:96822\n", - "round:96823\n", - "round:96824\n", - "round:96825\n", - "round:96826\n", - "round:96827\n", - "round:96828\n", - "round:96829\n", - "round:96830\n", - "round:96831\n", - "round:96832\n", - "round:96833\n", - "round:96834\n", - "round:96835\n", - "round:96836\n", - "round:96837\n", - "round:96838\n", - "round:96839\n", - "round:96840\n", - "round:96841\n", - "round:96842\n", - "round:96843\n", - "round:96844\n", - "round:96845\n", - "round:96846\n", - "round:96847\n", - "round:96848\n", - "round:96849\n", - "round:96850\n", - "round:96851\n", - "round:96852\n", - "round:96853\n", - "round:96854\n", - "round:96855\n", - "round:96856\n", - "round:96857\n", - "round:96858\n", - "round:96859\n", - "round:96860\n", - "round:96861\n", - "round:96862\n", - "round:96863\n", - "round:96864\n", - "round:96865\n", - "round:96866\n", - "round:96867\n", - "round:96868\n", - "round:96869\n", - "round:96870\n", - "round:96871\n", - "round:96872\n", - "round:96873\n", - "round:96874\n", - "round:96875\n", - "round:96876\n", - "round:96877\n", - "round:96878\n", - "round:96879\n", - "round:96880\n", - "round:96881\n", - "round:96882\n", - "round:96883\n", - "round:96884\n", - "round:96885\n", - "round:96886\n", - "round:96887\n", - "round:96888\n", - "round:96889\n", - "round:96890\n", - "round:96891\n", - "round:96892\n", - "round:96893\n", - "round:96894\n", - "round:96895\n", - "round:96896\n", - "round:96897\n", - "round:96898\n", - "round:96899\n", - "round:96900\n", - "round:96901\n", - "round:96902\n", - "round:96903\n", - "round:96904\n", - "round:96905\n", - "round:96906\n", - "round:96907\n", - "round:96908\n", - "round:96909\n", - "round:96910\n", - "round:96911\n", - "round:96912\n", - "round:96913\n", - "round:96914\n", - "round:96915\n", - "round:96916\n", - "round:96917\n", - "round:96918\n", - "round:96919\n", - "round:96920\n", - "round:96921\n", - "round:96922\n", - "round:96923\n", - "round:96924\n", - "round:96925\n", - "round:96926\n", - "round:96927\n", - "round:96928\n", - "round:96929\n", - "round:96930\n", - "round:96931\n", - "round:96932\n", - "round:96933\n", - "round:96934\n", - "round:96935\n", - "round:96936\n", - "round:96937\n", - "round:96938\n", - "round:96939\n", - "round:96940\n", - "round:96941\n", - "round:96942\n", - "round:96943\n", - "round:96944\n", - "round:96945\n", - "round:96946\n", - "round:96947\n", - "round:96948\n", - "round:96949\n", - "round:96950\n", - "round:96951\n", - "round:96952\n", - "round:96953\n", - "round:96954\n", - "round:96955\n", - "round:96956\n", - "round:96957\n", - "round:96958\n", - "round:96959\n", - "round:96960\n", - "round:96961\n", - "round:96962\n", - "round:96963\n", - "round:96964\n", - "round:96965\n", - "round:96966\n", - "round:96967\n", - "round:96968\n", - "round:96969\n", - "round:96970\n", - "round:96971\n", - "round:96972\n", - "round:96973\n", - "round:96974\n", - "round:96975\n", - "round:96976\n", - "round:96977\n", - "round:96978\n", - "round:96979\n", - "round:96980\n", - "round:96981\n", - "round:96982\n", - "round:96983\n", - "round:96984\n", - "round:96985\n", - "round:96986\n", - "round:96987\n", - "round:96988\n", - "round:96989\n", - "round:96990\n", - "round:96991\n", - "round:96992\n", - "round:96993\n", - "round:96994\n", - "round:96995\n", - "round:96996\n", - "round:96997\n", - "round:96998\n", - "round:96999\n", - "round:97000\n", - "round:97001\n", - "round:97002\n", - "round:97003\n", - "round:97004\n", - "round:97005\n", - "round:97006\n", - "round:97007\n", - "round:97008\n", - "round:97009\n", - "round:97010\n", - "round:97011\n", - "round:97012\n", - "round:97013\n", - "round:97014\n", - "round:97015\n", - "round:97016\n", - "round:97017\n", - "round:97018\n", - "round:97019\n", - "round:97020\n", - "round:97021\n", - "round:97022\n", - "round:97023\n", - "round:97024\n", - "round:97025\n", - "round:97026\n", - "round:97027\n", - "round:97028\n", - "round:97029\n", - "round:97030\n", - "round:97031\n", - "round:97032\n", - "round:97033\n", - "round:97034\n", - "round:97035\n", - "round:97036\n", - "round:97037\n", - "round:97038\n", - "round:97039\n", - "round:97040\n", - "round:97041\n", - "round:97042\n", - "round:97043\n", - "round:97044\n", - "round:97045\n", - "round:97046\n", - "round:97047\n", - "round:97048\n", - "round:97049\n", - "round:97050\n", - "round:97051\n", - "round:97052\n", - "round:97053\n", - "round:97054\n", - "round:97055\n", - "round:97056\n", - "round:97057\n", - "round:97058\n", - "round:97059\n", - "round:97060\n", - "round:97061\n", - "round:97062\n", - "round:97063\n", - "round:97064\n", - "round:97065\n", - "round:97066\n", - "round:97067\n", - "round:97068\n", - "round:97069\n", - "round:97070\n", - "round:97071\n", - "round:97072\n", - "round:97073\n", - "round:97074\n", - "round:97075\n", - "round:97076\n", - "round:97077\n", - "round:97078\n", - "round:97079\n", - "round:97080\n", - "round:97081\n", - "round:97082\n", - "round:97083\n", - "round:97084\n", - "round:97085\n", - "round:97086\n", - "round:97087\n", - "round:97088\n", - "round:97089\n", - "round:97090\n", - "round:97091\n", - "round:97092\n", - "round:97093\n", - "round:97094\n", - "round:97095\n", - "round:97096\n", - "round:97097\n", - "round:97098\n", - "round:97099\n", - "round:97100\n", - "round:97101\n", - "round:97102\n", - "round:97103\n", - "round:97104\n", - "round:97105\n", - "round:97106\n", - "round:97107\n", - "round:97108\n", - "round:97109\n", - "round:97110\n", - "round:97111\n", - "round:97112\n", - "round:97113\n", - "round:97114\n", - "round:97115\n", - "round:97116\n", - "round:97117\n", - "round:97118\n", - "round:97119\n", - "round:97120\n", - "round:97121\n", - "round:97122\n", - "round:97123\n", - "round:97124\n", - "round:97125\n", - "round:97126\n", - "round:97127\n", - "round:97128\n", - "round:97129\n", - "round:97130\n", - "round:97131\n", - "round:97132\n", - "round:97133\n", - "round:97134\n", - "round:97135\n", - "round:97136\n", - "round:97137\n", - "round:97138\n", - "round:97139\n", - "round:97140\n", - "round:97141\n", - "round:97142\n", - "round:97143\n", - "round:97144\n", - "round:97145\n", - "round:97146\n", - "round:97147\n", - "round:97148\n", - "round:97149\n", - "round:97150\n", - "round:97151\n", - "round:97152\n", - "round:97153\n", - "round:97154\n", - "round:97155\n", - "round:97156\n", - "round:97157\n", - "round:97158\n", - "round:97159\n", - "round:97160\n", - "round:97161\n", - "round:97162\n", - "round:97163\n", - "round:97164\n", - "round:97165\n", - "round:97166\n", - "round:97167\n", - "round:97168\n", - "round:97169\n", - "round:97170\n", - "round:97171\n", - "round:97172\n", - "round:97173\n", - "round:97174\n", - "round:97175\n", - "round:97176\n", - "round:97177\n", - "round:97178\n", - "round:97179\n", - "round:97180\n", - "round:97181\n", - "round:97182\n", - "round:97183\n", - "round:97184\n", - "round:97185\n", - "round:97186\n", - "round:97187\n", - "round:97188\n", - "round:97189\n", - "round:97190\n", - "round:97191\n", - "round:97192\n", - "round:97193\n", - "round:97194\n", - "round:97195\n", - "round:97196\n", - "round:97197\n", - "round:97198\n", - "round:97199\n", - "round:97200\n", - "round:97201\n", - "round:97202\n", - "round:97203\n", - "round:97204\n", - "round:97205\n", - "round:97206\n", - "round:97207\n", - "round:97208\n", - "round:97209\n", - "round:97210\n", - "round:97211\n", - "round:97212\n", - "round:97213\n", - "round:97214\n", - "round:97215\n", - "round:97216\n", - "round:97217\n", - "round:97218\n", - "round:97219\n", - "round:97220\n", - "round:97221\n", - "round:97222\n", - "round:97223\n", - "round:97224\n", - "round:97225\n", - "round:97226\n", - "round:97227\n", - "round:97228\n", - "round:97229\n", - "round:97230\n", - "round:97231\n", - "round:97232\n", - "round:97233\n", - "round:97234\n", - "round:97235\n", - "round:97236\n", - "round:97237\n", - "round:97238\n", - "round:97239\n", - "round:97240\n", - "round:97241\n", - "round:97242\n", - "round:97243\n", - "round:97244\n", - "round:97245\n", - "round:97246\n", - "round:97247\n", - "round:97248\n", - "round:97249\n", - "round:97250\n", - "round:97251\n", - "round:97252\n", - "round:97253\n", - "round:97254\n", - "round:97255\n", - "round:97256\n", - "round:97257\n", - "round:97258\n", - "round:97259\n", - "round:97260\n", - "round:97261\n", - "round:97262\n", - "round:97263\n", - "round:97264\n", - "round:97265\n", - "round:97266\n", - "round:97267\n", - "round:97268\n", - "round:97269\n", - "round:97270\n", - "round:97271\n", - "round:97272\n", - "round:97273\n", - "round:97274\n", - "round:97275\n", - "round:97276\n", - "round:97277\n", - "round:97278\n", - "round:97279\n", - "round:97280\n", - "round:97281\n", - "round:97282\n", - "round:97283\n", - "round:97284\n", - "round:97285\n", - "round:97286\n", - "round:97287\n", - "round:97288\n", - "round:97289\n", - "round:97290\n", - "round:97291\n", - "round:97292\n", - "round:97293\n", - "round:97294\n", - "round:97295\n", - "round:97296\n", - "round:97297\n", - "round:97298\n", - "round:97299\n", - "round:97300\n", - "round:97301\n", - "round:97302\n", - "round:97303\n", - "round:97304\n", - "round:97305\n", - "round:97306\n", - "round:97307\n", - "round:97308\n", - "round:97309\n", - "round:97310\n", - "round:97311\n", - "round:97312\n", - "round:97313\n", - "round:97314\n", - "round:97315\n", - "round:97316\n", - "round:97317\n", - "round:97318\n", - "round:97319\n", - "round:97320\n", - "round:97321\n", - "round:97322\n", - "round:97323\n", - "round:97324\n", - "round:97325\n", - "round:97326\n", - "round:97327\n", - "round:97328\n", - "round:97329\n", - "round:97330\n", - "round:97331\n", - "round:97332\n", - "round:97333\n", - "round:97334\n", - "round:97335\n", - "round:97336\n", - "round:97337\n", - "round:97338\n", - "round:97339\n", - "round:97340\n", - "round:97341\n", - "round:97342\n", - "round:97343\n", - "round:97344\n", - "round:97345\n", - "round:97346\n", - "round:97347\n", - "round:97348\n", - "round:97349\n", - "round:97350\n", - "round:97351\n", - "round:97352\n", - "round:97353\n", - "round:97354\n", - "round:97355\n", - "round:97356\n", - "round:97357\n", - "round:97358\n", - "round:97359\n", - "round:97360\n", - "round:97361\n", - "round:97362\n", - "round:97363\n", - "round:97364\n", - "round:97365\n", - "round:97366\n", - "round:97367\n", - "round:97368\n", - "round:97369\n", - "round:97370\n", - "round:97371\n", - "round:97372\n", - "round:97373\n", - "round:97374\n", - "round:97375\n", - "round:97376\n", - "round:97377\n", - "round:97378\n", - "round:97379\n", - "round:97380\n", - "round:97381\n", - "round:97382\n", - "round:97383\n", - "round:97384\n", - "round:97385\n", - "round:97386\n", - "round:97387\n", - "round:97388\n", - "round:97389\n", - "round:97390\n", - "round:97391\n", - "round:97392\n", - "round:97393\n", - "round:97394\n", - "round:97395\n", - "round:97396\n", - "round:97397\n", - "round:97398\n", - "round:97399\n", - "round:97400\n", - "round:97401\n", - "round:97402\n", - "round:97403\n", - "round:97404\n", - "round:97405\n", - "round:97406\n", - "round:97407\n", - "round:97408\n", - "round:97409\n", - "round:97410\n", - "round:97411\n", - "round:97412\n", - "round:97413\n", - "round:97414\n", - "round:97415\n", - "round:97416\n", - "round:97417\n", - "round:97418\n", - "round:97419\n", - "round:97420\n", - "round:97421\n", - "round:97422\n", - "round:97423\n", - "round:97424\n", - "round:97425\n", - "round:97426\n", - "round:97427\n", - "round:97428\n", - "round:97429\n", - "round:97430\n", - "round:97431\n", - "round:97432\n", - "round:97433\n", - "round:97434\n", - "round:97435\n", - "round:97436\n", - "round:97437\n", - "round:97438\n", - "round:97439\n", - "round:97440\n", - "round:97441\n", - "round:97442\n", - "round:97443\n", - "round:97444\n", - "round:97445\n", - "round:97446\n", - "round:97447\n", - "round:97448\n", - "round:97449\n", - "round:97450\n", - "round:97451\n", - "round:97452\n", - "round:97453\n", - "round:97454\n", - "round:97455\n", - "round:97456\n", - "round:97457\n", - "round:97458\n", - "round:97459\n", - "round:97460\n", - "round:97461\n", - "round:97462\n", - "round:97463\n", - "round:97464\n", - "round:97465\n", - "round:97466\n", - "round:97467\n", - "round:97468\n", - "round:97469\n", - "round:97470\n", - "round:97471\n", - "round:97472\n", - "round:97473\n", - "round:97474\n", - "round:97475\n", - "round:97476\n", - "round:97477\n", - "round:97478\n", - "round:97479\n", - "round:97480\n", - "round:97481\n", - "round:97482\n", - "round:97483\n", - "round:97484\n", - "round:97485\n", - "round:97486\n", - "round:97487\n", - "round:97488\n", - "round:97489\n", - "round:97490\n", - "round:97491\n", - "round:97492\n", - "round:97493\n", - "round:97494\n", - "round:97495\n", - "round:97496\n", - "round:97497\n", - "round:97498\n", - "round:97499\n", - "round:97500\n", - "round:97501\n", - "round:97502\n", - "round:97503\n", - "round:97504\n", - "round:97505\n", - "round:97506\n", - "round:97507\n", - "round:97508\n", - "round:97509\n", - "round:97510\n", - "round:97511\n", - "round:97512\n", - "round:97513\n", - "round:97514\n", - "round:97515\n", - "round:97516\n", - "round:97517\n", - "round:97518\n", - "round:97519\n", - "round:97520\n", - "round:97521\n", - "round:97522\n", - "round:97523\n", - "round:97524\n", - "round:97525\n", - "round:97526\n", - "round:97527\n", - "round:97528\n", - "round:97529\n", - "round:97530\n", - "round:97531\n", - "round:97532\n", - "round:97533\n", - "round:97534\n", - "round:97535\n", - "round:97536\n", - "round:97537\n", - "round:97538\n", - "round:97539\n", - "round:97540\n", - "round:97541\n", - "round:97542\n", - "round:97543\n", - "round:97544\n", - "round:97545\n", - "round:97546\n", - "round:97547\n", - "round:97548\n", - "round:97549\n", - "round:97550\n", - "round:97551\n", - "round:97552\n", - "round:97553\n", - "round:97554\n", - "round:97555\n", - "round:97556\n", - "round:97557\n", - "round:97558\n", - "round:97559\n", - "round:97560\n", - "round:97561\n", - "round:97562\n", - "round:97563\n", - "round:97564\n", - "round:97565\n", - "round:97566\n", - "round:97567\n", - "round:97568\n", - "round:97569\n", - "round:97570\n", - "round:97571\n", - "round:97572\n", - "round:97573\n", - "round:97574\n", - "round:97575\n", - "round:97576\n", - "round:97577\n", - "round:97578\n", - "round:97579\n", - "round:97580\n", - "round:97581\n", - "round:97582\n", - "round:97583\n", - "round:97584\n", - "round:97585\n", - "round:97586\n", - "round:97587\n", - "round:97588\n", - "round:97589\n", - "round:97590\n", - "round:97591\n", - "round:97592\n", - "round:97593\n", - "round:97594\n", - "round:97595\n", - "round:97596\n", - "round:97597\n", - "round:97598\n", - "round:97599\n", - "round:97600\n", - "round:97601\n", - "round:97602\n", - "round:97603\n", - "round:97604\n", - "round:97605\n", - "round:97606\n", - "round:97607\n", - "round:97608\n", - "round:97609\n", - "round:97610\n", - "round:97611\n", - "round:97612\n", - "round:97613\n", - "round:97614\n", - "round:97615\n", - "round:97616\n", - "round:97617\n", - "round:97618\n", - "round:97619\n", - "round:97620\n", - "round:97621\n", - "round:97622\n", - "round:97623\n", - "round:97624\n", - "round:97625\n", - "round:97626\n", - "round:97627\n", - "round:97628\n", - "round:97629\n", - "round:97630\n", - "round:97631\n", - "round:97632\n", - "round:97633\n", - "round:97634\n", - "round:97635\n", - "round:97636\n", - "round:97637\n", - "round:97638\n", - "round:97639\n", - "round:97640\n", - "round:97641\n", - "round:97642\n", - "round:97643\n", - "round:97644\n", - "round:97645\n", - "round:97646\n", - "round:97647\n", - "round:97648\n", - "round:97649\n", - "round:97650\n", - "round:97651\n", - "round:97652\n", - "round:97653\n", - "round:97654\n", - "round:97655\n", - "round:97656\n", - "round:97657\n", - "round:97658\n", - "round:97659\n", - "round:97660\n", - "round:97661\n", - "round:97662\n", - "round:97663\n", - "round:97664\n", - "round:97665\n", - "round:97666\n", - "round:97667\n", - "round:97668\n", - "round:97669\n", - "round:97670\n", - "round:97671\n", - "round:97672\n", - "round:97673\n", - "round:97674\n", - "round:97675\n", - "round:97676\n", - "round:97677\n", - "round:97678\n", - "round:97679\n", - "round:97680\n", - "round:97681\n", - "round:97682\n", - "round:97683\n", - "round:97684\n", - "round:97685\n", - "round:97686\n", - "round:97687\n", - "round:97688\n", - "round:97689\n", - "round:97690\n", - "round:97691\n", - "round:97692\n", - "round:97693\n", - "round:97694\n", - "round:97695\n", - "round:97696\n", - "round:97697\n", - "round:97698\n", - "round:97699\n", - "round:97700\n", - "round:97701\n", - "round:97702\n", - "round:97703\n", - "round:97704\n", - "round:97705\n", - "round:97706\n", - "round:97707\n", - "round:97708\n", - "round:97709\n", - "round:97710\n", - "round:97711\n", - "round:97712\n", - "round:97713\n", - "round:97714\n", - "round:97715\n", - "round:97716\n", - "round:97717\n", - "round:97718\n", - "round:97719\n", - "round:97720\n", - "round:97721\n", - "round:97722\n", - "round:97723\n", - "round:97724\n", - "round:97725\n", - "round:97726\n", - "round:97727\n", - "round:97728\n", - "round:97729\n", - "round:97730\n", - "round:97731\n", - "round:97732\n", - "round:97733\n", - "round:97734\n", - "round:97735\n", - "round:97736\n", - "round:97737\n", - "round:97738\n", - "round:97739\n", - "round:97740\n", - "round:97741\n", - "round:97742\n", - "round:97743\n", - "round:97744\n", - "round:97745\n", - "round:97746\n", - "round:97747\n", - "round:97748\n", - "round:97749\n", - "round:97750\n", - "round:97751\n", - "round:97752\n", - "round:97753\n", - "round:97754\n", - "round:97755\n", - "round:97756\n", - "round:97757\n", - "round:97758\n", - "round:97759\n", - "round:97760\n", - "round:97761\n", - "round:97762\n", - "round:97763\n", - "round:97764\n", - "round:97765\n", - "round:97766\n", - "round:97767\n", - "round:97768\n", - "round:97769\n", - "round:97770\n", - "round:97771\n", - "round:97772\n", - "round:97773\n", - "round:97774\n", - "round:97775\n", - "round:97776\n", - "round:97777\n", - "round:97778\n", - "round:97779\n", - "round:97780\n", - "round:97781\n", - "round:97782\n", - "round:97783\n", - "round:97784\n", - "round:97785\n", - "round:97786\n", - "round:97787\n", - "round:97788\n", - "round:97789\n", - "round:97790\n", - "round:97791\n", - "round:97792\n", - "round:97793\n", - "round:97794\n", - "round:97795\n", - "round:97796\n", - "round:97797\n", - "round:97798\n", - "round:97799\n", - "round:97800\n", - "round:97801\n", - "round:97802\n", - "round:97803\n", - "round:97804\n", - "round:97805\n", - "round:97806\n", - "round:97807\n", - "round:97808\n", - "round:97809\n", - "round:97810\n", - "round:97811\n", - "round:97812\n", - "round:97813\n", - "round:97814\n", - "round:97815\n", - "round:97816\n", - "round:97817\n", - "round:97818\n", - "round:97819\n", - "round:97820\n", - "round:97821\n", - "round:97822\n", - "round:97823\n", - "round:97824\n", - "round:97825\n", - "round:97826\n", - "round:97827\n", - "round:97828\n", - "round:97829\n", - "round:97830\n", - "round:97831\n", - "round:97832\n", - "round:97833\n", - "round:97834\n", - "round:97835\n", - "round:97836\n", - "round:97837\n", - "round:97838\n", - "round:97839\n", - "round:97840\n", - "round:97841\n", - "round:97842\n", - "round:97843\n", - "round:97844\n", - "round:97845\n", - "round:97846\n", - "round:97847\n", - "round:97848\n", - "round:97849\n", - "round:97850\n", - "round:97851\n", - "round:97852\n", - "round:97853\n", - "round:97854\n", - "round:97855\n", - "round:97856\n", - "round:97857\n", - "round:97858\n", - "round:97859\n", - "round:97860\n", - "round:97861\n", - "round:97862\n", - "round:97863\n", - "round:97864\n", - "round:97865\n", - "round:97866\n", - "round:97867\n", - "round:97868\n", - "round:97869\n", - "round:97870\n", - "round:97871\n", - "round:97872\n", - "round:97873\n", - "round:97874\n", - "round:97875\n", - "round:97876\n", - "round:97877\n", - "round:97878\n", - "round:97879\n", - "round:97880\n", - "round:97881\n", - "round:97882\n", - "round:97883\n", - "round:97884\n", - "round:97885\n", - "round:97886\n", - "round:97887\n", - "round:97888\n", - "round:97889\n", - "round:97890\n", - "round:97891\n", - "round:97892\n", - "round:97893\n", - "round:97894\n", - "round:97895\n", - "round:97896\n", - "round:97897\n", - "round:97898\n", - "round:97899\n", - "round:97900\n", - "round:97901\n", - "round:97902\n", - "round:97903\n", - "round:97904\n", - "round:97905\n", - "round:97906\n", - "round:97907\n", - "round:97908\n", - "round:97909\n", - "round:97910\n", - "round:97911\n", - "round:97912\n", - "round:97913\n", - "round:97914\n", - "round:97915\n", - "round:97916\n", - "round:97917\n", - "round:97918\n", - "round:97919\n", - "round:97920\n", - "round:97921\n", - "round:97922\n", - "round:97923\n", - "round:97924\n", - "round:97925\n", - "round:97926\n", - "round:97927\n", - "round:97928\n", - "round:97929\n", - "round:97930\n", - "round:97931\n", - "round:97932\n", - "round:97933\n", - "round:97934\n", - "round:97935\n", - "round:97936\n", - "round:97937\n", - "round:97938\n", - "round:97939\n", - "round:97940\n", - "round:97941\n", - "round:97942\n", - "round:97943\n", - "round:97944\n", - "round:97945\n", - "round:97946\n", - "round:97947\n", - "round:97948\n", - "round:97949\n", - "round:97950\n", - "round:97951\n", - "round:97952\n", - "round:97953\n", - "round:97954\n", - "round:97955\n", - "round:97956\n", - "round:97957\n", - "round:97958\n", - "round:97959\n", - "round:97960\n", - "round:97961\n", - "round:97962\n", - "round:97963\n", - "round:97964\n", - "round:97965\n", - "round:97966\n", - "round:97967\n", - "round:97968\n", - "round:97969\n", - "round:97970\n", - "round:97971\n", - "round:97972\n", - "round:97973\n", - "round:97974\n", - "round:97975\n", - "round:97976\n", - "round:97977\n", - "round:97978\n", - "round:97979\n", - "round:97980\n", - "round:97981\n", - "round:97982\n", - "round:97983\n", - "round:97984\n", - "round:97985\n", - "round:97986\n", - "round:97987\n", - "round:97988\n", - "round:97989\n", - "round:97990\n", - "round:97991\n", - "round:97992\n", - "round:97993\n", - "round:97994\n", - "round:97995\n", - "round:97996\n", - "round:97997\n", - "round:97998\n", - "round:97999\n", - "round:98000\n", - "round:98001\n", - "round:98002\n", - "round:98003\n", - "round:98004\n", - "round:98005\n", - "round:98006\n", - "round:98007\n", - "round:98008\n", - "round:98009\n", - "round:98010\n", - "round:98011\n", - "round:98012\n", - "round:98013\n", - "round:98014\n", - "round:98015\n", - "round:98016\n", - "round:98017\n", - "round:98018\n", - "round:98019\n", - "round:98020\n", - "round:98021\n", - "round:98022\n", - "round:98023\n", - "round:98024\n", - "round:98025\n", - "round:98026\n", - "round:98027\n", - "round:98028\n", - "round:98029\n", - "round:98030\n", - "round:98031\n", - "round:98032\n", - "round:98033\n", - "round:98034\n", - "round:98035\n", - "round:98036\n", - "round:98037\n", - "round:98038\n", - "round:98039\n", - "round:98040\n", - "round:98041\n", - "round:98042\n", - "round:98043\n", - "round:98044\n", - "round:98045\n", - "round:98046\n", - "round:98047\n", - "round:98048\n", - "round:98049\n", - "round:98050\n", - "round:98051\n", - "round:98052\n", - "round:98053\n", - "round:98054\n", - "round:98055\n", - "round:98056\n", - "round:98057\n", - "round:98058\n", - "round:98059\n", - "round:98060\n", - "round:98061\n", - "round:98062\n", - "round:98063\n", - "round:98064\n", - "round:98065\n", - "round:98066\n", - "round:98067\n", - "round:98068\n", - "round:98069\n", - "round:98070\n", - "round:98071\n", - "round:98072\n", - "round:98073\n", - "round:98074\n", - "round:98075\n", - "round:98076\n", - "round:98077\n", - "round:98078\n", - "round:98079\n", - "round:98080\n", - "round:98081\n", - "round:98082\n", - "round:98083\n", - "round:98084\n", - "round:98085\n", - "round:98086\n", - "round:98087\n", - "round:98088\n", - "round:98089\n", - "round:98090\n", - "round:98091\n", - "round:98092\n", - "round:98093\n", - "round:98094\n", - "round:98095\n", - "round:98096\n", - "round:98097\n", - "round:98098\n", - "round:98099\n", - "round:98100\n", - "round:98101\n", - "round:98102\n", - "round:98103\n", - "round:98104\n", - "round:98105\n", - "round:98106\n", - "round:98107\n", - "round:98108\n", - "round:98109\n", - "round:98110\n", - "round:98111\n", - "round:98112\n", - "round:98113\n", - "round:98114\n", - "round:98115\n", - "round:98116\n", - "round:98117\n", - "round:98118\n", - "round:98119\n", - "round:98120\n", - "round:98121\n", - "round:98122\n", - "round:98123\n", - "round:98124\n", - "round:98125\n", - "round:98126\n", - "round:98127\n", - "round:98128\n", - "round:98129\n", - "round:98130\n", - "round:98131\n", - "round:98132\n", - "round:98133\n", - "round:98134\n", - "round:98135\n", - "round:98136\n", - "round:98137\n", - "round:98138\n", - "round:98139\n", - "round:98140\n", - "round:98141\n", - "round:98142\n", - "round:98143\n", - "round:98144\n", - "round:98145\n", - "round:98146\n", - "round:98147\n", - "round:98148\n", - "round:98149\n", - "round:98150\n", - "round:98151\n", - "round:98152\n", - "round:98153\n", - "round:98154\n", - "round:98155\n", - "round:98156\n", - "round:98157\n", - "round:98158\n", - "round:98159\n", - "round:98160\n", - "round:98161\n", - "round:98162\n", - "round:98163\n", - "round:98164\n", - "round:98165\n", - "round:98166\n", - "round:98167\n", - "round:98168\n", - "round:98169\n", - "round:98170\n", - "round:98171\n", - "round:98172\n", - "round:98173\n", - "round:98174\n", - "round:98175\n", - "round:98176\n", - "round:98177\n", - "round:98178\n", - "round:98179\n", - "round:98180\n", - "round:98181\n", - "round:98182\n", - "round:98183\n", - "round:98184\n", - "round:98185\n", - "round:98186\n", - "round:98187\n", - "round:98188\n", - "round:98189\n", - "round:98190\n", - "round:98191\n", - "round:98192\n", - "round:98193\n", - "round:98194\n", - "round:98195\n", - "round:98196\n", - "round:98197\n", - "round:98198\n", - "round:98199\n", - "round:98200\n", - "round:98201\n", - "round:98202\n", - "round:98203\n", - "round:98204\n", - "round:98205\n", - "round:98206\n", - "round:98207\n", - "round:98208\n", - "round:98209\n", - "round:98210\n", - "round:98211\n", - "round:98212\n", - "round:98213\n", - "round:98214\n", - "round:98215\n", - "round:98216\n", - "round:98217\n", - "round:98218\n", - "round:98219\n", - "round:98220\n", - "round:98221\n", - "round:98222\n", - "round:98223\n", - "round:98224\n", - "round:98225\n", - "round:98226\n", - "round:98227\n", - "round:98228\n", - "round:98229\n", - "round:98230\n", - "round:98231\n", - "round:98232\n", - "round:98233\n", - "round:98234\n", - "round:98235\n", - "round:98236\n", - "round:98237\n", - "round:98238\n", - "round:98239\n", - "round:98240\n", - "round:98241\n", - "round:98242\n", - "round:98243\n", - "round:98244\n", - "round:98245\n", - "round:98246\n", - "round:98247\n", - "round:98248\n", - "round:98249\n", - "round:98250\n", - "round:98251\n", - "round:98252\n", - "round:98253\n", - "round:98254\n", - "round:98255\n", - "round:98256\n", - "round:98257\n", - "round:98258\n", - "round:98259\n", - "round:98260\n", - "round:98261\n", - "round:98262\n", - "round:98263\n", - "round:98264\n", - "round:98265\n", - "round:98266\n", - "round:98267\n", - "round:98268\n", - "round:98269\n", - "round:98270\n", - "round:98271\n", - "round:98272\n", - "round:98273\n", - "round:98274\n", - "round:98275\n", - "round:98276\n", - "round:98277\n", - "round:98278\n", - "round:98279\n", - "round:98280\n", - "round:98281\n", - "round:98282\n", - "round:98283\n", - "round:98284\n", - "round:98285\n", - "round:98286\n", - "round:98287\n", - "round:98288\n", - "round:98289\n", - "round:98290\n", - "round:98291\n", - "round:98292\n", - "round:98293\n", - "round:98294\n", - "round:98295\n", - "round:98296\n", - "round:98297\n", - "round:98298\n", - "round:98299\n", - "round:98300\n", - "round:98301\n", - "round:98302\n", - "round:98303\n", - "round:98304\n", - "round:98305\n", - "round:98306\n", - "round:98307\n", - "round:98308\n", - "round:98309\n", - "round:98310\n", - "round:98311\n", - "round:98312\n", - "round:98313\n", - "round:98314\n", - "round:98315\n", - "round:98316\n", - "round:98317\n", - "round:98318\n", - "round:98319\n", - "round:98320\n", - "round:98321\n", - "round:98322\n", - "round:98323\n", - "round:98324\n", - "round:98325\n", - "round:98326\n", - "round:98327\n", - "round:98328\n", - "round:98329\n", - "round:98330\n", - "round:98331\n", - "round:98332\n", - "round:98333\n", - "round:98334\n", - "round:98335\n", - "round:98336\n", - "round:98337\n", - "round:98338\n", - "round:98339\n", - "round:98340\n", - "round:98341\n", - "round:98342\n", - "round:98343\n", - "round:98344\n", - "round:98345\n", - "round:98346\n", - "round:98347\n", - "round:98348\n", - "round:98349\n", - "round:98350\n", - "round:98351\n", - "round:98352\n", - "round:98353\n", - "round:98354\n", - "round:98355\n", - "round:98356\n", - "round:98357\n", - "round:98358\n", - "round:98359\n", - "round:98360\n", - "round:98361\n", - "round:98362\n", - "round:98363\n", - "round:98364\n", - "round:98365\n", - "round:98366\n", - "round:98367\n", - "round:98368\n", - "round:98369\n", - "round:98370\n", - "round:98371\n", - "round:98372\n", - "round:98373\n", - "round:98374\n", - "round:98375\n", - "round:98376\n", - "round:98377\n", - "round:98378\n", - "round:98379\n", - "round:98380\n", - "round:98381\n", - "round:98382\n", - "round:98383\n", - "round:98384\n", - "round:98385\n", - "round:98386\n", - "round:98387\n", - "round:98388\n", - "round:98389\n", - "round:98390\n", - "round:98391\n", - "round:98392\n", - "round:98393\n", - "round:98394\n", - "round:98395\n", - "round:98396\n", - "round:98397\n", - "round:98398\n", - "round:98399\n", - "round:98400\n", - "round:98401\n", - "round:98402\n", - "round:98403\n", - "round:98404\n", - "round:98405\n", - "round:98406\n", - "round:98407\n", - "round:98408\n", - "round:98409\n", - "round:98410\n", - "round:98411\n", - "round:98412\n", - "round:98413\n", - "round:98414\n", - "round:98415\n", - "round:98416\n", - "round:98417\n", - "round:98418\n", - "round:98419\n", - "round:98420\n", - "round:98421\n", - "round:98422\n", - "round:98423\n", - "round:98424\n", - "round:98425\n", - "round:98426\n", - "round:98427\n", - "round:98428\n", - "round:98429\n", - "round:98430\n", - "round:98431\n", - "round:98432\n", - "round:98433\n", - "round:98434\n", - "round:98435\n", - "round:98436\n", - "round:98437\n", - "round:98438\n", - "round:98439\n", - "round:98440\n", - "round:98441\n", - "round:98442\n", - "round:98443\n", - "round:98444\n", - "round:98445\n", - "round:98446\n", - "round:98447\n", - "round:98448\n", - "round:98449\n", - "round:98450\n", - "round:98451\n", - "round:98452\n", - "round:98453\n", - "round:98454\n", - "round:98455\n", - "round:98456\n", - "round:98457\n", - "round:98458\n", - "round:98459\n", - "round:98460\n", - "round:98461\n", - "round:98462\n", - "round:98463\n", - "round:98464\n", - "round:98465\n", - "round:98466\n", - "round:98467\n", - "round:98468\n", - "round:98469\n", - "round:98470\n", - "round:98471\n", - "round:98472\n", - "round:98473\n", - "round:98474\n", - "round:98475\n", - "round:98476\n", - "round:98477\n", - "round:98478\n", - "round:98479\n", - "round:98480\n", - "round:98481\n", - "round:98482\n", - "round:98483\n", - "round:98484\n", - "round:98485\n", - "round:98486\n", - "round:98487\n", - "round:98488\n", - "round:98489\n", - "round:98490\n", - "round:98491\n", - "round:98492\n", - "round:98493\n", - "round:98494\n", - "round:98495\n", - "round:98496\n", - "round:98497\n", - "round:98498\n", - "round:98499\n", - "round:98500\n", - "round:98501\n", - "round:98502\n", - "round:98503\n", - "round:98504\n", - "round:98505\n", - "round:98506\n", - "round:98507\n", - "round:98508\n", - "round:98509\n", - "round:98510\n", - "round:98511\n", - "round:98512\n", - "round:98513\n", - "round:98514\n", - "round:98515\n", - "round:98516\n", - "round:98517\n", - "round:98518\n", - "round:98519\n", - "round:98520\n", - "round:98521\n", - "round:98522\n", - "round:98523\n", - "round:98524\n", - "round:98525\n", - "round:98526\n", - "round:98527\n", - "round:98528\n", - "round:98529\n", - "round:98530\n", - "round:98531\n", - "round:98532\n", - "round:98533\n", - "round:98534\n", - "round:98535\n", - "round:98536\n", - "round:98537\n", - "round:98538\n", - "round:98539\n", - "round:98540\n", - "round:98541\n", - "round:98542\n", - "round:98543\n", - "round:98544\n", - "round:98545\n", - "round:98546\n", - "round:98547\n", - "round:98548\n", - "round:98549\n", - "round:98550\n", - "round:98551\n", - "round:98552\n", - "round:98553\n", - "round:98554\n", - "round:98555\n", - "round:98556\n", - "round:98557\n", - "round:98558\n", - "round:98559\n", - "round:98560\n", - "round:98561\n", - "round:98562\n", - "round:98563\n", - "round:98564\n", - "round:98565\n", - "round:98566\n", - "round:98567\n", - "round:98568\n", - "round:98569\n", - "round:98570\n", - "round:98571\n", - "round:98572\n", - "round:98573\n", - "round:98574\n", - "round:98575\n", - "round:98576\n", - "round:98577\n", - "round:98578\n", - "round:98579\n", - "round:98580\n", - "round:98581\n", - "round:98582\n", - "round:98583\n", - "round:98584\n", - "round:98585\n", - "round:98586\n", - "round:98587\n", - "round:98588\n", - "round:98589\n", - "round:98590\n", - "round:98591\n", - "round:98592\n", - "round:98593\n", - "round:98594\n", - "round:98595\n", - "round:98596\n", - "round:98597\n", - "round:98598\n", - "round:98599\n", - "round:98600\n", - "round:98601\n", - "round:98602\n", - "round:98603\n", - "round:98604\n", - "round:98605\n", - "round:98606\n", - "round:98607\n", - "round:98608\n", - "round:98609\n", - "round:98610\n", - "round:98611\n", - "round:98612\n", - "round:98613\n", - "round:98614\n", - "round:98615\n", - "round:98616\n", - "round:98617\n", - "round:98618\n", - "round:98619\n", - "round:98620\n", - "round:98621\n", - "round:98622\n", - "round:98623\n", - "round:98624\n", - "round:98625\n", - "round:98626\n", - "round:98627\n", - "round:98628\n", - "round:98629\n", - "round:98630\n", - "round:98631\n", - "round:98632\n", - "round:98633\n", - "round:98634\n", - "round:98635\n", - "round:98636\n", - "round:98637\n", - "round:98638\n", - "round:98639\n", - "round:98640\n", - "round:98641\n", - "round:98642\n", - "round:98643\n", - "round:98644\n", - "round:98645\n", - "round:98646\n", - "round:98647\n", - "round:98648\n", - "round:98649\n", - "round:98650\n", - "round:98651\n", - "round:98652\n", - "round:98653\n", - "round:98654\n", - "round:98655\n", - "round:98656\n", - "round:98657\n", - "round:98658\n", - "round:98659\n", - "round:98660\n", - "round:98661\n", - "round:98662\n", - "round:98663\n", - "round:98664\n", - "round:98665\n", - "round:98666\n", - "round:98667\n", - "round:98668\n", - "round:98669\n", - "round:98670\n", - "round:98671\n", - "round:98672\n", - "round:98673\n", - "round:98674\n", - "round:98675\n", - "round:98676\n", - "round:98677\n", - "round:98678\n", - "round:98679\n", - "round:98680\n", - "round:98681\n", - "round:98682\n", - "round:98683\n", - "round:98684\n", - "round:98685\n", - "round:98686\n", - "round:98687\n", - "round:98688\n", - "round:98689\n", - "round:98690\n", - "round:98691\n", - "round:98692\n", - "round:98693\n", - "round:98694\n", - "round:98695\n", - "round:98696\n", - "round:98697\n", - "round:98698\n", - "round:98699\n", - "round:98700\n", - "round:98701\n", - "round:98702\n", - "round:98703\n", - "round:98704\n", - "round:98705\n", - "round:98706\n", - "round:98707\n", - "round:98708\n", - "round:98709\n", - "round:98710\n", - "round:98711\n", - "round:98712\n", - "round:98713\n", - "round:98714\n", - "round:98715\n", - "round:98716\n", - "round:98717\n", - "round:98718\n", - "round:98719\n", - "round:98720\n", - "round:98721\n", - "round:98722\n", - "round:98723\n", - "round:98724\n", - "round:98725\n", - "round:98726\n", - "round:98727\n", - "round:98728\n", - "round:98729\n", - "round:98730\n", - "round:98731\n", - "round:98732\n", - "round:98733\n", - "round:98734\n", - "round:98735\n", - "round:98736\n", - "round:98737\n", - "round:98738\n", - "round:98739\n", - "round:98740\n", - "round:98741\n", - "round:98742\n", - "round:98743\n", - "round:98744\n", - "round:98745\n", - "round:98746\n", - "round:98747\n", - "round:98748\n", - "round:98749\n", - "round:98750\n", - "round:98751\n", - "round:98752\n", - "round:98753\n", - "round:98754\n", - "round:98755\n", - "round:98756\n", - "round:98757\n", - "round:98758\n", - "round:98759\n", - "round:98760\n", - "round:98761\n", - "round:98762\n", - "round:98763\n", - "round:98764\n", - "round:98765\n", - "round:98766\n", - "round:98767\n", - "round:98768\n", - "round:98769\n", - "round:98770\n", - "round:98771\n", - "round:98772\n", - "round:98773\n", - "round:98774\n", - "round:98775\n", - "round:98776\n", - "round:98777\n", - "round:98778\n", - "round:98779\n", - "round:98780\n", - "round:98781\n", - "round:98782\n", - "round:98783\n", - "round:98784\n", - "round:98785\n", - "round:98786\n", - "round:98787\n", - "round:98788\n", - "round:98789\n", - "round:98790\n", - "round:98791\n", - "round:98792\n", - "round:98793\n", - "round:98794\n", - "round:98795\n", - "round:98796\n", - "round:98797\n", - "round:98798\n", - "round:98799\n", - "round:98800\n", - "round:98801\n", - "round:98802\n", - "round:98803\n", - "round:98804\n", - "round:98805\n", - "round:98806\n", - "round:98807\n", - "round:98808\n", - "round:98809\n", - "round:98810\n", - "round:98811\n", - "round:98812\n", - "round:98813\n", - "round:98814\n", - "round:98815\n", - "round:98816\n", - "round:98817\n", - "round:98818\n", - "round:98819\n", - "round:98820\n", - "round:98821\n", - "round:98822\n", - "round:98823\n", - "round:98824\n", - "round:98825\n", - "round:98826\n", - "round:98827\n", - "round:98828\n", - "round:98829\n", - "round:98830\n", - "round:98831\n", - "round:98832\n", - "round:98833\n", - "round:98834\n", - "round:98835\n", - "round:98836\n", - "round:98837\n", - "round:98838\n", - "round:98839\n", - "round:98840\n", - "round:98841\n", - "round:98842\n", - "round:98843\n", - "round:98844\n", - "round:98845\n", - "round:98846\n", - "round:98847\n", - "round:98848\n", - "round:98849\n", - "round:98850\n", - "round:98851\n", - "round:98852\n", - "round:98853\n", - "round:98854\n", - "round:98855\n", - "round:98856\n", - "round:98857\n", - "round:98858\n", - "round:98859\n", - "round:98860\n", - "round:98861\n", - "round:98862\n", - "round:98863\n", - "round:98864\n", - "round:98865\n", - "round:98866\n", - "round:98867\n", - "round:98868\n", - "round:98869\n", - "round:98870\n", - "round:98871\n", - "round:98872\n", - "round:98873\n", - "round:98874\n", - "round:98875\n", - "round:98876\n", - "round:98877\n", - "round:98878\n", - "round:98879\n", - "round:98880\n", - "round:98881\n", - "round:98882\n", - "round:98883\n", - "round:98884\n", - "round:98885\n", - "round:98886\n", - "round:98887\n", - "round:98888\n", - "round:98889\n", - "round:98890\n", - "round:98891\n", - "round:98892\n", - "round:98893\n", - "round:98894\n", - "round:98895\n", - "round:98896\n", - "round:98897\n", - "round:98898\n", - "round:98899\n", - "round:98900\n", - "round:98901\n", - "round:98902\n", - "round:98903\n", - "round:98904\n", - "round:98905\n", - "round:98906\n", - "round:98907\n", - "round:98908\n", - "round:98909\n", - "round:98910\n", - "round:98911\n", - "round:98912\n", - "round:98913\n", - "round:98914\n", - "round:98915\n", - "round:98916\n", - "round:98917\n", - "round:98918\n", - "round:98919\n", - "round:98920\n", - "round:98921\n", - "round:98922\n", - "round:98923\n", - "round:98924\n", - "round:98925\n", - "round:98926\n", - "round:98927\n", - "round:98928\n", - "round:98929\n", - "round:98930\n", - "round:98931\n", - "round:98932\n", - "round:98933\n", - "round:98934\n", - "round:98935\n", - "round:98936\n", - "round:98937\n", - "round:98938\n", - "round:98939\n", - "round:98940\n", - "round:98941\n", - "round:98942\n", - "round:98943\n", - "round:98944\n", - "round:98945\n", - "round:98946\n", - "round:98947\n", - "round:98948\n", - "round:98949\n", - "round:98950\n", - "round:98951\n", - "round:98952\n", - "round:98953\n", - "round:98954\n", - "round:98955\n", - "round:98956\n", - "round:98957\n", - "round:98958\n", - "round:98959\n", - "round:98960\n", - "round:98961\n", - "round:98962\n", - "round:98963\n", - "round:98964\n", - "round:98965\n", - "round:98966\n", - "round:98967\n", - "round:98968\n", - "round:98969\n", - "round:98970\n", - "round:98971\n", - "round:98972\n", - "round:98973\n", - "round:98974\n", - "round:98975\n", - "round:98976\n", - "round:98977\n", - "round:98978\n", - "round:98979\n", - "round:98980\n", - "round:98981\n", - "round:98982\n", - "round:98983\n", - "round:98984\n", - "round:98985\n", - "round:98986\n", - "round:98987\n", - "round:98988\n", - "round:98989\n", - "round:98990\n", - "round:98991\n", - "round:98992\n", - "round:98993\n", - "round:98994\n", - "round:98995\n", - "round:98996\n", - "round:98997\n", - "round:98998\n", - "round:98999\n", - "round:99000\n", - "round:99001\n", - "round:99002\n", - "round:99003\n", - "round:99004\n", - "round:99005\n", - "round:99006\n", - "round:99007\n", - "round:99008\n", - "round:99009\n", - "round:99010\n", - "round:99011\n", - "round:99012\n", - "round:99013\n", - "round:99014\n", - "round:99015\n", - "round:99016\n", - "round:99017\n", - "round:99018\n", - "round:99019\n", - "round:99020\n", - "round:99021\n", - "round:99022\n", - "round:99023\n", - "round:99024\n", - "round:99025\n", - "round:99026\n", - "round:99027\n", - "round:99028\n", - "round:99029\n", - "round:99030\n", - "round:99031\n", - "round:99032\n", - "round:99033\n", - "round:99034\n", - "round:99035\n", - "round:99036\n", - "round:99037\n", - "round:99038\n", - "round:99039\n", - "round:99040\n", - "round:99041\n", - "round:99042\n", - "round:99043\n", - "round:99044\n", - "round:99045\n", - "round:99046\n", - "round:99047\n", - "round:99048\n", - "round:99049\n", - "round:99050\n", - "round:99051\n", - "round:99052\n", - "round:99053\n", - "round:99054\n", - "round:99055\n", - "round:99056\n", - "round:99057\n", - "round:99058\n", - "round:99059\n", - "round:99060\n", - "round:99061\n", - "round:99062\n", - "round:99063\n", - "round:99064\n", - "round:99065\n", - "round:99066\n", - "round:99067\n", - "round:99068\n", - "round:99069\n", - "round:99070\n", - "round:99071\n", - "round:99072\n", - "round:99073\n", - "round:99074\n", - "round:99075\n", - "round:99076\n", - "round:99077\n", - "round:99078\n", - "round:99079\n", - "round:99080\n", - "round:99081\n", - "round:99082\n", - "round:99083\n", - "round:99084\n", - "round:99085\n", - "round:99086\n", - "round:99087\n", - "round:99088\n", - "round:99089\n", - "round:99090\n", - "round:99091\n", - "round:99092\n", - "round:99093\n", - "round:99094\n", - "round:99095\n", - "round:99096\n", - "round:99097\n", - "round:99098\n", - "round:99099\n", - "round:99100\n", - "round:99101\n", - "round:99102\n", - "round:99103\n", - "round:99104\n", - "round:99105\n", - "round:99106\n", - "round:99107\n", - "round:99108\n", - "round:99109\n", - "round:99110\n", - "round:99111\n", - "round:99112\n", - "round:99113\n", - "round:99114\n", - "round:99115\n", - "round:99116\n", - "round:99117\n", - "round:99118\n", - "round:99119\n", - "round:99120\n", - "round:99121\n", - "round:99122\n", - "round:99123\n", - "round:99124\n", - "round:99125\n", - "round:99126\n", - "round:99127\n", - "round:99128\n", - "round:99129\n", - "round:99130\n", - "round:99131\n", - "round:99132\n", - "round:99133\n", - "round:99134\n", - "round:99135\n", - "round:99136\n", - "round:99137\n", - "round:99138\n", - "round:99139\n", - "round:99140\n", - "round:99141\n", - "round:99142\n", - "round:99143\n", - "round:99144\n", - "round:99145\n", - "round:99146\n", - "round:99147\n", - "round:99148\n", - "round:99149\n", - "round:99150\n", - "round:99151\n", - "round:99152\n", - "round:99153\n", - "round:99154\n", - "round:99155\n", - "round:99156\n", - "round:99157\n", - "round:99158\n", - "round:99159\n", - "round:99160\n", - "round:99161\n", - "round:99162\n", - "round:99163\n", - "round:99164\n", - "round:99165\n", - "round:99166\n", - "round:99167\n", - "round:99168\n", - "round:99169\n", - "round:99170\n", - "round:99171\n", - "round:99172\n", - "round:99173\n", - "round:99174\n", - "round:99175\n", - "round:99176\n", - "round:99177\n", - "round:99178\n", - "round:99179\n", - "round:99180\n", - "round:99181\n", - "round:99182\n", - "round:99183\n", - "round:99184\n", - "round:99185\n", - "round:99186\n", - "round:99187\n", - "round:99188\n", - "round:99189\n", - "round:99190\n", - "round:99191\n", - "round:99192\n", - "round:99193\n", - "round:99194\n", - "round:99195\n", - "round:99196\n", - "round:99197\n", - "round:99198\n", - "round:99199\n", - "round:99200\n", - "round:99201\n", - "round:99202\n", - "round:99203\n", - "round:99204\n", - "round:99205\n", - "round:99206\n", - "round:99207\n", - "round:99208\n", - "round:99209\n", - "round:99210\n", - "round:99211\n", - "round:99212\n", - "round:99213\n", - "round:99214\n", - "round:99215\n", - "round:99216\n", - "round:99217\n", - "round:99218\n", - "round:99219\n", - "round:99220\n", - "round:99221\n", - "round:99222\n", - "round:99223\n", - "round:99224\n", - "round:99225\n", - "round:99226\n", - "round:99227\n", - "round:99228\n", - "round:99229\n", - "round:99230\n", - "round:99231\n", - "round:99232\n", - "round:99233\n", - "round:99234\n", - "round:99235\n", - "round:99236\n", - "round:99237\n", - "round:99238\n", - "round:99239\n", - "round:99240\n", - "round:99241\n", - "round:99242\n", - "round:99243\n", - "round:99244\n", - "round:99245\n", - "round:99246\n", - "round:99247\n", - "round:99248\n", - "round:99249\n", - "round:99250\n", - "round:99251\n", - "round:99252\n", - "round:99253\n", - "round:99254\n", - "round:99255\n", - "round:99256\n", - "round:99257\n", - "round:99258\n", - "round:99259\n", - "round:99260\n", - "round:99261\n", - "round:99262\n", - "round:99263\n", - "round:99264\n", - "round:99265\n", - "round:99266\n", - "round:99267\n", - "round:99268\n", - "round:99269\n", - "round:99270\n", - "round:99271\n", - "round:99272\n", - "round:99273\n", - "round:99274\n", - "round:99275\n", - "round:99276\n", - "round:99277\n", - "round:99278\n", - "round:99279\n", - "round:99280\n", - "round:99281\n", - "round:99282\n", - "round:99283\n", - "round:99284\n", - "round:99285\n", - "round:99286\n", - "round:99287\n", - "round:99288\n", - "round:99289\n", - "round:99290\n", - "round:99291\n", - "round:99292\n", - "round:99293\n", - "round:99294\n", - "round:99295\n", - "round:99296\n", - "round:99297\n", - "round:99298\n", - "round:99299\n", - "round:99300\n", - "round:99301\n", - "round:99302\n", - "round:99303\n", - "round:99304\n", - "round:99305\n", - "round:99306\n", - "round:99307\n", - "round:99308\n", - "round:99309\n", - "round:99310\n", - "round:99311\n", - "round:99312\n", - "round:99313\n", - "round:99314\n", - "round:99315\n", - "round:99316\n", - "round:99317\n", - "round:99318\n", - "round:99319\n", - "round:99320\n", - "round:99321\n", - "round:99322\n", - "round:99323\n", - "round:99324\n", - "round:99325\n", - "round:99326\n", - "round:99327\n", - "round:99328\n", - "round:99329\n", - "round:99330\n", - "round:99331\n", - "round:99332\n", - "round:99333\n", - "round:99334\n", - "round:99335\n", - "round:99336\n", - "round:99337\n", - "round:99338\n", - "round:99339\n", - "round:99340\n", - "round:99341\n", - "round:99342\n", - "round:99343\n", - "round:99344\n", - "round:99345\n", - "round:99346\n", - "round:99347\n", - "round:99348\n", - "round:99349\n", - "round:99350\n", - "round:99351\n", - "round:99352\n", - "round:99353\n", - "round:99354\n", - "round:99355\n", - "round:99356\n", - "round:99357\n", - "round:99358\n", - "round:99359\n", - "round:99360\n", - "round:99361\n", - "round:99362\n", - "round:99363\n", - "round:99364\n", - "round:99365\n", - "round:99366\n", - "round:99367\n", - "round:99368\n", - "round:99369\n", - "round:99370\n", - "round:99371\n", - "round:99372\n", - "round:99373\n", - "round:99374\n", - "round:99375\n", - "round:99376\n", - "round:99377\n", - "round:99378\n", - "round:99379\n", - "round:99380\n", - "round:99381\n", - "round:99382\n", - "round:99383\n", - "round:99384\n", - "round:99385\n", - "round:99386\n", - "round:99387\n", - "round:99388\n", - "round:99389\n", - "round:99390\n", - "round:99391\n", - "round:99392\n", - "round:99393\n", - "round:99394\n", - "round:99395\n", - "round:99396\n", - "round:99397\n", - "round:99398\n", - "round:99399\n", - "round:99400\n", - "round:99401\n", - "round:99402\n", - "round:99403\n", - "round:99404\n", - "round:99405\n", - "round:99406\n", - "round:99407\n", - "round:99408\n", - "round:99409\n", - "round:99410\n", - "round:99411\n", - "round:99412\n", - "round:99413\n", - "round:99414\n", - "round:99415\n", - "round:99416\n", - "round:99417\n", - "round:99418\n", - "round:99419\n", - "round:99420\n", - "round:99421\n", - "round:99422\n", - "round:99423\n", - "round:99424\n", - "round:99425\n", - "round:99426\n", - "round:99427\n", - "round:99428\n", - "round:99429\n", - "round:99430\n", - "round:99431\n", - "round:99432\n", - "round:99433\n", - "round:99434\n", - "round:99435\n", - "round:99436\n", - "round:99437\n", - "round:99438\n", - "round:99439\n", - "round:99440\n", - "round:99441\n", - "round:99442\n", - "round:99443\n", - "round:99444\n", - "round:99445\n", - "round:99446\n", - "round:99447\n", - "round:99448\n", - "round:99449\n", - "round:99450\n", - "round:99451\n", - "round:99452\n", - "round:99453\n", - "round:99454\n", - "round:99455\n", - "round:99456\n", - "round:99457\n", - "round:99458\n", - "round:99459\n", - "round:99460\n", - "round:99461\n", - "round:99462\n", - "round:99463\n", - "round:99464\n", - "round:99465\n", - "round:99466\n", - "round:99467\n", - "round:99468\n", - "round:99469\n", - "round:99470\n", - "round:99471\n", - "round:99472\n", - "round:99473\n", - "round:99474\n", - "round:99475\n", - "round:99476\n", - "round:99477\n", - "round:99478\n", - "round:99479\n", - "round:99480\n", - "round:99481\n", - "round:99482\n", - "round:99483\n", - "round:99484\n", - "round:99485\n", - "round:99486\n", - "round:99487\n", - "round:99488\n", - "round:99489\n", - "round:99490\n", - "round:99491\n", - "round:99492\n", - "round:99493\n", - "round:99494\n", - "round:99495\n", - "round:99496\n", - "round:99497\n", - "round:99498\n", - "round:99499\n", - "round:99500\n", - "round:99501\n", - "round:99502\n", - "round:99503\n", - "round:99504\n", - "round:99505\n", - "round:99506\n", - "round:99507\n", - "round:99508\n", - "round:99509\n", - "round:99510\n", - "round:99511\n", - "round:99512\n", - "round:99513\n", - "round:99514\n", - "round:99515\n", - "round:99516\n", - "round:99517\n", - "round:99518\n", - "round:99519\n", - "round:99520\n", - "round:99521\n", - "round:99522\n", - "round:99523\n", - "round:99524\n", - "round:99525\n", - "round:99526\n", - "round:99527\n", - "round:99528\n", - "round:99529\n", - "round:99530\n", - "round:99531\n", - "round:99532\n", - "round:99533\n", - "round:99534\n", - "round:99535\n", - "round:99536\n", - "round:99537\n", - "round:99538\n", - "round:99539\n", - "round:99540\n", - "round:99541\n", - "round:99542\n", - "round:99543\n", - "round:99544\n", - "round:99545\n", - "round:99546\n", - "round:99547\n", - "round:99548\n", - "round:99549\n", - "round:99550\n", - "round:99551\n", - "round:99552\n", - "round:99553\n", - "round:99554\n", - "round:99555\n", - "round:99556\n", - "round:99557\n", - "round:99558\n", - "round:99559\n", - "round:99560\n", - "round:99561\n", - "round:99562\n", - "round:99563\n", - "round:99564\n", - "round:99565\n", - "round:99566\n", - "round:99567\n", - "round:99568\n", - "round:99569\n", - "round:99570\n", - "round:99571\n", - "round:99572\n", - "round:99573\n", - "round:99574\n", - "round:99575\n", - "round:99576\n", - "round:99577\n", - "round:99578\n", - "round:99579\n", - "round:99580\n", - "round:99581\n", - "round:99582\n", - "round:99583\n", - "round:99584\n", - "round:99585\n", - "round:99586\n", - "round:99587\n", - "round:99588\n", - "round:99589\n", - "round:99590\n", - "round:99591\n", - "round:99592\n", - "round:99593\n", - "round:99594\n", - "round:99595\n", - "round:99596\n", - "round:99597\n", - "round:99598\n", - "round:99599\n", - "round:99600\n", - "round:99601\n", - "round:99602\n", - "round:99603\n", - "round:99604\n", - "round:99605\n", - "round:99606\n", - "round:99607\n", - "round:99608\n", - "round:99609\n", - "round:99610\n", - "round:99611\n", - "round:99612\n", - "round:99613\n", - "round:99614\n", - "round:99615\n", - "round:99616\n", - "round:99617\n", - "round:99618\n", - "round:99619\n", - "round:99620\n", - "round:99621\n", - "round:99622\n", - "round:99623\n", - "round:99624\n", - "round:99625\n", - "round:99626\n", - "round:99627\n", - "round:99628\n", - "round:99629\n", - "round:99630\n", - "round:99631\n", - "round:99632\n", - "round:99633\n", - "round:99634\n", - "round:99635\n", - "round:99636\n", - "round:99637\n", - "round:99638\n", - "round:99639\n", - "round:99640\n", - "round:99641\n", - "round:99642\n", - "round:99643\n", - "round:99644\n", - "round:99645\n", - "round:99646\n", - "round:99647\n", - "round:99648\n", - "round:99649\n", - "round:99650\n", - "round:99651\n", - "round:99652\n", - "round:99653\n", - "round:99654\n", - "round:99655\n", - "round:99656\n", - "round:99657\n", - "round:99658\n", - "round:99659\n", - "round:99660\n", - "round:99661\n", - "round:99662\n", - "round:99663\n", - "round:99664\n", - "round:99665\n", - "round:99666\n", - "round:99667\n", - "round:99668\n", - "round:99669\n", - "round:99670\n", - "round:99671\n", - "round:99672\n", - "round:99673\n", - "round:99674\n", - "round:99675\n", - "round:99676\n", - "round:99677\n", - "round:99678\n", - "round:99679\n", - "round:99680\n", - "round:99681\n", - "round:99682\n", - "round:99683\n", - "round:99684\n", - "round:99685\n", - "round:99686\n", - "round:99687\n", - "round:99688\n", - "round:99689\n", - "round:99690\n", - "round:99691\n", - "round:99692\n", - "round:99693\n", - "round:99694\n", - "round:99695\n", - "round:99696\n", - "round:99697\n", - "round:99698\n", - "round:99699\n", - "round:99700\n", - "round:99701\n", - "round:99702\n", - "round:99703\n", - "round:99704\n", - "round:99705\n", - "round:99706\n", - "round:99707\n", - "round:99708\n", - "round:99709\n", - "round:99710\n", - "round:99711\n", - "round:99712\n", - "round:99713\n", - "round:99714\n", - "round:99715\n", - "round:99716\n", - "round:99717\n", - "round:99718\n", - "round:99719\n", - "round:99720\n", - "round:99721\n", - "round:99722\n", - "round:99723\n", - "round:99724\n", - "round:99725\n", - "round:99726\n", - "round:99727\n", - "round:99728\n", - "round:99729\n", - "round:99730\n", - "round:99731\n", - "round:99732\n", - "round:99733\n", - "round:99734\n", - "round:99735\n", - "round:99736\n", - "round:99737\n", - "round:99738\n", - "round:99739\n", - "round:99740\n", - "round:99741\n", - "round:99742\n", - "round:99743\n", - "round:99744\n", - "round:99745\n", - "round:99746\n", - "round:99747\n", - "round:99748\n", - "round:99749\n", - "round:99750\n", - "round:99751\n", - "round:99752\n", - "round:99753\n", - "round:99754\n", - "round:99755\n", - "round:99756\n", - "round:99757\n", - "round:99758\n", - "round:99759\n", - "round:99760\n", - "round:99761\n", - "round:99762\n", - "round:99763\n", - "round:99764\n", - "round:99765\n", - "round:99766\n", - "round:99767\n", - "round:99768\n", - "round:99769\n", - "round:99770\n", - "round:99771\n", - "round:99772\n", - "round:99773\n", - "round:99774\n", - "round:99775\n", - "round:99776\n", - "round:99777\n", - "round:99778\n", - "round:99779\n", - "round:99780\n", - "round:99781\n", - "round:99782\n", - "round:99783\n", - "round:99784\n", - "round:99785\n", - "round:99786\n", - "round:99787\n", - "round:99788\n", - "round:99789\n", - "round:99790\n", - "round:99791\n", - "round:99792\n", - "round:99793\n", - "round:99794\n", - "round:99795\n", - "round:99796\n", - "round:99797\n", - "round:99798\n", - "round:99799\n", - "round:99800\n", - "round:99801\n", - "round:99802\n", - "round:99803\n", - "round:99804\n", - "round:99805\n", - "round:99806\n", - "round:99807\n", - "round:99808\n", - "round:99809\n", - "round:99810\n", - "round:99811\n", - "round:99812\n", - "round:99813\n", - "round:99814\n", - "round:99815\n", - "round:99816\n", - "round:99817\n", - "round:99818\n", - "round:99819\n", - "round:99820\n", - "round:99821\n", - "round:99822\n", - "round:99823\n", - "round:99824\n", - "round:99825\n", - "round:99826\n", - "round:99827\n", - "round:99828\n", - "round:99829\n", - "round:99830\n", - "round:99831\n", - "round:99832\n", - "round:99833\n", - "round:99834\n", - "round:99835\n", - "round:99836\n", - "round:99837\n", - "round:99838\n", - "round:99839\n", - "round:99840\n", - "round:99841\n", - "round:99842\n", - "round:99843\n", - "round:99844\n", - "round:99845\n", - "round:99846\n", - "round:99847\n", - "round:99848\n", - "round:99849\n", - "round:99850\n", - "round:99851\n", - "round:99852\n", - "round:99853\n", - "round:99854\n", - "round:99855\n", - "round:99856\n", - "round:99857\n", - "round:99858\n", - "round:99859\n", - "round:99860\n", - "round:99861\n", - "round:99862\n", - "round:99863\n", - "round:99864\n", - "round:99865\n", - "round:99866\n", - "round:99867\n", - "round:99868\n", - "round:99869\n", - "round:99870\n", - "round:99871\n", - "round:99872\n", - "round:99873\n", - "round:99874\n", - "round:99875\n", - "round:99876\n", - "round:99877\n", - "round:99878\n", - "round:99879\n", - "round:99880\n", - "round:99881\n", - "round:99882\n", - "round:99883\n", - "round:99884\n", - "round:99885\n", - "round:99886\n", - "round:99887\n", - "round:99888\n", - "round:99889\n", - "round:99890\n", - "round:99891\n", - "round:99892\n", - "round:99893\n", - "round:99894\n", - "round:99895\n", - "round:99896\n", - "round:99897\n", - "round:99898\n", - "round:99899\n", - "round:99900\n", - "round:99901\n", - "round:99902\n", - "round:99903\n", - "round:99904\n", - "round:99905\n", - "round:99906\n", - "round:99907\n", - "round:99908\n", - "round:99909\n", - "round:99910\n", - "round:99911\n", - "round:99912\n", - "round:99913\n", - "round:99914\n", - "round:99915\n", - "round:99916\n", - "round:99917\n", - "round:99918\n", - "round:99919\n", - "round:99920\n", - "round:99921\n", - "round:99922\n", - "round:99923\n", - "round:99924\n", - "round:99925\n", - "round:99926\n", - "round:99927\n", - "round:99928\n", - "round:99929\n", - "round:99930\n", - "round:99931\n", - "round:99932\n", - "round:99933\n", - "round:99934\n", - "round:99935\n", - "round:99936\n", - "round:99937\n", - "round:99938\n", - "round:99939\n", - "round:99940\n", - "round:99941\n", - "round:99942\n", - "round:99943\n", - "round:99944\n", - "round:99945\n", - "round:99946\n", - "round:99947\n", - "round:99948\n", - "round:99949\n", - "round:99950\n", - "round:99951\n", - "round:99952\n", - "round:99953\n", - "round:99954\n", - "round:99955\n", - "round:99956\n", - "round:99957\n", - "round:99958\n", - "round:99959\n", - "round:99960\n", - "round:99961\n", - "round:99962\n", - "round:99963\n", - "round:99964\n", - "round:99965\n", - "round:99966\n", - "round:99967\n", - "round:99968\n", - "round:99969\n", - "round:99970\n", - "round:99971\n", - "round:99972\n", - "round:99973\n", - "round:99974\n", - "round:99975\n", - "round:99976\n", - "round:99977\n", - "round:99978\n", - "round:99979\n", - "round:99980\n", - "round:99981\n", - "round:99982\n", - "round:99983\n", - "round:99984\n", - "round:99985\n", - "round:99986\n", - "round:99987\n", - "round:99988\n", - "round:99989\n", - "round:99990\n", - "round:99991\n", - "round:99992\n", - "round:99993\n", - "round:99994\n", - "round:99995\n", - "round:99996\n", - "round:99997\n", - "round:99998\n", - "round:99999\n", - "After gradient descent at b=2.8940329551696777, w=1.339672565460205, error=0.1857876382824373\n" - ] - }, - { - "output_type": "display_data", - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAq8AAAIjCAYAAAAtE/I+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACEbUlEQVR4nO3dd3hTZf/H8XdauhhFNl1YUJQ9FFB2ERBREayIAipLRUGgIIoDlI2iaBHZIuXnAziw4h6IIKCI7KkICgplyZDKKiU5vz+OKU2btkmbNk35vK6Lq+TkJOduD32ej3e+9/e2GIZhICIiIiLiA/y8PQAREREREVcpvIqIiIiIz1B4FRERERGfofAqIiIiIj5D4VVEREREfIbCq4iIiIj4DIVXEREREfEZCq8iIiIi4jMUXkVERETEZyi8igj79+/HYrGQkJCQp/cZPXo0FovFM4MqQCtXrsRisbBy5cq0Y7179yY6OtprYyqqYmJiiImJ8fYwcqT7L1J4KbyKXAESEhKwWCxO/zzzzDNOX/PFF18wevToTMfPnTvH6NGjHYKeeI5+vr5v4sSJLF261NvDECmyinl7ACJScMaOHUvVqlUdjtWpU4err76a8+fPExAQkHb8iy++YPr06ZkC7Llz5xgzZgxAphm0kSNHZhmGfc3cuXOx2WwFft3sfr7iGyZOnEjXrl3p0qWLt4ciUiQpvIpcQTp27EijRo2cPhccHJzn9y9WrBjFihWN/1lJH+SLqgsXLhAYGIifnz6EExHfof/FEpFMNa+9e/dm+vTpAA4lBvv376dChQoAjBkzJu24fXbWWc2rxWLhiSeeYOnSpdSpU4egoCBq167NV199lWkcK1eupFGjRgQHB3PNNdcwe/Zsl+toV69ezb333kuVKlUICgoiKiqKoUOHcv78+Vz9TDLWPNp/Rq+++ipz5szhmmuuISgoiMaNG7N+/fpMr//111/p2rUrZcuWJTg4mEaNGvHJJ59ke82cfr4A3333HS1btqREiRJcddVVdO7cmV9++SXH78de1/vuu+8ycuRIIiIiKF68OMnJyZw8eZLhw4dTt25dSpYsSWhoKB07dmTr1q1O3+P9999nwoQJREZGEhwcTNu2bdm7d2+ma9p/TiEhITRp0oTVq1c7HduxY8fo168flSpVIjg4mPr167NgwYJMPxv7z3/69OlUq1aN4sWLc+utt3LgwAEMw2DcuHFERkYSEhJC586dOXnyZI4/FyDt32ZwcDB16tTho48+cnreq6++SrNmzShXrhwhISHceOONLFmyxOEci8XC2bNnWbBgQdr96927NwB//vknAwYM4PrrryckJIRy5cpx7733sn//fpfGKSKmojFFIiIuOX36NMePH3c4Vr58+Uzn9e/fn0OHDrFs2TLeeeedtOMVKlRg5syZPP7449x9993ExsYCUK9evWyvu2bNGhITExkwYAClSpXijTfe4J577uGvv/6iXLlyAGzevJnbbruNsLAwxowZg9VqZezYsWlhLicffPAB586d4/HHH6dcuXL8/PPPTJs2jYMHD/LBBx+49B6uWLRoEf/++y/9+/fHYrEwefJkYmNj+eOPP9Jma3fu3Enz5s2JiIjgmWeeoUSJErz//vt06dKFDz/8kLvvvtvpe+f08/3222/p2LEj1apVY/To0Zw/f55p06bRvHlzNm3a5NICo3HjxhEYGMjw4cNJSUkhMDCQXbt2sXTpUu69916qVq3K0aNHmT17Nq1bt2bXrl2Eh4c7vMdLL72En58fw4cP5/Tp00yePJmePXuybt26tHPmzZtH//79adasGXFxcfzxxx/cddddlC1blqioqLTzzp8/T0xMDHv37uWJJ56gatWqfPDBB/Tu3Zt//vmHIUOGOFx74cKFXLx4kUGDBnHy5EkmT55Mt27duOWWW1i5ciUjRoxg7969TJs2jeHDh/P2229n+/P45ptvuOeee6hVqxaTJk3ixIkT9OnTh8jIyEznTp06lbvuuouePXty8eJF3n33Xe69914+++wz7rjjDgDeeecdHn74YZo0acKjjz4KwDXXXAPA+vXr+fHHH7n//vuJjIxk//79zJw5k5iYGHbt2kXx4sVzvH8iAhgiUuTNnz/fAJz+MQzD2LdvnwEY8+fPT3vNwIEDDWf/E/H3338bgPHiiy9meu7FF1/M9BrACAwMNPbu3Zt2bOvWrQZgTJs2Le1Yp06djOLFixtJSUlpx/bs2WMUK1bM6TgyOnfuXKZjkyZNMiwWi/Hnn39m+9oVK1YYgLFixYq0Y7169TKuvvrqtMf2n1G5cuWMkydPph3/+OOPDcD49NNP0461bdvWqFu3rnHhwoW0YzabzWjWrJlRvXr1bMeS3c+3QYMGRsWKFY0TJ06kHdu6davh5+dnPPTQQy59j9WqVcv0s7pw4YJhtVodju3bt88ICgoyxo4dm+k9atasaaSkpKQdnzp1qgEY27dvNwzDMC5evGhUrFjRaNCggcN5c+bMMQCjdevWacfi4+MNwPjf//6XduzixYtG06ZNjZIlSxrJyclp4wGMChUqGP/880/auc8++6wBGPXr1zdSU1PTjnfv3t0IDAx0uAfONGjQwAgLC3N4z2+++cYAHO6/YWT+N3bx4kWjTp06xi233OJwvESJEkavXr0yXcvZv9G1a9cagPF///d/2Y5TRC5T2YDIFWT69OksW7bM4U9BaNeuXdrsE5gziaGhofzxxx8AWK1Wvv32W7p06eIwy3fttdfSsWNHl64REhKS9vezZ89y/PhxmjVrhmEYbN682UPfCdx3332UKVMm7XHLli0B0r6XkydP8t1339GtWzf+/fdfjh8/zvHjxzlx4gQdOnRgz549JCUluX3dw4cPs2XLFnr37k3ZsmXTjterV4/27dvzxRdfuPQ+vXr1cvhZAQQFBaXVvVqtVk6cOEHJkiW5/vrr2bRpU6b36NOnD4GBgWmPM/4MNmzYwLFjx3jssccczuvduzelS5d2eK8vvviCypUr071797RjAQEBDB48mDNnzvD99987nH/vvfc6vMdNN90EwAMPPOBQb33TTTdx8eLFbH/W9p9pr169HN6zffv21KpVK9P56X9up06d4vTp07Rs2dLpz8iZ9K9PTU3lxIkTXHvttVx11VUuv4eIqGxA5IrSpEmTLBds5acqVapkOlamTBlOnToFmDWP58+f59prr810nrNjzvz111+88MILfPLJJ2nva3f69OlcjNq5jN+LPcjar7l3714Mw2DUqFGMGjXK6XscO3aMiIgIt677559/AnD99ddneq5mzZp8/fXXnD17lhIlSmT7Phm7TQDYbDamTp3KjBkz2LdvH1arNe05e1lHejn9DOxjrV69usN5AQEBVKtWLdP3Vb169UyLxmrWrOnwXlld2x4605cipD+e8d9Cxms7GyfgNLh/9tlnjB8/ni1btpCSkpJ23NXexufPn2fSpEnMnz+fpKQkDMNIe86T/0ZFijqFVxHJd/7+/k6Pp/8/77ywWq20b9+ekydPMmLECGrUqEGJEiVISkqid+/eHm15ldP3Yr/W8OHD6dChg9NzXQ3k+SHjrCuYrZ1GjRpF3759GTduHGXLlsXPz4+4uDinP7v8vp/Zyera+T2m1atXc9ddd9GqVStmzJhBWFgYAQEBzJ8/n0WLFrn0HoMGDWL+/PnExcXRtGlTSpcujcVi4f777/dKWzYRX6XwKiJOZTWblB87aFWsWJHg4GCnK9adHcto+/bt/PbbbyxYsICHHnoo7XhBlUWkZ59ZDAgIoF27dm6/Pquf79VXXw3A7t27Mz3366+/Ur58+RxnXbOyZMkS2rRpw7x58xyO//PPP04X9OXEPtY9e/Zwyy23pB1PTU1l37591K9f3+Hcbdu2YbPZHGZff/31V4f3yg/px5lRxp/zhx9+SHBwMF9//TVBQUFpx+fPn5/ptVndwyVLltCrVy+mTJmSduzChQv8888/uRm+yBVLNa8i4pQ9CGX8P1b7imhP/h+uv78/7dq1Y+nSpRw6dCjt+N69e/nyyy9dej04zrIZhsHUqVM9NkZXVaxYkZiYGGbPns3hw4czPf/3339n+/qsfr5hYWE0aNCABQsWODy3Y8cOvvnmG26//fZcj9nf3z/TDOUHH3yQq9pcgEaNGlGhQgVmzZrFxYsX044nJCRk+r5uv/12jhw5wnvvvZd27NKlS0ybNo2SJUvSunXrXI3BFel/puk/tl+2bBm7du1yONff3x+LxeJQUrF//36nO2mVKFHC6e+Hs5/ztGnTHN5TRHKmmVcRcerGG28EYPDgwXTo0AF/f3/uv/9+QkJCqFWrFu+99x7XXXcdZcuWpU6dOtSpUydP1xs9ejTffPMNzZs35/HHH8dqtfLmm29Sp04dtmzZku1ra9SowTXXXMPw4cNJSkoiNDSUDz/8MNt6x/w0ffp0WrRoQd26dXnkkUeoVq0aR48eZe3atRw8eDBT/9T0svv5vvLKK3Ts2JGmTZvSr1+/tFZZpUuXdrqVr6vuvPNOxo4dS58+fWjWrBnbt29n4cKFmepTXRUQEMD48ePp378/t9xyC/fddx/79u1j/vz5md7z0UcfZfbs2fTu3ZuNGzcSHR3NkiVL+OGHH4iPj6dUqVK5/r5cMWnSJO644w5atGhB3759OXnyJNOmTaN27dqcOXMm7bw77riD1157jdtuu40ePXpw7Ngxpk+fzrXXXsu2bdsc3vPGG2/k22+/5bXXXiM8PJyqVaty0003ceedd/LOO+9QunRpatWqxdq1a/n222+d1hWLSDa81OVARAqQvVXW+vXrnT7vrFXWpUuXjEGDBhkVKlQwLBaLQ7uqH3/80bjxxhuNwMBAh7ZOWbXKGjhwYKZrXn311ZnaCS1fvtxo2LChERgYaFxzzTXGW2+9ZTz55JNGcHBwjt/jrl27jHbt2hklS5Y0ypcvbzzyyCNpLbnSf1/OuNMq65VXXsn0epy0tvr999+Nhx56yKhcubIREBBgREREGHfeeaexZMmSHL+XrH6+hmEY3377rdG8eXMjJCTECA0NNTp16mTs2rUrx/e0f48ffPBBpucuXLhgPPnkk0ZYWJgREhJiNG/e3Fi7dq3RunVrh7ZWWb2Hs38/hmEYM2bMMKpWrWoEBQUZjRo1MlatWpXpPQ3DMI4ePWr06dPHKF++vBEYGGjUrVs303tl9fPPakw5/ZtP78MPPzRq1qxpBAUFGbVq1TISExMz3X/DMIx58+YZ1atXN4KCgowaNWoY8+fPd/pv/tdffzVatWplhISEGEDav/NTp06lfZ8lS5Y0OnToYPz6669OfxdEJGsWwyiACnsRkVzq0qULO3fudFqXKCIiVx7VvIpIoZFxK9c9e/bwxRdfEBMT450BiYhIoaOZVxEpNMLCwujduzfVqlXjzz//ZObMmaSkpLB582anvThFROTKowVbIlJo3HbbbSxevJgjR44QFBRE06ZNmThxooKriIik0cyriIiIiPgM1byKiIiIiM9QeBURERERn1Hka15tNhuHDh2iVKlS+bKtpYiIiIjkjWEY/Pvvv4SHhztsFe1MkQ+vhw4dIioqytvDEBEREZEcHDhwgMjIyGzPKfLh1b614IEDBwgNDc3366WmpvLNN99w6623EhAQkO/XE8/TPfR9uoe+TffP9+ke+r6CvofJyclERUW5tCV0kQ+v9lKB0NDQAguvxYsXJzQ0VL+wPkr30PfpHvo23T/fp3vo+7x1D10p8dSCLRERERHxGQqvIiIiIuIzFF5FRERExGcU+ZpXVxiGwaVLl7BarXl+r9TUVIoVK8aFCxc88n5S8LK6hwEBAfj7+3txZCIiInLFh9eLFy9y+PBhzp0755H3MwyDypUrc+DAAfWV9VFZ3UOLxUJkZCQlS5b04uhERESubFd0eLXZbOzbtw9/f3/Cw8MJDAzMc+C02WycOXOGkiVL5thkVwonZ/fQMAz+/vtvDh48SPXq1TUDKyIi4iVXdHi9ePEiNpuNqKgoihcv7pH3tNlsXLx4keDgYIVXH5XVPaxQoQL79+8nNTVV4VVERMRLlK5AIVNcojIQERER71NqExERERGfofAqIiIiIj5D4fUKtH//fiwWC1u2bHH5NQkJCVx11VVeHwdAdHQ08fHxHh2LiIiI+AaFVx914MAB+vbtm9Yl4eqrr2bIkCGcOHEix9dGRUVx+PBh6tSp4/L17rvvPn777be8DNlr8iN4i4iIiHcovHqA1QorV8LixebX/N6b4I8//qBRo0bs2bOHxYsXs3fvXmbNmsXy5ctp2rQpJ0+ezPK1Fy9exN/fn8qVK1OsmOvNJkJCQqhYsaInhi8iIiKSawqveZSYCNHR0KYN9OgBbdv6Ua9eKImJ+XfNgQMHEhgYyDfffEPr1q2pUqUKHTt25NtvvyUpKYnnn38+7dzo6GjGjRvHQw89RGhoKI8++qjTj+s/+eQTqlevTnBwMG3atGHBggVYLBb++ecfIPPs5ejRo2nQoAHvvPMO0dHRlC5dmvvvv59///037ZyvvvqKFi1acNVVV1GuXDnuvPNOfv/9d7e+12PHjtGpUydCQkKoWrUqCxcuzHTOa6+9Rt26dSlRogRRUVEMGDCAM2fOALBy5Ur69OnD6dOnsVgsWCwWRo8eDcA777xDo0aNKFWqFJUrV6ZHjx4cO3bMrfGJiIgUNVYrrFlj/n3NmvyflHOXwmseJCZC165w8KDj8cOHLXTrZsmXAHvy5Em+/vprBgwYQEhIiMNzlStXpmfPnrz33nsYhpF2/NVXX6V+/fps3ryZUaNGZXrPffv20bVrV7p06cLWrVvp37+/QwDOyu+//87SpUv57LPP+Oyzz/j+++956aWX0p4/e/Ysw4YNY8OGDSxfvhw/Pz/uvvtubDaby99v7969OXDgACtWrGDJkiXMmDEjU8D08/PjjTfeYOfOnSxYsIDvvvuOp59+GoBmzZoRHx9PaGgohw8f5vDhwwwfPhwwt4EdN24cW7duZenSpezfv5/evXu7PDYREZGixj4pd8cd5uM77jAf5+eknLuu6E0K8sJqhSFDIF1GTGMYFiwWg7g46NwZPNnPfs+ePRiGQc2aNZ0+X7NmTU6dOsXff/+d9jH/LbfcwpNPPpl2zv79+x1eM3v2bK6//npeeeUVAK6//np27NjBhAkTsh2LzWYjISGBUqVKAfDggw+yfPnytNfdc889Due//fbbVKhQgV27drlUb/vbb7/x5Zdf8vPPP9O4cWMA5s2bl+l7j4uLS/t7dHQ048eP57HHHmPGjBkEBgZSunRpLBYLlStXdnhd37590/5erVo13njjDRo3bpw2aysiInIlsU/KGQaknx9LSjKPL1kCsbHeG5+dZl5zafXqzDOu6RmGhQMHzPPyg+EsNWehUaNG2T6/e/futHBo16RJkxzfNzo6Oi24AoSFhTnMiu7Zs4fu3btTrVo1QkNDiY6OBuCvv/5yady//PILxYoV48Ybb0w7VqNGjUyLr7799lvatm1LREQEpUqV4sEHH+TEiROcO3cu2/ffuHEjnTp1okqVKpQqVYrWrVu7NT4REZGiIvtJOfNrXFzhKCFQeM2lw4c9e56rrr32WiwWC7/88ovT53/55RfKlClDhQoV0o6VKFHCs4P4T0BAgMNji8XiUBLQqVMnTp48ydy5c1m3bh3r1q0DzEVjnrJ//37uvPNO6tWrx4cffsjGjRuZPn16jtc5e/YsHTp0IDQ0lIULF7J+/Xo++ugjj49PRETEF+Q8KUe+Tsq5Q+E1l8LCPHueq8qVK0f79u2ZMWMG58+fd3juyJEjLFy4kPvuu8+trUyvv/56NmzY4HBs/fr1eRrniRMn2L17NyNHjqRt27Zp5QzuqFGjBpcuXWLjxo1px3bv3p22iAzM2VObzcaUKVO4+eabue666zh06JDD+wQGBmLN8J+Kv/76KydOnOCll16iZcuW1KhRQ4u1RETkiuWtSbncUHjNpZYtITISssqIFotBVJR5nqe9+eabpKSk0KFDB1atWsWBAwf46quvaN++PRERETnWqmbUv39/fv31V0aMGMFvv/3G+++/T0JCwn/fh+shOL0yZcpQrlw55syZw969e/nuu+8YNmyYW+9x/fXXc9ttt9G/f3/WrVvHxo0befjhhx0Wql177bWkpqYybdo0/vjjD9555x1mzZrl8D7R0dGcOXOG5cuXc/z4cc6dO0eVKlUIDAxMe90nn3zCuHHjcvW9ioiI+DpvTcrlhsJrLvn7w9Sp5t8z5juLxSwOiY/37GItu+rVq7NhwwaqVatGt27duOaaa3j00Udp06YNa9eupWzZsm69X9WqVVmyZAmJiYnUq1ePmTNnpnUbCAoKytUY/fz8ePfdd9m4cSN16tRh6NChaQvC3DF//nzCw8Np3bo1sbGxPProow79ZuvXr89rr73Gyy+/TJ06dVi4cCGTJk1yeI9mzZrx2GOPcd9991GhQgUmT55MhQoVSEhI4IMPPqBWrVq89NJLvPrqq7n6XkVERHxdzpNy5NuknLsshjsrf3xQcnIypUuX5vTp04SGhjo8d+HCBfbt20fVqlUJDg7O1fsnJpoFzunrRCIibMTHQ9euvvvfBhMmTGDWrFkcOHDA20MpcDabjeTkZEJDQ/Hzu3wPPfHvRQpGamoqX3zxBbfffnum2mwp/HT/fJ/uoW+ydxsACA5OZfHiL+je/XYuXDDvYX52G8gur2WkVll5FBtrtsNavdqsA6lUyUb9+smUKZP9D76wmTFjBo0bN6ZcuXL88MMPvPLKKzzxxBPeHpaIiIgUkNhYM6AOGQLpd5uPjDQ/TS4MbbJA4dUj/P0hJsb8u80GycleHU6u7Nmzh/Hjx3Py5EmqVKnCk08+ybPPPuvtYYmIiEgBsk/KrVpl5pnPP4dWrfKnDDK3FF4FgNdff53XX3/d28MQERERL/P3hxYt4IsvzK+FKbiCFmyJiIiIiA9ReBURERERn6HwKiIiIiI+Q+FVRERERHyGwquIiIiI+AyFVxERERHxGQqvRUxMTAxxcXEFdr2EhASuuuqqLJ/fv38/FouFLVu2ALBy5UosFgv//PNPgYxPREREihaFVx/Uu3dvLBZLpj979+4lMTGRcePGpZ0bHR1NfHy8w+tzCpz5qVmzZhw+fJjSpUt75foiIiLi27RJgY+67bbbmD9/vsOxChUq4F/YOglnEBgYSOXKlb09DBEREfFRmnnNyDDg7NmC/2MYbg0zKCiIypUrO/zx9/d3KBuIiYnhzz//ZOjQoWmzsytXrqRPnz6cPn067djo0aMBSElJYfjw4URERFCiRAluuukmVq5c6XDdhIQEqlSpQvHixbn77rs5kX7zYxdkLBuwzwJ//fXX1KxZk5IlS3Lbbbdx+PBhh9e99dZb1KxZk+DgYGrUqMGMGTPcuq6IiIgUDZp5zejcOShZMtcv9wOuys0Lz5yBEiVyfV1nEhMTqV+/Po8++iiPPPIIAGXLliU+Pp4XXniB3bt3A1Dyv+/3iSeeYNeuXbz77ruEh4fz0Ucfcdttt7F9+3aqV6/OunXr6NevH5MmTaJLly589dVXvPjii3ke57lz53j11Vd555138PPz44EHHmD48OEsXLgQgIULF/LCCy/w5ptv0rBhQzZv3swjjzxCiRIl6NWrV56vLyIiIr5D4dVHffbZZ2mhE6Bjx4588MEHDueULVsWf39/SpUq5fBRfenSpbFYLA7H/vrrL+bPn89ff/1FeHg4AMOHD+err75i/vz5TJw4kalTp3Lbbbfx9NNPA3Ddddfx448/8tVXX+Xpe0lNTWXWrFlcc801gBmix44dm/b8iy++yJQpU4iNjQWgatWq7Nq1i9mzZyu8ioiI5JLVCqtXw+HDEBYGLVtCIa8+BBReMyte3JwFzSWbzUZycjKhoaH4+blRlVG8uFvXadOmDTNnzkx7XCKPs7bbt2/HarVy3XXXORxPSUmhXLlyAPzyyy/cfffdDs83bdo0z+G1ePHiacEVICwsjGPHjgFw9uxZfv/9d/r165c2ewxw6dIlLfoSERHJpcREGDIEDh68fCwyEqZOhdhYzHJGq9Vr48uOwmtGFkvePr632cybXaIEuBNe3VSiRAmuvfZaj73fmTNn8Pf3Z+PGjZkWfZXMQxmFKwICAhweWywWjP9qgM/89x8Sc+fO5aabbnI4r7AvThMRESmMEhOha9fMy22Skszjn847RsdPH6Omnx906uSdQWZD4bWICwwMxJrhv5ycHWvYsCFWq5Vjx47RsmVLp+9Vs2ZN1q1b53Dsp59+8uyAM6hUqRLh4eH88ccf9OzZM1+vJSIiUtRZreaMq7N14oYBXVnCzQ8/jp/tONcEBmI7cgSiogp+oNlQeC3ioqOjWbVqFffffz9BQUGUL1+e6Ohozpw5w/Lly6lfvz7Fixfnuuuuo2fPnjz00ENMmTKFhg0b8vfff7N8+XLq1avHHXfcweDBg2nevDmvvvoqnTt35uuvv85zyYArxowZw+DBgyldujS33XYbKSkpbNiwgVOnTjFs2LB8v76IiEhRsXq1Y6mAXVlO8CZP0J13wQZnqtVl/RN9aFEI21uqVVYRN3bsWPbv388111xDhQoVAHOjgMcee4z77ruPChUqMHnyZADmz5/PQw89xJNPPsn1119Ply5dWL9+PVWqVAHg5ptvZu7cuUydOpX69evzzTffMHLkyHz/Hh5++GHeeust5s+fT926dWndujUJCQlUrVo1368tIiLi66xWWLkSFi+G5cszP9+JT9hJbbrzLpfwZxwj+Xz0WpKrVSvwsbrCYhhuNhj1McnJyZQuXZrTp08TGhrq8NyFCxfYt28fVatWJTg42CPXy/WCLSk0srqH+fHvRfJHamoqX3zxBbfffnummmop/HT/fJ/uYeHhbGGW3VWcYipDeIh3ANhJLXqTwAYa8913qSQnF9w9zC6vZaSyAREREZEiIn37qz17YPRo5/Wtt/Elb/EwERzCih+v8BSjGc1FSzBRkdC0KXz9dYEP3yVenRpctWoVnTp1Ijw8HIvFwtKlSzOd88svv3DXXXdRunRpSpQoQePGjfnrr78KfrAiIiIihVhiIkRHQ5s20KMHvPhi5uAaymnm8jBfcjsRHGI319GCNTzLS1y0mJ8qxscX7n6vXg2vZ8+epX79+kyfPt3p87///jstWrSgRo0arFy5km3btjFq1Ch9ZCsiIiKSjr39lbPyALu2fMt26vIw87Bh4TWG0pDN/ERTwOzzumTJf31eCzGvlg107NiRjh07Zvn8888/z+233562oAhwaGYvIiIicqXLrv0VQAnOMJmnGYC5udHvVKMP81lNK0aOhFq1tMOWR9hsNj7//HOefvppOnTowObNm6latSrPPvssXbp0yfJ1KSkppKSkpD1OTk4GzOLx1NRUh3MvXbqEYRhYrVZsNptHxm1f/2YYhsfeUwpWVvfQarViGAaXLl3K9G9JChf7/dF98k26f75P97BgrVkDJ05ASEjm51pYVzE79RGqGvsAmO3/GCMDJnLWUpIQUrnlFmjRwjzXZjP/QMHfQ3euU2i6DVgsFj766KO0YHrkyBHCwsIoXrw448ePp02bNnz11Vc899xzrFixgtatWzt9n9GjRzNmzJhMxxctWkTxDFuwWiwWwsLCqFy5MqVKlfL49yRFy7lz5zh06BCHDx/Wf5iIiEih5p+SQs133uGazz4D4FyFCmx+4gmO16/v5ZE5d+7cOXr06OFSt4FCG14PHTpEREQE3bt3Z9GiRWnn3XXXXZQoUYLFixc7fR9nM69RUVEcP37c6Q/j6NGjJCcnU6FCBYoXL47FYsnT92EYBmfPnqVEiRJ5fi/xDmf30GazcfjwYYoVK0ZERITubSGXmprKsmXLaN++vdr0+CDdP9+ne1iw1qyBO+64/Pgm61rmpvbjWmMvAG/79+PZgJf512LmIPv/hb3zTta7vxb0PUxOTqZ8+fK+3SqrfPnyFCtWjFq1ajkcr1mzJmvWrMnydUFBQQQFBWU6HhAQ4PSHHxERgb+/P8ePH8/7oDGDz/nz5wkJCVHA8VFZ3UM/Pz8iIiIIDAz04ujEHVn93otv0P3zfbqHBaNVKyhXDo4fvMBYRvEkU/DD4CAR9GMe31g7QLpd4aOizI4CrizMKqh76M41Cm14DQwMpHHjxuzevdvh+G+//cbVV1/tsevYSwcqVqzokbqO1NRUVq1aRatWrfQL66OyuoeBgYHaeEJERAodf3/4vyd+pvIzvajJrwAk0Is44km2XAUGjBkD1av71sKsrHg1vJ45c4a9e/emPd63bx9btmyhbNmyVKlShaeeeor77ruPVq1apdW8fvrpp6xcudLjY/H398ffA3fS39+fS5cuERwcrPDqo3QPRUTEZ6SkwNixtHnpJcDGUb/KPGybw2eY9QBRka7PsvoKr4bXDRs20KZNm7THw4YNA6BXr14kJCRw9913M2vWLCZNmsTgwYO5/vrr+fDDD2lhXxYnIiIicqXavBl69YLt283HPXpQPn4aT+4sS4/DRWOW1RmvhteYmBhyWi/Wt29f+vbtW0AjEhERESnkUlNhwgTzz6VLUKECzJoFsbH4AzEx3h5g/iq0Na8iIiIiVxKrFVavhsPZzZpu327Otm7eDMBfTbpy4NkZ3NypAkVsgjVLCq8iIiIiXpaYaO6SlX5718hIeO01c2L1yMFLNFk5mar/NxpLaiqn/MrymG0G7/98H9xtnjt1atGqbc2KwquIiIiIFyUmQteumbd3PXgQunWDGvzCAnpRjfUAfMxd9LfN5iiV085NSjLfY8mSoh9g1fdHRERExEusVnPG1dkSID+sPMmrbKYhTVjPKa7iQf6PLix1CK5w+fVxceZ7FmWaeRURERHJI5fqVZ1YvdqxVMDuWvaQQG+a8yMAX9CRR5jLISKyfC/DgAMHzPcsyou2NPMqIiIikgeJiRAdDW3aQI8e5tfoaPN4Tg4fdnxswcZgprKV+jTnR5IpRT/e4g4+zza4ZveeRY3Cq4iIiEgu2etVM86e2mtQcwqwYWGX/16VP/iOW5hKHMU5zzLaUYcdvE0/wPUt59O/Z1Gk8CoiIiKSC9nVq7pag9qyJURF2HicmWyjHjF8zxlK8BgzuZVvOEAVl8djsUBUlPmeRZnCq4iIiEguZFWvape+BjUr/gf/ZEPZW5nBAEpylpW0ph7bmM1juDPbavnv1Pj4orejVkYKryIiIiK54GptqdPzDAPeegvq1qXi9uVcCgzhhdJTuYXv2Ee1LN/LHlLLlXM8Hhl5ZbTJAnUbEBEREckVV2tLM5138CA88gh89ZX5uFkzis2fz4vXXMct6ToWHD8OQ4dm3rggPh46d85dd4OiQOFVREREJBdatjTDZFKS87pXi8V8Pq0G1TDgnXdg8GA4fRqCgmD8eDOh+vvjT+YWV3ffnXVILcrtsLKj8CoiIiKSC/7+5pasXbuaQTV9gM1Ug3rkCPTvD598Yj7RuDEsWAA1a+Z4jSs1pGZFNa8iIiIiuRQba9aaRmRowZpWg3q3Ae++C7Vrm8E1IAAmTIAff8wxuIpzmnkVERERySCrHbOcHY+NzaIG9eTf0G2AmWIBGjY0Z1vr1vXuN+fjFF5FRERE0klMNPu3Zlwo1b07LF6c+fjUqWaAdfh4PzERHnsM/v4bihWDkSPhuefMmVfJE4VXERERkf/Yd8zKuADr4EF45ZXM59t30kprU3XiBAwaZKZcMGdZExLghhvye+hXDNW8ioiIiJD9jllZcdhJa+knZm3r4sVmjcHzz8P69QquHqaZVxERERFy3jErK6HGP4w9EIf/3QvMAzVrmrWtjRt7doACKLyKiIjIFSKrRVh2ru6YlV4HvuItHiaSJAyLBcvw4TB2LAQH53g9yR2FVxERESnyslqEZV9sBa7vmAVQimSm8CSP8BYAv1GdM28kcMMTzVy+nuSOal5FRESkSLMvwspYEmBfbJWYaD6275hl32AgK7ewnO3UTQuuUxnCnRFbqP/45eDqyvUkdxReRUREpMjKbhGWw2Ir6+Uds8B5gC3BGaYzgOW042r+4g+qEsNKhlrieemN4ml9YF29nuSOwquIiIgUWTktwjIMOHDAPA+y3jHrngqr+LN0fQYwE4AZPE49tvFHVOvLbbJycT1xn2peRUREpMhydRFW+vPS75h1bP85mn32HBGJb2AxDIwqVdg2eB5lwtvxWR4WfeVmcZiYFF5FRESkyHJ1EVbG8/z9ISZoLUzsBXv2mAcffhjLlCnUDw2lvoevJ65T2YCIiIgUWTktwrJYICrKPC/NhQvw9NPQooUZXCMi4MsvYe5cCA31/PXELQqvIiIiUmRltwjL/jg+Pt1H//YdsV55BWw2eOgh2LEDbrstf64nblN4FRERkULPaoWVK82dV1euzH61fsZzO3d2vggrMpLLi61SUmDkSGjaFH75BSpVgo8/NnfKuuoqt8aa1aIvh+tJrqnmVURERAo1dxr+Z3fu/v1Z7Hi1ZYs5w7p9u/mC7t1h2jQoVy7XY06/6Cvj9bTzVt4ovIqIiEihZW/4n7Fvqr3hf/qZTHfOBSA1FcZPhPHj4dIlKF8eZs2Ce+7xyNj9/SEmJvP3o5238kZlAyIiIlIoudPw3+3NAbZvh5tugtGjzeB6zz2wc6fHgqsz2nnLMxReRUREpFByp+G/q+euWXkJJk2CG2+EzZuhbFmzOPaDD6BiRc9/E//Rzlueo7IBERERKZQ83fC/Br9Qu39v+P1n80CnTjBnDlSunKvxucOdIJ6x1EAcaeZVRERECiV3Gv5nd64fVp7kVTbTkPK//wylS5tdBD7+uECCK2jnLU/SzKuIiIgUSvaG/0lJzj9ut1jM5+0N/52dey17SKA3zfkRAKPDbVjemmueXIC085bnaOZVRERECiV3Gv5nPNeCjUG8wVbq05wfSaYUGx9/C8uXXxR4cAXtvOVJCq8iIiJSaLnT8N9+7s2V9rGctrzBEIpznjVBbflh5nZunNEv6/SYz7TzlueobEBEREQKtewa/jswDGKPzebuf4dj4SyXgorzx2Ov0PSVx/AP8P58nT1cO+vzGh+vPq+uUngVERGRQs9Zw38Hf/0F/frBt99iAWjVimLz53NdtWoFM0AXuRzEJUsKryIiIuK7DAPmz4ehQyE5GUJCzD6ugwaBn/dnW53JMYhLthReRURExDclJcGjj8IXX5iPmzaFhAS47jqvDkvyV+H8TxIRERGRrBgGvPMO1KljBtegIJg82fwsXsG1yNPMq4iIiPiOI0fgscfMDQaA5OsbsbrfAko0rkVLQKWjRZ/Cq4iIiBQ4q9XNRUuGAe+9BwMHwsmT2IoF8Erx0Ty/+2msT5txJjLSbEfl7qp9t8ciXuXVsoFVq1bRqVMnwsPDsVgsLF26NMtzH3vsMSwWC/Hx8QU2PhEREfG8xESIjoY2baBHD/NrdLR53Km//4Zu3aB7dzh5kn+qNqDhpQ08k/wc1nTzcElJ0LVrNu/jibGI13k1vJ49e5b69eszffr0bM/76KOP+OmnnwgPDy+gkYmIiEh+SEw0A2b6PqeQTfBMTITatc0GqcWKYRv1Ig0v/sw26mV6b/u2sHFx5myqx8cihYJXw2vHjh0ZP348d999d5bnJCUlMWjQIBYuXEhAQEABjk5EREQ8yWo1G/TbQ2Z6mYLnyZPQsyfcc48581qnDqxbx6pbRrM/Kes8YBhw4IBZBuCxsUihUqhrXm02Gw8++CBPPfUUtWvXduk1KSkppKSkpD1OTk4GIDU1ldTU1HwZZ3r2axTEtSR/6B76Pt1D36b75/uyuodr1sCJE2Yr1qwcPw47X/6cutMex3LkCIafH7annsI2ciQEBXF4SWq2r7c7fBiy+yfk6lhWrYIWLXK+XlFT0L+H7lzHYhjO/puj4FksFj766CO6dOmSdmzSpEmsWLGCr7/+GovFQnR0NHFxccTFxWX5PqNHj2bMmDGZji9atIjixYvnw8hFRETEE4qdOUPdefOosmIFAP9GRrJp8GD+UfurIu/cuXP06NGD06dPExoamu25hXbmdePGjUydOpVNmzZhsVhcft2zzz7LsGHD0h4nJycTFRXFrbfemuMPwxNSU1NZtmwZ7du3V5mDj9I99H26h75N9883ffopjBhh1ouGhKTy9tvLeP759owdG0CnTuY5a9bAHXc4f31769fMuDiCCJIwLBZsQ4cSPHo0zYKDHc6zWqFuXTh0yPlH/hYLRETAtm3ZdwzIbizpff75lTvzWpC/h/ZPyl1RaMPr6tWrOXbsGFWqVEk7ZrVaefLJJ4mPj2f//v1OXxcUFERQUFCm4wEBAQX6P4IFfT3xPN1D36d76Nt0/3yHfeFTxjC5b18AXbsGsGSJ2b6qVSsoV84MuPZzS/IvU3iSR5lrvqbYtVRZnoB/q+ZOe7YGBMDLL5vXA8dr2ue6XnoJMmTeTJyNJT2LxWy91arVld02q6B+D925RqHdYevBBx9k27ZtbNmyJe1PeHg4Tz31FF9//bW3hyciIiK4t/DJ39/swwpmOGzDd2ynblpwfYPBbPu/rfi3ap7tNWNjzeYDERGOxyMjSQvKOck4lvTsj+Pjr+zgWlh5deb1zJkz7N27N+3xvn372LJlC2XLlqVKlSqUK1fO4fyAgAAqV67M9ddfX9BDFRERESdWr87caiq99Kv/Y2LMYPnRO2c41f8Zep81W2XuI5oRFeZz/6wYOru4wUBsLHTunLfNBewheMgQx+8hMtIMru5udiAFw6vhdcOGDbRp0ybtsb1WtVevXiQkJHhpVCIiIuKqw4fdPG/1ajq/0BvO/gHAnrb9OTLsFRZ3KIW/v3u7Xfn7m4E4LzwRgqVgeTW8xsTE4E6zg6zqXEVERMQ7wsJcOy+i7HkY+pz5Wb1hQFQUzJtH9fbtqf7fOYmJzmdBc7Plqzs8EYKl4BTamlcREREp/Fq2NANmVo2BLBa4q+JPtBzcwPws3jCgXz/Yvh3at087T7tdiasUXkVERCTXslv4FMwFXjJGsPR4cyy//Qbh4fDFF/DWW1C6dNp52u1K3KHwKiIiInnibPX/VXv3ss56E08zGYvNBg89BDt2QMeOmV7vzqIvkULb51VERER8h33h05rvLlJuxmhqPf0yfjYbVKoEs2ebT2bB7UVfckVTeBURERGP8N++hdbDe5nbWwG2bt3wmzHD3A0gG64u+nL1PCnaVDYgIiIieZOaCuPGQePGsG0bRvny/Pz001j/978cgyu4tugrKso8T0ThVURERHJvxw5o2hReeAEuXYLYWC5t2cLhZs1cfgvtdiXuUHgVERER9126BC+9BDfeCBs3QpkysGiRuXKrYkW3384TW77KlUE1ryIiIuIW685fOXtvb0J/WQeAccedWObOyXNRqna7Eldo5lVERERcY7WyrfdrpNZpSOgv6/iH0vQigSpbPiFxrWdWU9l3u+re3fyq4CoZKbyKiIhIzvbu5XjdGOoteJJgLvAVHajDDv6PXiQdsmgXLCkwCq8iIiKSNZsN3nwTo359yv+yhmRK8TBz6ciXJBEJaBcsKVgKryIiIuLcvn3Qti0MGoTl3DmWcwt12c48HgYc2wJoFywpKAqvIiIi4sgwzF2x6tWDlSuheHHW95lOe5bxF1dn+1LtgiX5Td0GREREBKvVnDU9veMALRc8TNkN35hPtGwJ8+dz9sA1GPNzfh/tgiX5TeFVRETkCmIPqelbUX38MQwZbNAuKYF44ihNMhcIZnefSdR/azD4+dEy2uy5mpR0ucY1PYvFfL5lS7NMNqdrqouA5JbCq4iIyBUiMRGGDIGDBy8fK1cOAk8cYg6PciefA7CWm+lDAr8lXM+SO83+q/ZdsLp2NYNq+gCbcRes9OHV2TUjI8330sYDkhuqeRUREfFxVqtZmrp4sfnV2Yr/xEQzeKYPkWBw24n/sZPa3MnnpBDI07xMC9awm+sBxw4C7u6C9emnzq5pzt6qtZbklmZeRUREfJgrM5tWq3lO+tnSihxlFo9xN0sB2MCN9GIBu6iddk76DgIxMeYxd3bBGjHCeYmBYZiztXFx5nuphEDcofAqIiLio+yzqRkDon1m0z4bunq1Y7i9l/eZwQDKc4KLBDCWF3iZEVwiwOl1li/PHFTtYTY7SUlZP+csGIu4QuFVRETEBzmbTbWzz2wOGQKlS8PSpebxchxnOgO5j/cB2EJ9erGAbdTP9lrjx1/+u6frVdVaS9yl8CoiIuKDMs6mZmQY5vPt2pmPO7OU2fSnEse4hD8TeJ4JPE8qgW5dN+Osbl6ptZa4Swu2REREfJCrM5ZlOMk7PMBS7qYSx9hBbW5iHaMZ43ZwBfe2go2IuNyJICOLBaKizDIEEXcovIqIiHiRK50CnHFlxvJ2PmcHdXiAhVjxYxLPcCMb2cSNaefYw2W5cq6P2dWtYF9+2fEaGa9pb60l4g6FVxERES9JTIToaGjTBnr0ML9GR2fdQip90LVazfpTZzOboZxmHn35nDsJ5zC/cj3N+YHnmMRFghzOjYyEDz+Eo0dhxQpYtAhGjnRt/DnN/nbq5F5rLRFXqOZVRETEC1ztFJD+fGcbDNgXZ9nfpz3fMI9+RHEQGxZeZygjGc8FQhyu88QTcM89jm2u7Kv+V650XKSVFVdmf91prSXiCoVXERGRAuZKp4D0PVCzCronT5pfy5aFlBP/8gpP8RizAdjLNfQmgR9o4XQM99yTdYuqli1d3wrWFa621hJxhcoGRERECpgrnQIOHIDRo80eqzkF3VssKzhWuV5acH275CAasNVpcHVloZR9K1j7+RlfD6pXFe9ReBURESlgrnYKGD/ebHWVVdAtzlmmGoN4//gthBzZbxbMrljBVQve4JylRJ6Cp7tbwYoUFJUNiIiIFDBP9DZtzhoS6M21/A7AnraPUf2jyVCqFLGYAdPZtrHx8a4HT9WrSmGk8CoiIlLAcqopzU4w5xnPSIbyOn4YHCCSfszjuZG3Ur3U5fM8FTxVryqFjcKriIhIAbBaHYPk669Dt26OnQJy0oR1LKAXNdgNwDz68iSvERpV2mkNq4KnFEUKryIiIvnMWZuryEgYPtzs2Zrd4i2AQFIYzWieZjL+2DhEGI8wly8tdwDwdrw+ypcrh8KriIhIPsqun+urr8J770GFCmZXAWe9VW9gIwvoRR12AvAODzCYN/iHMkS5WcMqUhQovIqIiOQTV/q5Pvkk7Ntn1qMmJFyugw3gIiMZz3NMpBhWjlKR58vNpvt7XZhxTIun5Mql8CoiIvKfjHWpeQ2HrvZzXb3arE2dOtWcpa3PVhLoRQO2AvAe3XiC6cyeU562bXM/HpGiQH1eRUREMD/ej46GNm2gRw/za3S0eTy3XO3naj8vtlMqO+4bx3oa0YCtHKcc3XiPp6LeY/aH5VUeIIJmXkVERLKtS+3aNfdN+V3t5xoWBuzcCb16UWvjRgD+btGFNT1nMaBGJRarPEAkjWZeRUTkipZTXSpAXJx5nrvs/Vwz7nRlZ7HA1ZFWWq19GW64ATZuhDJl4H//o8KqRO5+rBIxMQquIukpvIqIyBXNnbpUd/n7m3WskDnAWixwnbGbjcVb4PfcM3DxItxxB+zYAT17Zp14Ra5wCq8iInJFc7cu1V2xsWbZQUTE5WN+WHmx9OvsDGxAud9+gtBQePtt+PRTCA/P3YVErhCqeRURkSuaW3WpuZR+q9Z/t/xOy7d7c9X2NeaTt94Kb70FUVG5v4DIFUThVURErmj2ulR7f9WMLBbzeWfbr7rD32IjZudMeP5pOHcOSpaEKVPgkUdUIiDiBpUNiIjIFS2nulQwM+bq1eZWritX5mLx1v790L49PPGEGVzbtIHt2+HRRxVcRdykmVcREfE5nt5MwF6XOmSI4+KtyEi4/34YNizz8alTXWifZRgwd665jdaZM1C8OLz8MgwYAH6aPxLJDYVXERHxKYmJzkOmS2EyG+nrUu2h+Phx6NYtl/1fDxyAhx+Gb74xH7doAfPnw7XX5n6QIuLdsoFVq1bRqVMnwsPDsVgsLF26NO251NRURowYQd26dSlRogTh4eE89NBDHDp0yHsDFhERr7JvJpCxtZU9TOZlNywwZ29jYqB7d3M2d+jQXPR/NQxISIA6dczgGhwMr71m1hsouIrkmVfD69mzZ6lfvz7Tp0/P9Ny5c+fYtGkTo0aNYtOmTSQmJrJ7927uuusuL4xURES8LT83E3AmV/1fDx+Gu+6CPn0gORluugm2bDFTsHYaEPEIr5YNdOzYkY4dOzp9rnTp0ixbtszh2JtvvkmTJk3466+/qFKlSkEMUURECgl3wmRMTN6v51b/V8MwV3M98QScOgWBgTB2rFnrWkwVeiKe5FO/UadPn8ZisXDVVVdleU5KSgopKSlpj5OTkwGzDCE1NTW/h5h2jYK4luQP3UPfp3vo27K6f4cPQ0hIzq8/fBg8cesrV3btelFBx7DdPRC/jz8GwHbDDVjnzYPatc1QewX+O9TvoO8r6HvoznUshuHsA5iCZ7FY+Oijj+jSpYvT5y9cuEDz5s2pUaMGCxcuzPJ9Ro8ezZgxYzIdX7RoEcWLF/fUcEVERAj/4QfqzZ5NUHIytmLF2N2tG3tiYzE02yrilnPnztGjRw9Onz5NaGhotuf6RHhNTU3lnnvu4eDBg6xcuTLbb8rZzGtUVBTHjx/P8YfhCampqSxbtoz27dsTEBCQ79cTz9M99H26h74tq/tntULdunDoUNabCUREwLZtnisv/fRTePBB8+/pr1me40y5OIR7rR8AsM1Sl0cC3+ZkVH1efhk6dfLM9X2Vfgd9X0Hfw+TkZMqXL+9SeC30/2mYmppKt27d+PPPP/nuu+9y/IaCgoIICgrKdDwgIKBAf4EK+nriebqHvk/30LdlvH8BAWaL1K5dzcfpw6S9z/9LL5mL+z3F3gYrfWuuu/iYuZZHqWgc4xL+TOQ5xhsjSU0JxPK7Cy20riD6HfR9BXUP3blGoe6QbA+ue/bs4dtvv6VcuXLeHpKIiHiRfTOBiAjH45GR7gdGq9XsXpXTrlmxseYGWas/OcUfLR7iY7pQ0TjGTmpxMz/xImNJJRDIn64HIuLIqzOvZ86cYe/evWmP9+3bx5YtWyhbtixhYWF07dqVTZs28dlnn2G1Wjly5AgAZcuWJTAw0FvDFhERL3K2mYC7O2y5u9GB/zdf0uKxh+HQIQw/P162PcVoRpNC5mleT3c9EBFHXg2vGzZsoE2bNmmPhw0bBkCvXr0YPXo0n3zyCQANGjRweN2KFSuI0f8iiIhcseybCeSGfaMDl3bNOn3abHc1b575+LrrWNZzAc++eHOO13G11ZaIuMer4TUmJobs1osVkrVkIiJSROS00YHFYn7k37kz+K/4Fvr2NadRLRZzo4Hx4wlc50L/LMwZYRHxvEJd8yoiIuJJrmx0cPLAGY7EPg7t25vB9Zpr4PvvYcoUCAmhZUuzxMC+SCwjiwWiosxSBhHxPIVXERG5YuT0UX5rVrKdukR8Mss88MQTsHWrQxL19zdrYyFzgLU/jo/XbrAi+UXhVURErhhZfZRfnLNMZTAraUNV9nOh0tWwfDlMmwYlSmQ635NdD0TEPYW+z6uIiIin2D/yT0q6XPfajB9IoDfVMbvfLCzxKPf/+ipcVSrb9/JE1wMRcZ9mXkVE5IqR/iP/EM7zCsNZTUuqs5eDRHAbXxHyf7PxzyG4pn+/mBjo3t38quAqkv8UXkVE5IoSGwvLJ/3M1mI3MJwp+GEwn97cFrGDRz/soI/8RQo5lQ2IiMiVIyUFxoyhzcsvg81GStnK/NRnDlXv7MRWfeQv4hMUXkVE5MqwaRP06gU7dpiPe/Yk6I03aF22rHfHJSJuUdmAiIgUbRcvwosvQpMmZnCtUMHcZut//wMFVxGfo5lXEREpurZtM2dbt2wxH997L0yfbgZYEfFJmnkVEZGi59IlmDABGjUyg2u5cvDee/D++wquIj5OM68iIlK07NplzrZu2GA+7tIFZs2CSpW8OiwR8QzNvIqISNFgtcLkydCwoRlcr7rKrGtNTFRwFSlCNPMqIiK+77ffoHdvWLvWfNyxI8ydm3n/1gJgtWrXLZH8pJlXERHxXTYbxMdD/fpmcC1VCubNg88/90pwTUyE6Gho0wZ69DC/Rkebx0XEMzTzKiIivun336FPH3OaE6BdOzO4VqnicFpBzYQmJkLXrmAYjseTkszjS5ag3btEPEAzryIi4ltsNpgxw5xtXb0aSpQwF2R9802m4FpQM6FWKwwZkjm4wuVjcXHmeSKSNwqvIiLiO/78E269FQYOhLNnISYGtm+H/v3BYnE41T4TevCg41vYZ0I9GWBXr858nfQMAw4cuDxJLCK5p/AqIiKFn2HAW29B3bqwfDmEhMAbb5h/r1oVMGc1V66ExYvNwwU5E3r4sGfPE5GsqeZVREQKLasVfk48SPT4hwnb9rV5sHlzmD8fqldPOy8x0Qyr2c1+ppd+JjQmJu/jDAvz7HkikjXNvIqISKH06ScGwyssoGa3OoRt+5oLBDG29BQSh3yfKbg6Kw9whadmQlu2hMjITJULaSwWiIoyzxORvFF4FRGRQifo5EmC7ovl9VO9uYrTrKMJDdjC6ORhdL3PP61eNbuFUq7w1Eyovz9MnWr+PWOAtT+Oj1e/VxFPUHgVEZHCwzAwFr3LLYMHc4f1c1II5Bkm0Zwf2E2NTPWqOS2Uykp+zITGxprtsDK2l42MVJssEU9SzauIiHid1Qo/fXKMKpMeJ2q9Oa262dKQB43/Yyd1HM5NX6+am4/983MmNDYWOnfWDlsi+UnhVUREvCoxEb5+ZAnjTz5OBY6TSjH2dr+X1h+9xb8Ximf5Ons4dFdkpBlc82sm1N/fM4vARMQ5hVcREfGazxac4GLvgczmPQC2Uo/+QW/x7H2HuLQ0INvX2mc1IyPN3q3O6l4tFvNj/IQEOHZMM6EiRYHCq4iIeIV16Sc06fsoFTnKJfyZxLOMYxTF/CzAoSxfZ7GYgdUeQqdONbsNWCyOAdZeHjB1KrRtm7/fi4gUHC3YEhGRgnXqFDz0EP53d6ai7Si7qElT1vIC40glMNuXOqtX1UIpkSuLZl5FRKTgfPklPPwwHDqEzeLHK8ZwXmQMKQS79PKs6lW1UErkyqHwKiIi+S85GYYNg3nzzIeVq/PlfQt4ZmrTHF/6+utQqVLOgVQLpUSuDAqvIiKSv779Fvr2hQMHsGFhKkN4/sgEzk8tjr+/2SbLGXsv1kGDNIMqIpcpvIqISP44cwaefhpmzgTgd6rRh/msplXaKVkFVzvtSiUiGWnBloiIeN7330O9emnBdUGJAdRnq0NwTc9ZQH3nHS22EpHMNPMqIiKec+4cPPssvPGG+bhKFbYMfpvew7PvVWW1Xq5trVzZLJHt1KkAxisiPkczryIi4hk//AANGlwOro88Atu380u4a01WK1WC7t2hRYv8G6KI+D6FVxERyZvz52H4cLMVwJ49ZsPVr76COXMgNNTlLVxzs9WriFx5FF5FRCT3fv4Z44YbYMoUMAyOdOiFdesO6NAh7RT7Fq72DQYysncVaNmygMYsIj5N4VVERNyXkgLPP4/RtCmWX3/lMJW5i48J+zqB6AZXkZh4+VT7Fq6QOcA62zFLRCQ7Cq8iIlcAqxVWroTFi82vObWoytamTdCoEUyciMVmYxHdqcMOPuUuAJKSoGtXHAKstnAVEU9RtwERkSIuMRGGDIGDBy8fi4w0Z0PdCo2pqTBhgvnn0iWO+1Wgv20midzjcJphmDOqcXHmlq32GVVt4SoinqDwKiJShCUmmrOghuF43D476vKs5/bt0KsXbN4MwN+t7qH2qhn8TUWnpxsGHDhgBtX0W7ZqC1cRySuVDYiIFFFWqznjmjG4wuVjcXE5lBBcugQTJ8KNN5rBtWxZWLyYb/t/kGVwTe/w4VwNXUQkS5p5FREpYqxWc8Zz+XLHUoGMspodTfPLL+Zs6/r15uO77oLZs6FyZcJWujYWtb8SEU9TeBURKUKc1bfmJNPsqH27q5Ejza4CpUvDtGnwwANp7QHs7a+SkpzP7Fos5vNqfyUinqayARGRIsJe3+pOcIUMs6N79kCrVvDUU2Zw7dgRdu6EBx906HOl9lci4i0KryIihZwrba6yq2/NisPmADabmUbr14cff4RSpeCtt+DzzzP3t/qP2l+JiDd4NbyuWrWKTp06ER4ejsViYenSpQ7PG4bBCy+8QFhYGCEhIbRr1449e/Z4Z7AiIl6QmAjR0dCmDfToYX6NjjaPpw+106a5N+PqMDv65x/mG8fFmVu9tmsHO3ZAv35Zb4v1n9hY2L8fVqyARYvMr/v2KbiKSP7xas3r2bNnqV+/Pn379iXWyf/STZ48mTfeeIMFCxZQtWpVRo0aRYcOHdi1axfBwcFeGLGISMHJrs3VPfdAuXJw4kTu3jsyEuJfsxF7dDbUewrOnoUSJeDVV6F/f6eh1b4QLGOPVrW/EpGC5NXw2rFjRzp27Oj0OcMwiI+PZ+TIkXTu3BmA//u//6NSpUosXbqU+++/vyCHKiJSoFxpc5Wb4DpyJLRtCy2v/gv/R/qaLQnArHOdPx+qVXP6Oo9tdCAikkeFttvAvn37OHLkCO3atUs7Vrp0aW666SbWrl2bZXhNSUkhJSUl7XFycjIAqamppKam5u+g/7tO+q/ie3QPfV9RuIdr1pjhNCTEM+9nsZi1qc8/Z1DsnQT87hoO//6LERKCbcIEbAMGgJ+fuYtWBp9+aq7XMgzH8Zw8aR4H6NTJM+OEonH/rnS6h76voO+hO9exGIY75f35x2Kx8NFHH9GlSxcAfvzxR5o3b86hQ4cIS7cUtlu3blgsFt577z2n7zN69GjGjBmT6fiiRYsoXrx4voxdRMQXBJ84QYPp06m0aRMAJ2rUYPPgwZwND/fyyETkSnfu3Dl69OjB6dOnCQ0NzfbcQjvzmlvPPvssw4YNS3ucnJxMVFQUt956a44/DE9ITU1l2bJltG/fnoCAgHy/nnie7qHvKwr3cM0auOMOz7xXZITBoo7/48b/G4bl9GmMoCBsY8cSOngwrbPoZWW1wtq15oKwV17J+Rqffw4tWjh/jyNHoHJlaNrUtdZZReH+Xel0D31fQd9D+yflrii04bVy5coAHD161GHm9ejRozRo0CDL1wUFBREUFJTpeEBAQIH+AhX09cTzdA99ny/fw1atzAVZWW0CkJPXX4dKleDqoCM0TeiPZdon5hNNmmBZsAD/GjXIKkfmZqODI0cg/Y/aEzWyvnz/xKR76PsK6h66c41C2+e1atWqVK5cmeX2xQSYqXzdunU0bdrUiyMTEcl/2W0CkB1779ZBTxh0t7xLs0dqY/n0EwgMhEmT4IcfoEaNLF/viY0OsnqPpCTzeGKie+8tIpKeV2dez5w5w969e9Me79u3jy1btlC2bFmqVKlCXFwc48ePp3r16mmtssLDw9PqYkVEijL7JgAZZzDtLbIsFsdZWXvInTHmb/zvfxw+/NA80LAh/N//QZ06ma6Rvv1VxYq52+gg/TawOXVJsFjMdrKdO2v3LRHJHa+G1w0bNtCmTZu0x/Za1V69epGQkMDTTz/N2bNnefTRR/nnn39o0aIFX331lXq8isgVIzbWDHoZ+6t+/LHzj+Xfv+9Dbh7xOPz9NxQrBqNGwbPPOn6m/5/clAek52wb2NWrs38/w4ADB8zz1BtWRHLD5fB66NAhwj28IjUmJobsmh1YLBbGjh3L2LFjPXpdERFf4mwTgIyhNqr4CZq9Owi/VxebJ9StCwsWmLOuTmS1AYI7IiPN4Jq+hvXwYdde6+p5IiIZuVzzWrt2bRYtWpSfYxERETfYQ233kp/S4rE6+L272OzV+txzsH59lsE1u4/2XTFyZNbbwKavfc2Oq+eJiGTkcnidMGEC/fv359577+XkyZP5OSYREXHFP/9A795w113mcv8aNczeVBMmgJOuK3Y5fbSfFftisNGjzdDsrGa1ZUtzRjarRWb297DXyIqIuMvl8DpgwAC2bdvGiRMnqFWrFp9++ml+jktERLLz1VfmAqwFC8xEOHw4bN4MTZrk+NLcfGTvrL7Vmey6JLj6HiIi2XFrwVbVqlX57rvvePPNN4mNjaVmzZoUK+b4Fpv+27lFRETyQXKyGVTnzjUfV68OCQnQrJnLb5Gbj+yd1bdmJasuCe68h4hIVtzuNvDnn3+SmJhImTJl6Ny5c6bwKiIi+WT5cujbF/76y3w8ZAhMnAhubn1t/2g/qw0QLBaIiDAz8bFjlzscuDNbmlWXBM24ikheuZU8586dy5NPPkm7du3YuXMnFSpUyK9xiYiI3ZkzMGIEzJhhPq5aFebPh9atc/V29o/2u3bNulfs1KnQtm3ehu2sS4KISF65XPN62223MWLECN58800SExMVXEVECsKqVVC//uXgOmAAbNuW6+BqZ/9oPyLC8XhkpHlcH+2LSGHl8syr1Wpl27ZtREZG5ud4RER8UvqdqjzyEfm5c2bLqzfeMKdGq1SBefOgXTuPjVkf7YuIL3I5vC5btiw/xyEi4rOc7VQVGWl+9J6rGcwffzRbYO3ZYz5++GGYMgVCQz0xXAf6aF9EfI1WW4mI5EFWO1UlJZnH33sPKlRwcWbzwgV44QUzqNpsEB4Ob70FHTvm+/chIuIrFF5FRHIpu52q7Me6dzfPs8tyRnb9eujVC375xXz80ENmX6kyZfJj6CIiPsvlBVsiIuLIlZ2q0gdXuDwjm5j434GUFHj+eWja1AyulSrBxx+bmw8ouIqIZKKZVxGRXMrNTlWGYbajiouDzlU249+3F2zfbj55//3w5ptQrpxHxykiUpQovIqIuMneWWDXrty93t9Ipc+BiVhuHg/WS1C+PMycaU7JiohIthReRUTc4KyzgDvqsJ0F9OIGNoMVs/h15kyoWNGj4xQRKapU8yoi4iJ7Z4HcBFd/LvEMk9jIjdzAZk5Shl0jF5k7Aii4ioi4TOFVRMQF2XUWcCZ9O6zr+ZUfaM4kniOQVD6hE7eG7+T60d0v78cqIiIuUXgVEXGBK50FAEaOhBUr4N13wR8rTzKFLTTgJn7mH0rTiwV04WOemxamnaxERHJBNa8iIi5wtbNArVr/7Vi1Zw9HavSh/K8/APAlt/EIc/GLimRJfC533hIREYVXERFXhIW5eF4lG0ybDiNGUP78eYxSpdjd/3X+adiX/4Vbst9hS0REcqTwKiLigpYtzd2xkpKc171aLNC08j5aj+0L3680D7Zti2XePGpcfTU1CnS0IiJFl2peRUSyYLXCypWweLFZ8/r66+bxjGusLBj0N2bx/am6WL5fCSVKwIwZsGwZXH11QQ9bRKRI08yriIgTzvq5RkbC8OFmmLUfj+QAC4P60SplGVwAWrWC+fOhWjWvjFtEpKhTeBURycDezzVjeUBSErz6Krz3HlQobxDy7nxuXDiUYmeTISQEJk2CQYPATx9qiYjkF4VXEZF0suvnahhmycDkuEP8XP8RLF9+YT7RtCkkJMB11xXoWEVErkQKryLi06xWsx718GGzI0DLlnl7v+z7uRr0MBYy7dAgLIf+gaAgGDcOhg1TCwERkQKi8CoiPiurutSpU3OfJbPq51qRo8ymP134GIAT1RpT7tMEs7GriIgUGBVmiYjPSL/6f+xYsy414yxpUhI8+GDur+Gsn2s33mMntenCx1wkgOeYwI45Pyq4ioh4gWZeRcQnOJtldSZ9rarVCgEB7l0nfT/XcsbfTGcg3fgAgM00oDcLOBVVj3Ex7r2vK5yVQKgaQUTEkWZeRaTQs6/+zym42tkD7Nq17l/L398sO7jbSGQntenGB6RSjNG8yE38zHZLPeLjPR8qExMhOhratIEePcyv0dHmcRERuUzhVUQKtexW/+fkyJFcXPDkSWI/7MmH3ENF/mY7dbiJdYxhNJWjAliyBGJjc/G+2cgqnCclmccVYEVELlPZgIgUatmv/s9e5cqZj2X70fxnn8Ejj5ip188P21MjOHnLizx1IsjjH+Pbx5GUBEOHZt+aKy4OOndWCYGICCi8ikghlD5g7trl/uvt27c2bep4PKvuBDMm/kOn74aavVoBatSABQvwa9KE1rn6DrLnav0umAH2wAHz5xETkw+DERHxMQqvIuJReV105E6wc8YeXMHxulntmlXn4Fc0fOhhIMl88bBhZu/WkJDcDSAHWY0jJ1m18BIRudIovIqIx2TXd9WVOtHcBrv0IiMhPt7xmLO62VIk8yrDeZS5AOwrdi1Vlifg36p57i+eg7zU7zpr4SUiciXSgi0R8Yi8LjrKTbCzz7KOGQOLFsGKFbBvH3Tq5HhexrrZNnzHduqmBdepDKbOpS2stuVfcHU2DldYLBAVlfedw0REigrNvIpInmUXPO3HHnsMzp+HiAjnpQS5CXb2WdaMs7o2m+Nj+0fuJTjDSzzDE0wHYB/R9GE+3xPjcF5+cff97eE8P1pziYj4KoVXEckzV4Ln33/DAw+Yf3dWSuBqsBs50tzYyp162rAwaMFqEujNNfwBwEwe4yle4SwlHc7LT+6+f1bhXETkSqbwKiJ55u6Mor2UIH3PVFeDXdu2bq66P3+eVh89x/dMxQ+Dv4iiH/P4lvZpp1gsZlDM74/m0+/elVV5RIUK8PrrWc9Qi4hc6VTzKiJ55u6Moj24xcWZJQdwOdil7xaQXm5qPy3r1kGDBvi9EY8fBvPoRz22ZwquUDAfzdt370p/3fTjsFhg1izo2dMM6AquIiKZKbyKSJ7lFDydSd+/FHIOduBGwLxwgVoLFuDfujX89huEh8MXX1Dmw7coFVna4dTISHjvPShbFhYvhpUrLwfq/BAba844R0Q4Ho+MJF927xIRKWpUNiAieWYPnl27mkHTnY4B6UsO7MHOWbstl2s/N2yg2EMPUf2XX8zHDz5oDq5MGWIxd6pK34f2+HFzh6vctvfKjdjYzONQiYCIiGsUXkXEI7IKnjnJWHKQ62B38aK5ucCkSVisVi5cdRXF3nqLYvfc43Cav//lmtnEROjWLXPYdlaT62npxyEiIq5TeBURj0kfPJOSzBnN48edz8Rmt0jK7WC3ZQv06gXbtgFgu/deVnTqRLu77sryJTm197JYzJrczp01IyoiUpio5lVEPMoePHv2NBcfgQdqWLOSmmrOtjZubAbXcuXg/fexLlzIxdDQbF+aU3uvjDW5IiJSOCi8iki+ydfFSTt2QNOm8MILcOkS3H037NwJ996bdsqaNVkvwnK1vVd+b1wgIiLuKdTh1Wq1MmrUKKpWrUpISAjXXHMN48aNw8jLxuciUqBiY2H/fnPr1vRbuOY6uF66BC+9BDfeCBs3QpkysHAhfPghVKoEwKefmqfecQf06AFt2kB0tOMWta6298rvjQtERMQ9hbrm9eWXX2bmzJksWLCA2rVrs2HDBvr06UPp0qUZPHiwt4cnIi7y2OKk3bvN2tZ168zHd94Jc+Y4JMzERLPBwKJFji/NuAgrpw0DCmrjAhERcU+hDq8//vgjnTt35o477gAgOjqaxYsX8/PPP2f5mpSUFFJSUtIeJycnA5Camkpqamr+Dvi/66T/Kr5H97AQslrxmzYNvxdewHLhAkbp0linTMF48EEzZf53r6xWGDECgoPNxyEhjvfQYoFnnoHbb7/c3uvBB83n0gfY9DW5Npv5RwqOfgd9n+6h7yvoe+jOdSxGIf4MfuLEicyZM4dvvvmG6667jq1bt3Lrrbfy2muv0bNnT6evGT16NGPGjMl0fNGiRRQvXjy/hywiHlbi8GEavvEG5f7r23q0YUO2DBjAhQoVvDwyERHxlHPnztGjRw9Onz5NaA4Lbgt1eLXZbDz33HNMnjwZf39/rFYrEyZM4Nlnn83yNc5mXqOiojh+/HiOPwxPSE1NZdmyZbRv356AgIB8v554nu5hIWGz4TdrFn7PPYfl3DmMkiWxvvIKRt++WW7ltWQJ9Otnzri+/fYy+vZtz/nzme/hvHlmCYGd1Qpr18KRI1C5srkOTO2xvEe/g75P99D3FfQ9TE5Opnz58i6F10JdNvD++++zcOFCFi1aRO3atdmyZQtxcXGEh4fTq1cvp68JCgoiKCgo0/GAgIAC/QUq6OuJ5+keetH+/dC3r7m6C+CWW7C8/TbFrr4625eFhcH585cfnz8f4DS8hoVB+lsbEGAu6pLCRb+Dvk/30PcV1D105xqFOrw+9dRTPPPMM9x///0A1K1blz///JNJkyZlGV5FxIcZBsydC08+CWfOQPHi8Mor8Nhj4JdzcxT7IqyTJ50/r0VYIiK+r1C3yjp37hx+Gf4Py9/fH5tWT4gUGKvV7JOaVb9UjzlwADp0gP79zeDasqW58cCAAS4FV7i8CMsZj22MICIiXlWoZ147derEhAkTqFKlCrVr12bz5s289tpr9O3b19tDE7kiJCaaW6im34kqMtIMiHnaYCA9w4CEBHMv1uRkCA6GSZNg8GCXQ2t6WY0rMtIMrh4bt4iIeEWhDq/Tpk1j1KhRDBgwgGPHjhEeHk7//v154YUXvD00kSIvMdFc1JRxSWfGfql5cuiQOdP62Wfm45tvNoPs9dfn6W07dYIvvoDPPzcXYYWFmRO5mnEVEfF9hTq8lipVivj4eOLj4709FJEritVqzrg660ViGOZH8HFx0LlzLgOhYZi7CAwaBKdOQWAgjBtn1rp6MGG2aOG4MEtERHxfoa55FRHvWL3asVQgI8MwS1RXr87Fmx89CvfcAw88YAbXG2+ETZvg6ac1NSoiIjkq1DOvIuIdhw+7dt7y5ea5Ln8s//775gKsEyfMKdEXXjC3xNL0qIiIuEjhVUQyCQtz7bzx4y//PduFXMePw8CBZngFqF8fFiwwv4qIiLhBZQMikom9X2oWG1k5ZV/IlZiY4YmlS6F2bTO4+vubs60//6zgKiIiuaLwKiKZpO+X6mqAtS/uiov7rxfsyZNmXevdd8OxY2aAXbcOxowxF2iJiIjkgsKriDgVG2u2w4qIcP019oVcOyd/DnXqwMKFZq/WZ56BjRvNxVkiIiJ5oJpXEclSbKzZDmv1anNh1q5djnWuGYVymtcZSr3n5psHrr/e7Nt6880FMl4RESn6NPMqItny94eYGOjeHdq2zfq89nzDDurQl/kYFgsMGwabNyu4ioiIRym8iojLnC3kKsm/zKI/39CBKA6yv9g12FasgilTICTEe4MVEZEiSeFVRFyWcSFXG75jO3XpzxwApjGIrQu24t+6hRdHKSIiRZnCq4i4JTYWPvrfWeYVH8R3tCWaP9lHNPdV+I6ID9+gc48S3h6iiIgUYVqwJSLuWbOGzi/0hrO/A7CnbX+ODHuFRR1KaXdXERHJdwqvIuKa8+dh5Eh4/XWzJ1ZkJMybR/Vbb6W6t8cmIiJXDIVXEcnZunXQqxfs3m0+7tPHDLGlS3t3XCIicsVReBW5Almtl3u3hoWZXQScfuSfkgKjR8PkyWCzmSfPmQN33lnQQxYREQEUXkWKNGch9eOPYcgQOHjw8nmRkWYXgdjYdC/euNGcbd2503z8wAPmSWXLFuj3ICIikp7Cq0gRlZiYOaSWKwcnTmQ+NykJunY1t4ONvfOiuY3WxIlm+q1YEWbNgrvvLrjBi4iIZEHhVaQISkw0w6hhOB53FlzBPM9igVmPb6X9070o9ftWAGxd78VvxnSoUCGfRywiIuIa9XkVKWKsVnPGNWNwzU4xUnneGMfnxxpR6vetHKcc3XiPq396n8TVCq4iIlJ4KLyKFDGrVzuWCuSkFjtZS1PG8QIBXGIpnanDDj6gW1o5QWJi/o1XRETEHQqvIkXM4cOuneeHlad5mU3cQCM2coqreIB3uJuPOEpl4PLsbVycOaPraVYrrFwJixebX/PjGiIiUrQovIoUMWFhOZ9zHbtZQwte5hmCuMjn3E5tdrKQBwCLw7mGAQcOmDO6npSYCNHR0KYN9Ohhfo2O1iyviIhkT+FVpIhp2dJsfWWxZH7Ogo04XmcLDWjKT5wmlD68zZ18xmHCs31fV2d0XWFfUJaxvEFlCiIikhOFV5Eixt/fbMcKjgG2Gr+zkhheZxghXOBrbqUOO0igDxlnW51xZUbXFdktKMvvMgUREfF9Cq8iRVBsrNmzNSLCnG0dwHS2UY9WrCY1uCS2mbMJ+u4rJi+K4ttvs56pBfN4VJQ5o+sJOS0oy68yBRERKRrU51WkALm8LasHxMZC5/r7Sb63H2U2fweAEdOGgPlvQ3Q0MenOnTrV/LjeYnGcEbUH2vh4z43T1fIDT5YpiIhI0aGZV5ECkt0CJY+vujcMmDMH/wZ1zeBavDhMm4Zl+bfmRTNIP1ObXmTkf7tuxWZ6Sa65Wn7gqTIFEREpWjTzKlIAstrxKikJ7rkn87atkZHmbGiuQuPBg/Dww/D11+bjFi1g/ny49tpsXxYbC5075//MsH1BWVKS87pXi8V83lNlCiIiUrRo5lUkn7myQCnjtq25WnVvGJCQAHXqmME1OBimTDGncnMIrnb+/hATA927m1/zo6QhqwVl6R97skxBRESKFoVXkXzm7o5XkP2qe6clBocPw113QZ8+cPo03HQTbN4Mw4YVyhRYkGUKIiJStKhsQCSf5XbhUfpV9zEx5rHERHMW93IYNnii7GKmXHyCwDOnIDAQxoyB4cOhWOH+9S6oMgURESlaCvf/u4kUAXldeGQPvxnrZitwjJk8zj0nzdqCU9VuoMzHC8yyAR9hL1MQERFxlcoGRPJZdjteuWLXLli+3LFu9h6WsJPa3EMiqRTjBcZy48WfsNb0neAqIiKSGwqvIvksuwVKrhg/Htq1M0sFynKCxdzPEu6lAsfZSj0as55xjGLfwQA19hcRkSJP4VWkAGS1QKlcOfOrK6H2Lj5mJ7W5n/e4hD/jGElj1rOVBmnnqLG/iIgUdQqvIgUkNhb274cVK2DRIvPr0aPw4YeZQ216V3GKBTzEx3ShMkfZSS1u5ideYBypBDqcq8b+IiJS1GnBlkgBcrZAKf2q++XLzTIBu458wVweIYJDWPHjFZ5iNKNJIdjhPdTYX0RErhQKryKFgD3U2j/2D+U0rzGMfrwNwK9cT28SWMfNmV5rLzmYMkVtp0REpOhTeBUpRMLCoB3LmEc/qnAAGxbiieN5JnCBEKeviYyE++839yNIvxlCnraYFRERKaQUXkXygdWai1nQM2do9e5TxDALgL1cQx/ms4bLtQAWi1kfm5AAx46Z7338OHTrlnn7WfsWs9qxSkREihKFVxEPy7wLlguzoN9/D3364LdvHwBv8gTP8BJnKZF2ir08YOpUaNvW/LvVCtHRmYMrmMcsFnOL2c6dVUIgIiJFg7oNiHiQfRes9MEVLs+CJiZmeMG5c2bSjYmBffvg6qth+XLCP5xGmcgSDqdGRmaeRV29OvO10ku/xayIiEhRoJlXEQ+xWh13wUrP6SzoDz9A796wd6950qOPwiuvQGgosVzuQJBd6YGrfV3V/1VERIoKhVe5IuSqBtVNrs6C/vDteVotGwWvvWYejIiAefOgQweH85211crI1b6u6v8qIiJFhcKrFHm5qkHNBVdmN5uwjvp9e8OhX80DvXvD66/DVVfl6potW5rfS1KS8xlf9X8VEZGiptDXvCYlJfHAAw9Qrlw5QkJCqFu3Lhs2bPD2sMRHuF2DmgfZzW4GksJEnuVHmlH60K/myZ9+CvPn5zq4gjk7O3Wq+feMW8zaH8fHa7GWiIgUHYU6vJ46dYrmzZsTEBDAl19+ya5du5gyZQplypTx9tDEB+RUgwpmDarV6pnr2WdBM4bIhmxiA414lpfwx4atR0/YsQPuvNMj142NNRdyZdxi1tkCLxEREV9XqMsGXn75ZaKiopg/f37asapVq3pxROJL3FmJn1NtaVYy1tK+/rrZc9VigWLGRZ5nAs8zgWJYOUYF/nh6Nje/fHfuLpaN9FvMaoctEREpygp1eP3kk0/o0KED9957L99//z0REREMGDCARx55JMvXpKSkkJKSkvY4OTkZgNTUVFJTU/N9zPZrFMS1JHuHD0OI802pMp2X/na5eg8//RRGjDBLEOwiIsxj2xduY8LBftQ3tgLwZclYrG9Mo8MDFfL130bz5pf/brOZf65E+j30bbp/vk/30PcV9D105zoWw3D2oWrhEBwcDMCwYcO49957Wb9+PUOGDGHWrFn06tXL6WtGjx7NmDFjMh1ftGgRxYsXz9fxilisVqonJnL9e+/hd+kSF0uVYmv//hxq0cLbQxMRESm0zp07R48ePTh9+jShoaHZnluow2tgYCCNGjXixx9/TDs2ePBg1q9fz9q1a52+xtnMa1RUFMePH8/xh+EJqampLFu2jPbt2xMQEJDv15OsWa1Qty4cOpT1SvyICNi2zfHj9azuodUKa9ea7/fss+a2rOnVsO1i7sV+3GhsNM+/sxO2GdOhcuX8+PYkG/o99G26f75P99D3FfQ9TE5Opnz58i6F10JdNhAWFkatWrUcjtWsWZMPP/wwy9cEBQURFBSU6XhAQECB/gIV9PUks4AAePlls6sAOAZY+6Kql16C/yb4nbz+8j101m7Lzg8rw3iNcYwimBROcRWDmMbDw3oSE2XJ/AIpMPo99G26f75P99D3FdQ9dOcahbrbQPPmzdm9e7fDsd9++42rr77aSyMSX+OJlfhZtdsCqM5vrKYlr/A0waTwObdTm50s5AEOH1FwFRER8bRCPfM6dOhQmjVrxsSJE+nWrRs///wzc+bMYc6cOd4emviQvKzEz6rdlgUbg3mDSTxLCBc4TShDeZ359AHM0KpdrURERDyvUIfXxo0b89FHH/Hss88yduxYqlatSnx8PD179vT20MTHuLLVqjPO2m1V43fm04dWrAbgG9rzMG9xgCqAdrUSERHJT4U6vALceeed3OmhZu4i7kq/5asFG48xi8k8TUnOcoYSPMkU5vAo9tlW7WolIiKSvwp9eBXxJvtH/1X4k3n0ox3LAVhBDH15m/04bpoRGWkGV+1qJSIikj8UXkWy0bKFwfAy8xh1ahih/Ms5QhjBy0xnIMZ/6x0rVDB31oqI0K5WIiIi+U3hVSQrBw/i//jjvHLqawDW0JzeJPA71wKXSwRmzdJMq4iISEEp1K2yRLzCMIj67juKNWwIX38NQUFs6/UqPSO+Twuu4F67LREREfEMzbyKpHf4MP6PPMINn39uPm7SBBYsoF6NGvxhzV27LREREfEchVcRMBu5vvsuDByI36lTWIsVgxdfxP+ZZ6CY+WuS23ZbIiIi4jkKr1LoWfN7xvPYMRgwAP7bdtho2JDve/em5eOP419MvyIiIiKFiWpepVBLTIToaGjTBnr0ML9GR5vHPeLDD6F2bfNrsWIwZgyX1qzhX21BLCIiUigpvEqhlZgIXbtm3uEqKck8nqcAe+KEmYa7doXjx6FuXfj5Z3jhBQgIyNO4RUREJP8ovEqhZLXCkCFmKWpG9mNxceZ5bvvkE3O2dfFiDD9/dnR5nu+nbMBar2FehiwiIiIFQOFVCqXVqzPPuKZnGHDggHmey06dgocegs6d4ehRfitWkya2tdRdOp6YWwM9W44gIiIi+ULhVQqlw4c9ex5ffgl16sA772D4+TGZp6l3aRMbaJx2ir0cYelS8/GSJbByZS5nd0VERCRfKLxKoRQW5qHzkpPh4Yfh9tvh0CGM666jS7k1jOBlUgh2ONUwzD99+5qP+/XLhwViIiIikicKr1IotWxp7mBl34LVmQoVzNnSLGdHly83F2LNm2e+UVwcq6du5pO/m2Z77Yzv5ZEFYiIiIuIRCq9SKPn7w9Sp5t+zCrB//w0PPOBkdvTMGbNva7t28NdfUK2amXBff52kU8XdHkueF4iJiIiIxyi8SqEVG2vWnUZE5HyufXb0+3GroH59mDnTfGLAANi6FVq1AlwvR8goVwvERERExOMUXqVQi42F/fthxQr43//MUgFngo1zvG7E0fqF1vDHH1ClCnz7LUyfDiVLpp3nSjlCdlxeICYiIiL5QuFVCj1/f4iJMWdg//478/NN+ZEtNGAIZp3BoTsege3boW1bp++VUzlCdnI7cysiIiKeofAqPiPjrGcQF5jMU6yhBdexh4NE0IGv+L7nHAgNzfJ9sipH8PfP+toWC0RFmTO3IiIi4j3FvD0AEVeln/VszM8soBc1+RWA+fRmKK9zmqt41oXZ0dhYc6+C1avNUBwWZu4S261b5hlZ++P4+OwDroiIiOQ/hVcpNKxWxzDZsqVjWGzZEqpFpNAvaSwjeAl/bBymMo8yh8/oZM6ORro+O2ovR0hvyRIYMcLxWGSkGVxjY/Py3YmIiIgnKLxKoZCYCEOGOG4JGxlp1qfaQ6P/ts1s8u9FabYDsJAeDGIapyjrsdnR2FhzP4OvvzbbwzoL0SIiIuI9Cq/idYmJZpsrez9VO3v7qw/fTeXuXybC+PGUvnSJC6EVGBQwi7dOXJ4K9eTsqD2odu0KAQF5fz8RERHxHIVX8YicPvLP7nVDhmQOrmAeq8t2rn2gF6RuNg927UrwjBnMKluBnrm4noiIiPg2hVfJM1c+8s/K6tWOr7Pz5xJPM5nRjCYwNZXU0LIEzJ4O990HFgv+ZK5XFRERkaJPrbIkT+wf+WcMoPaP/NO2bM2Cs6b/NfiFH2nGRJ4nkFQ+5i4+e2kn3H9/7ncXEBERkSJB4VVyLaeP/AHi4szzspK+/ZUfVp7kVTbTkCas5x9K8yD/RxeWUqZmZY+OXURERHyTwqvkWlYf+dsZBhw4YJ6XFft2rdXZwypa8SpPEUwKX9CR2uxkoeVBoqIs2hxAREREANW8ShZcWYDl7CN/Z7I7z99i47P206g+/1mKc55kSjGU13mbvlj+KxHQ5gAiIiJip/Aqmbi6ACvMhZ2ssj3vjz+gTx/qr1oFwKqgdjyQMo8DVEm7pjYHEBERkfQUXsVBTj1Xlyy5HCbtH/knJTmve7VYzOczfeRvs8Hs2fDUU3D2LJQoAa++SvOH+/N/ayx5an+V25ZdIiIi4hsUXiVNTguwLBZzAVbnzmYg9Pc3Z2O7djWfS/+6LHe8+vNP6NcPli83H7duDW+/DdWq5bn9VV5adomIiIhv0IItSZObBVixseZsbESE47mRkY6ztBgGvPUW1K1rBteQEDPZfvcdVKuW57HntWWXiIiI+AbNvEqa3C7Aio01Z2Oz/Lj+4EF45BH46ivzcdOmkJAA113nkXG7O2MsIiIivkvhVdLkZQGWv7+Tj/wNA955BwYPhtOnISgIxo+HoUM9miLdmTHWrlwiIiK+TWUDksa+ACurTawsFoiKcrIAy5kjR6BLF+jVC06f5kS1xvw8axPWocM9Pv3piZZdIiIi4hsUXiWNfQEWZA6wWS7Aysgw4N13oXZt+OQTLhLAc0yg0h8/clOfWkRHe77+NM8tu0RERMRnKLyKA5cXYDnz99/QrRt07w4nT7KZBjRiA5N4Dut/FSr5sYDKozPGIiIiUqgpvEomsbGwfz+sWAGLFplf9+3LIbgmJpqzrUuWYBQrxpTQ0TThZ7ZTz+E0+6KquDhzoZUneGTGWERERHyCwqs4ZV+A1b27+dUe/KxWWLkSFi82v1qPnYAePeCee8yZ1zp12Dh9HcOTX+QSAU7f21nLrbzK04yxiIiI+Ax1GxCXZdwE4E4+pabfo1SyHQE/P3jmGXjhBfYkBrn0fp5eQJVjyy4RERHxeQqv4pL028aW5h/iiaM3C8AGv1CDIxMX0GZEE8C7C6ictuwSERGRIkNlAz4u08f4HqojzXgN+yYAHfiKHdShNwuwYeEVhnMDm+k1vUnatXNaQAVQoYK5eCu/xiwiIiJFk8KrD0tMhOhoaNPGLDtt04Z8aUW1ejWcPpjMHB7hKzoSSRJ7uJYWrOFpXuECwQ41rNktoLL7+2944IH8G7OIiIgUTQqvPsr+MX7GnaXyoxWVbdlytlOXR3gLgHiGUJ+trKWZw3npa1izWkDlTH6MWURERIomhVcflP5j/Iw82orqzBkYOJBbJrbjav7iD6rSmpUMJZ7zFM90esYa1vQtt/73P7NUwJn8aJ8lIiIiRZNPhdeXXnoJi8VCXFyct4fiVatXZ55xTc8jrahWrYL69WHGDAD+r8Tj1Gcbq2id6dTsNgGwL6CKiDBLBfJ1zCIiIlLk+Ux4Xb9+PbNnz6ZevXo5n1zEudpiKletqM6dM6dAY2Lgjz/MVPrNN5T8vxmctZTM9SYA+TpmERERuWL4RHg9c+YMPXv2ZO7cuZQpU8bbw/G6fGtFtXYtNGhgrrYyDHj4YdixA9q3z/MmAN5snyUiIiJFh0/0eR04cCB33HEH7dq1Y/z48dmem5KSQkpKStrj5ORkAFJTU0lNTc3Xcdqvk/5rfrj5Zrj2Wjh0yHndq8VihsybbwaXhnHhAn5jxuD3+utYbDaM8HCss2Zh3Hab+fx/b9KpE9x+u5lxjxyBypWhaVNzxjWn63h8zPmoIO6h5C/dQ9+m++f7dA99X0HfQ3euYzEMZ1Gi8Hj33XeZMGEC69evJzg4mJiYGBo0aEB8fLzT80ePHs2YMWMyHV+0aBHFi2deZHSlu2rPHm6YOpVS/xXR/tWmDTv69SO1ZEkvj0xERESuFOfOnaNHjx6cPn2a0NDQbM8t1OH1wIEDNGrUiGXLlqXVuuYUXp3NvEZFRXH8+PEcfxiekJqayrJly2jfvj0BAQH5eq1PP4URI8xWU3aRkfDSS+YsabZSUvCbMAG/V17BYrViVKqEdfp0jLvuKrxjLiAFeQ8lf+ge+jbdP9+ne+j7CvoeJicnU758eZfCa6EuG9i4cSPHjh3jhhtuSDtmtVpZtWoVb775JikpKfhnWCUUFBREUFBQpvcKCAgo0F+ggrhebCx07myu0D982KwXbdky+4VTAGzeDL16wfbt5uP778fy5psUK1cuX8ebpzF7QUH/mxHP0z30bbp/vk/30PcV1D105xqFOry2bduW7faA9Z8+ffpQo0YNRowYkSm4XonsrahckpoKkybBuHFw6RKULw8zZ5o7BBQgt8YsIiIikk6hDq+lSpWiTp06DsdKlChBuXLlMh2XHOzYYc62btpkPo6NNYNrxYreHZeIiIiIG3yiVZbkwaVL5mzrjTeawbVMGVi0yOxvpeAqIiIiPqZQz7w6s3LlSm8PwWOs1nyu/fz1V+jdG9atMx936gSzZ6uZqoiIiPgszbx6SWIiREdDmzbQo4f5NTraPJ5nViu89ho0bGgG19KlISEBPv5YwVVERER8msKrFyQmmmuk/mutmiYpyTyepwC7Zw+0bg1PPgkXLkCHDpfrXTPu7SoiIiLiYxReC5jVCkOGON9lyn4sLs48zy02G0ybBvXrww8/QMmSMGcOfPml2UhVREREpAhQeC1gq1dnnnFNzzDgwAHzPJft2wdt28LgwXD+PNxyiznb+sgjmm0VERGRIsXnFmz5usOHPXieYZizq8OHw5kzULw4vPIKPPYY+Ln+3yX5vnBMRERExEMUXguYq+ulcjzvwAHo1w+WLTMft2oF8+dDtWpZvsRZSP34Y7OMIf1scGQkTJ1qtoIVERERKUwUXgtA+tBYsaIZDpOSnNe9Wizm8y1bZvFmhmGG1KFDITkZQkLMPq6DBmU725qYmDmklisHJ05kPte+cGzJEgVYERERKVwUXvNZVqHRMMygmj7A2stT4+Oz+Nj+0CGzjvWLL8zHTZuaLbCuuy7HMXTtmjksOwuucHlscXHQubNKCERERKTw0IKtfJRVS6yTJ82vZcs6Ho+MzGK20zDgf/+D2rXN4BoUBJMnm9O5ToKr1QorV8LixbB8edbdDbKTq4VjIiIiIvlMM68eZLXCmjXm37//PvuWWBaL+Yn/t9/CsWPZLJQ6ehT69zeLUwEaNYIFC6BWLadjcDbTmxeuLjATERERKQiaefUQ+45Zd9xhPr7rrpxbYh08aIbV7t0hJsZJcH3vPXO29eOPISAAJkyAtWuzDa7OZnrzQhtyiYiISGGimVcPSF9TGhLi3mudzmwePw4DBsAHH5iPGzQwZ1vr1cvyfbLb/CA3clw4JiIiIuIFmnnNo7yGxkwzmx99ZM62fvABFCsGL74I69ZlG1wh580P3JHjwjERERERL1F4zaPchkaLBaKi0s1snjwJDzxgrtY6dswMsOvWwejREBiY4/vlpjbVHlLLlXM8nuXCMREREREvU9lAHuUlNKbNbH7+udkC6/Bhs1friBHmjGtQkMvvmZva1MhIcwydO2uHLREREfENCq95lJfQGNv2NPQdam46AHD99WZt6003uf2eLVvmvPlBRITZFtZZd4OYGPe/DxEREZGCpvCaR7kOjcu/gTr9zJoDiwWGDYNx49xf8fUff39zS9euXbPe/GDqVGjbNldvLyIiIlIoqOY1j+yhES6HRLuMobF7d4i58V/8B/SHDh3M4HrttbBqFbz6aq6Dq11srFmrGhHheFw1rCIiIlJUKLx6gMuh8bvvoG5dmDPHfDx4MGzZAi1aeHQs+/fDihWwaJH5dd8+BVcREREpGlQ24CGxsebCp1WrIDnZXIPVqtV/NaVnzsAzz8D06ebJ0dFmnWs+FZr6+6uGVURERIomzbx6kL//5UnUFi3+C66rV0P9+peD62OPwbZtbqdLqxVWroTFi82vVqsHBy4iIiLiIzTzml/OnzdbXsXHm6unoqLgrbfg1lvdfqvERHMjhPT9ZCMjzVpalQOIiIjIlUQzr/mgzO7dFGvUCF5/3QyuffvC9u25Dq5du2beCCEpyTyemOihQYuIiIj4AIVXT0pJwe/ZZ2n57LNY9uyB8HCz+HXePChd2u23y27rWfuxuDiVEIiIiMiVQ+HVk2w2/D75BIvNhq1HD9ixA26/Pddvl9PWs4YBBw6Y54mIiIhcCVTz6kkhIVjnz2fjZ59xw9ix+AUE5OntXN16Njdb1IqIiIj4IoVXDzOaNOHI8eMeeS9Xt57NzRa1IiIiIr5IZQOFmH3r2Yw7d9lZLGYTg5YtC3ZcIiIiIt6i8FqIubL1bHz8f/1kRURERK4ACq+FnMtbz4qIiIhcAVTz6gPsW8+uXm0uzgoLM0sFNOMqIiIiVxqFVx/h7+/2jrIiIiIiRY7KBkRERETEZyi8ioiIiIjPUHgVEREREZ+h8CoiIiIiPkPhVURERER8hsKriIiIiPgMtcoqZKxW9XMVERERyYrCayGSmAhDhsDBg5ePRUaaW8RqJy0RERERlQ0UGomJ0LWrY3AFSEoyjycmemdcIiIiIoWJwmshYLWaM66Gkfk5+7G4OPM8ERERkSuZwmshsHp15hnX9AwDDhwwzxMRERG5kim8FgKHD3v2PBEREZGiSuG1EAgL8+x5IiIiIkWVwmsh0LKl2VXAYnH+vMUCUVHmeSIiIiJXskIfXidNmkTjxo0pVaoUFStWpEuXLuzevdvbw/Iof3+zHRZkDrD2x/Hx6vcqIiIiUujD6/fff8/AgQP56aefWLZsGampqdx6662cPXvW20PzqNhYWLIEIiIcj0dGmsfV51VERETEBzYp+OqrrxweJyQkULFiRTZu3EirVq28NKr8ERsLnTtrhy0RERGRrBT68JrR6dOnAShbtqzT51NSUkhJSUl7nJycDEBqaiqpqan5Pj77NfJyrebNL//dZjP/SMHxxD0U79I99G26f75P99D3FfQ9dOc6FsNw1hq/cLLZbNx11138888/rFmzxuk5o0ePZsyYMZmOL1q0iOLFi+f3EEVERETETefOnaNHjx6cPn2a0NDQbM/1qfD6+OOP8+WXX7JmzRoiIyOdnuNs5jUqKorjx4/n+MPwhNTUVJYtW0b79u0JCAjI9+uJ5+ke+j7dQ9+m++f7dA99X0Hfw+TkZMqXL+9SePWZsoEnnniCzz77jFWrVmUZXAGCgoIICgrKdDwgIKBAf4EK+nriebqHvk/30Lfp/vk+3UPfV1D30J1rFPrwahgGgwYN4qOPPmLlypVUrVrV20MSERERES8p9OF14MCBLFq0iI8//phSpUpx5MgRAEqXLk1ISIiXRyciIiIiBanQ93mdOXMmp0+fJiYmhrCwsLQ/7733nreHJiIiIiIFrNDPvPrQejIRERERyWeFfuZVRERERMRO4VVEREREfIbCq4iIiIj4DIVXEREREfEZCq8iIiIi4jMUXkVERETEZxT6Vll5ZW+1lZycXCDXS01N5dy5cyQnJ2tLPB+le+j7dA99m+6f79M99H0FfQ/tOc2VFqlFPrz++++/AERFRXl5JCIiIiKSnX///ZfSpUtne47FKOK7ANhsNg4dOkSpUqWwWCz5fr3k5GSioqI4cOAAoaGh+X498TzdQ9+ne+jbdP98n+6h7yvoe2gYBv/++y/h4eH4+WVf1VrkZ179/PyIjIws8OuGhobqF9bH6R76Pt1D36b75/t0D31fQd7DnGZc7bRgS0RERER8hsKriIiIiPgMhVcPCwoK4sUXXyQoKMjbQ5Fc0j30fbqHvk33z/fpHvq+wnwPi/yCLREREREpOjTzKiIiIiI+Q+FVRERERHyGwquIiIiI+AyFVxERERHxGQqvHjZ9+nSio6MJDg7mpptu4ueff/b2kMRFkyZNonHjxpQqVYqKFSvSpUsXdu/e7e1hSS699NJLWCwW4uLivD0UcUNSUhIPPPAA5cqVIyQkhLp167JhwwZvD0tcZLVaGTVqFFWrViUkJIRrrrmGcePGubRfvXjHqlWr6NSpE+Hh4VgsFpYuXerwvGEYvPDCC4SFhRESEkK7du3Ys2ePdwb7H4VXD3rvvfcYNmwYL774Ips2baJ+/fp06NCBY8eOeXto4oLvv/+egQMH8tNPP7Fs2TJSU1O59dZbOXv2rLeHJm5av349s2fPpl69et4eirjh1KlTNG/enICAAL788kt27drFlClTKFOmjLeHJi56+eWXmTlzJm+++Sa//PILL7/8MpMnT2batGneHppk4ezZs9SvX5/p06c7fX7y5Mm88cYbzJo1i3Xr1lGiRAk6dOjAhQsXCnikl6lVlgfddNNNNG7cmDfffBMAm81GVFQUgwYN4plnnvHy6MRdf//9NxUrVuT777+nVatW3h6OuOjMmTPccMMNzJgxg/Hjx9OgQQPi4+O9PSxxwTPPPMMPP/zA6tWrvT0UyaU777yTSpUqMW/evLRj99xzDyEhIfzvf//z4sjEFRaLhY8++oguXboA5qxreHg4Tz75JMOHDwfg9OnTVKpUiYSEBO6//36vjFMzrx5y8eJFNm7cSLt27dKO+fn50a5dO9auXevFkUlunT59GoCyZct6eSTijoEDB3LHHXc4/C6Kb/jkk09o1KgR9957LxUrVqRhw4bMnTvX28MSNzRr1ozly5fz22+/AbB161bWrFlDx44dvTwyyY19+/Zx5MgRh/89LV26NDfddJNXs00xr125iDl+/DhWq5VKlSo5HK9UqRK//vqrl0YluWWz2YiLi6N58+bUqVPH28MRF7377rts2rSJ9evXe3sokgt//PEHM2fOZNiwYTz33HOsX7+ewYMHExgYSK9evbw9PHHBM888Q3JyMjVq1MDf3x+r1cqECRPo2bOnt4cmuXDkyBEAp9nG/pw3KLyKODFw4EB27NjBmjVrvD0UcdGBAwcYMmQIy5YtIzg42NvDkVyw2Ww0atSIiRMnAtCwYUN27NjBrFmzFF59xPvvv8/ChQtZtGgRtWvXZsuWLcTFxREeHq57KB6jsgEPKV++PP7+/hw9etTh+NGjR6lcubKXRiW58cQTT/DZZ5+xYsUKIiMjvT0ccdHGjRs5duwYN9xwA8WKFaNYsWJ8//33vPHGGxQrVgyr1ertIUoOwsLCqFWrlsOxmjVr8tdff3lpROKup556imeeeYb777+funXr8uCDDzJ06FAmTZrk7aFJLtjzS2HLNgqvHhIYGMiNN97I8uXL047ZbDaWL19O06ZNvTgycZVhGDzxxBN89NFHfPfdd1StWtXbQxI3tG3blu3bt7Nly5a0P40aNaJnz55s2bIFf39/bw9RctC8efNM7el+++03rr76ai+NSNx17tw5/Pwco4W/vz82m81LI5K8qFq1KpUrV3bINsnJyaxbt86r2UZlAx40bNgwevXqRaNGjWjSpAnx8fGcPXuWPn36eHto4oKBAweyaNEiPv74Y0qVKpVWz1O6dGlCQkK8PDrJSalSpTLVJ5coUYJy5cqpbtlHDB06lGbNmjFx4kS6devGzz//zJw5c5gzZ463hyYu6tSpExMmTKBKlSrUrl2bzZs389prr9G3b19vD02ycObMGfbu3Zv2eN++fWzZsoWyZctSpUoV4uLiGD9+PNWrV6dq1aqMGjWK8PDwtI4EXmGIR02bNs2oUqWKERgYaDRp0sT46aefvD0kcRHg9M/8+fO9PTTJpdatWxtDhgzx9jDEDZ9++qlRp04dIygoyKhRo4YxZ84cbw9J3JCcnGwMGTLEqFKlihEcHGxUq1bNeP75542UlBRvD02ysGLFCqf/39erVy/DMAzDZrMZo0aNMipVqmQEBQUZbdu2NXbv3u3VMavPq4iIiIj4DNW8ioiIiIjPUHgVEREREZ+h8CoiIiIiPkPhVURERER8hsKriIiIiPgMhVcRERER8RkKryIiIiLiMxReRURERMRnKLyKiIiIiM9QeBUR8QFWq5VmzZoRGxvrcPz06dNERUXx/PPPe2lkIiIFS9vDioj4iN9++40GDRowd+5cevbsCcBDDz3E1q1bWb9+PYGBgV4eoYhI/lN4FRHxIW+88QajR49m586d/Pzzz9x7772sX7+e+vXre3toIiIFQuFVRMSHGIbBLbfcgr+/P9u3b2fQoEGMHDnS28MSESkwCq8iIj7m119/pWbNmtStW5dNmzZRrFgxbw9JRKTAaMGWiIiPefvttylevDj79u3j4MGD3h6OiEiB0syriIgP+fHHH2ndujXffPMN48ePB+Dbb7/FYrF4eWQiIgVDM68iIj7i3Llz9O7dm8cff5w2bdowb948fv75Z2bNmuXtoYmIFBjNvIqI+IghQ4bwxRdfsHXrVooXLw7A7NmzGT58ONu3byc6Otq7AxQRKQAKryIiPuD777+nbdu2rFy5khYtWjg816FDBy5duqTyARG5Iii8ioiIiIjPUM2riIiIiPgMhVcRERER8RkKryIiIiLiMxReRURERMRnKLyKiIiIiM9QeBURERERn6HwKiIiIiI+Q+FVRERERHyGwquIiIiI+AyFVxERERHxGQqvIiIiIuIz/h9GmMQekSR0YAAAAABJRU5ErkJggg==\n" - }, - "metadata": {} - } - ] - } - ] -} diff --git a/linear regression/m1.pth b/linear regression/m1.pth deleted file mode 100644 index 1e389c52cb43b3b1b4fb87fc66dbee5886bc850d..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 1402 zcmbtUOK;Oa5MDQrrcTSFg*KtUIY^M$&9f4y#UNjNAOs;Tgn1F+c|Bo=4`v?dE6FmuN%k@{5JP_`@U-n8Q6^mNI7!}Q+sZgTYml-cXu5D zbGGRDwv%u6h3f@!)90$RJLcY~ha+~1HPmdly*2n;aN+T{=rA+qlEEb%DZlp$eC z7^6VajN#hZ3t--m1f(7s%#aM}H7taS{KlbT(gGG6uw;SF|53tYu09ym= zh7_2|F)>^nz%_?9`#~#TH|A5{wdyY&k3(LcsmdbTCRJL`1@BR>b?x?_WH~L=j2+Jv z!sEn$aOX#s>LZ`czrgMtPenn|wXOdm$C_Rq-Q6bk#>aPWaS$2#-`Eplc2(CTwqt*a z5AlavKfj%gmoYzfZ={K?F;#3ZQ8PKLki2e4RP6ZX zMyH3yd(tBJcp4a$eQ^Ty0S7TUYSYN5WONlyY!yozQ5KYGSX8M=*!u_!4?KCms6_G! z6@GmUVIxteanYt_CveO7X3UhcZX}a8N8#6Fx5hxa9c0Jr6MBHqKGOq)hB$h*SSCTg RjM3k9BQXq5B8uX}*x%`07uNs) diff --git a/linear regression/np_genPoints.py b/linear regression/np_genPoints.py deleted file mode 100644 index 70fd9e2..0000000 --- a/linear regression/np_genPoints.py +++ /dev/null @@ -1,30 +0,0 @@ -import numpy as np -import csv - -# 定义回归方程参数 -w = 1.35 -b = 2.89 - -# 生成x值范围 -x_min = 0 -x_max = 10 - -# 生成100个在x轴附近的点 -x = np.linspace(x_min, x_max, 100) - -# 根据回归方程计算y值 -y = w * x + b - -# 添加一些噪声,使数据更真实 -y += np.random.normal(scale=0.5, size=y.shape) - -# 将x和y合并成一个二维数组 -data = np.column_stack((x, y)) - -# 将数据保存到CSV文件 -with open('data1.csv', 'w', newline='') as csvfile: - writer = csv.writer(csvfile) - # 写入表头 - # writer.writerow(['x', 'y']) - # 写入数据 - writer.writerows(data) diff --git a/linear regression/plt_print.py b/linear regression/plt_print.py deleted file mode 100644 index 245fe99..0000000 --- a/linear regression/plt_print.py +++ /dev/null @@ -1,23 +0,0 @@ -import numpy as np -import matplotlib.pyplot as plt - -# 原始数据 -points = np.genfromtxt("data1.csv", delimiter=',') - -x = points[:, 0] -y = points[:, 1] - -# 拟合直线 -x_range = np.linspace(min(x), max(x), 100) -y_pred = 0.3880246877670288 * x_range + 1.7214288711547852 - -# 绘图 -plt.figure(figsize=(8, 6)) -plt.scatter(x, y, color='blue', label='Original data') -plt.plot(x_range, y_pred, color='red', label='Fitted line') -plt.xlabel('X') -plt.ylabel('Y') -plt.title('Fitting a line to random data') -plt.legend() -plt.grid(True) -plt.savefig('print1.png') diff --git a/linear regression/print1.png b/linear regression/print1.png deleted file mode 100644 index 153b7af7d309258ad5a2038bbabafc6d76efa02d..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 34941 zcmeFZbyQa2*Dd-25(0uWNJ@wZ(w!;@2nY&FcXxM-N(+Jt2neDmDlOe0Eh$K+G}7I0 z*2dqt-*?Zs_l|M@xqn^8a5%*M?!BK_Yt1>=eBQ7J%5s-*ui&Cks7v?cWmHip3xZc%tRdXIpYKQ7>OaJJy$zaU=>H@WC2ujPV55gH+X(7s4zSfNlMfA7iMe&m_FJm#hQ zsPC+KV}Sd6*+{XT#PEc#ENtPzqZ9Ncx3SC(1C4^8>}_oWqlnIbav%Qt4Ws@?l+5{0r7YUN%ROJ9Up~KP;|eCj`NyUNaBrPo z(_ljy`0t{D|Nln+AJ0*Z^JFa=2RYu>d>2=@m+Xrx&l`<5+TT}Nj+MJ%{-+ z&oz+x@Zp26;OD6uqN0fl3zi0iOd929j8hJlwZpc+e79}1 zqIPa&iFe#x)*4zwO}5$w|X2{Fb#p->?_FFo7xKx9N|3`SLPn)wZg6 zSIUaJek%;CbgNVBt6qg*U0t1wtnB9gbhOLv@{sR|()T&kV1R6H)$SFC>Vs?X`rd4C z3BSX5@=cv$Q?b){1OGIOu9QdL9)-a@69sIVC$ZZQjSS|@FnGD_vJwz zECL$&BI`b!ix<=Gy}HJsna42F)pWX*D(NTcw$%U0b+KpEwf8=as4GrAH>H?62khl% z!NEOMJ|4;`;%}F_Fk3twf}cI>&NGsZyQwo*IAN1pC7Y?9jYCMt%Fq8A{uTF0F?H~2^X#1x}Ym1|0d;-?L z4PhS++6p#BQoY)EA}+L6b0*2g#wLEeUjHm4WNXZ0g2!%{pMYMn{b;RbtzTp`-|`pZ z>B*h})}<@YVCTHi(7$@^TCm^Iu33BH@^DcE#Ftv8`b{Koe!ga__gSlwi>8yt$JeXm#-(MakOZdcD^?v?U?q*Z$FtMuMvptw^auFBTcz^v* z`sdHYq@)e2V-;G}z9PsBx&8h92lj<2?6*RY|aqM3bjy;|;DcFa-Xo4{`bX zn@!(qmh5nMrERVwiSMxeEnmp(r&zzfJ!YSpni?!|pf4G7r-nFSS|K_6wwC1 zo8e9PZe8-2@DqZKNF(eR_?FLtn3lE!=7&wM+%;!UMW%s8S|%Omt&l?sn(#>%H@?Z) z=?Ru$dy){>bVA)zZ0gQak)x&D8vI(%jYf(BiM^=^E^{#~?x3Kc$SR*b^TLz$dO|Ei zr6j?dAG38z>}6r0UNkf`L>5c<>{5PGc;hS@m8Ghx`n~9W0(V`WCPx!}z;VoUzRf_6 z0Lo-#xQNOwKR>^TC0;jnWAKy@myl2hiIiWbe?sW51m+tzhDR0?(27#NxFW#Y`A#hU zS6oVpeW7*V&(h<~HWwO2WvPkJ_mi$X&QuprP8N>&wOdapMTv%n*5tQ0Hs5cP1+P?` z+E?Z>kDt^r*IgWN=FcQ7JV?oBu2k&uJJ(=B{{H`>6cel?xZ9%eDqbd zaeqEFfcH@HXt@B(kl(7OL0(a@&2nw5qJ)T)bjFb|*$VCn8R$}oi$BaJ)}-UvC8i^v z<>P}bSx7N2s2wVQrBx}t<(0LywJo+0@rkw{E^LKo9@U(+IYF40{UYWdVvB{M(E06g zCe7(qa1^bW`7s$~d(A?~^XK^v6Ot%fLF!D6+|Lk21Oaw6%ir4;dOk(y4B%Y4)UkgG zI~&qNvU;|*5hd0{z*$v@{>4$Z0li0Anmp4^BgJ-Ty!vgeuUHQ@+qf3{GAUqBaWzNN z&+l(cCks0TB{@{Tg>`+IkdQFHbd7~2-=vw~aA!#l)|q#hTF720L;2nQcCX5qsEVy^ zR(%&PgRrnL6JdjSfzwpO#h-CE+aUg1cUMLV-hB)>JH3F3X(rxz$TwK-#@-x7JDnCn z=e#fgwf1K`*P3IFiqy$#2>sp)kG06++S*&e_*6d@dovFHX6DiyPCz~*n791(0TZ=1 z>Jlw|`Y?k0rZCjuC@GtxE`CA5{y)j@MBS#oW#;_sm)h!DflM_Au?i)lf3d6OZF_UZ zr%%XRaaJtz-gxw7a#ut~M)%+R=2WbT#@}0b{?&bDcxd>BdR7Ze)ujXx6x5>G?`@oI z{aso~eAt9^GtVjXCqG6@{uIs~gOs_+V?F=9n%sxmxMmJY2oL_#7$!Mh=Nb8od13cu zN+=vZd)?0VrwLIxm770pyZUksQjwa)XVLlKv(j6du2*gp{DIrsuJDf^kyLzxH33qB zNjIlOj)=?JosXyno4ujviEZQI&CX}?rI(h*+-}y| z^Q-}PLFHPj^_`7odOrJ6c>dsRYin!Sii#qK&J>9@$S?^)4s>B*VU)o!8_BE_9~o77 z*#O11Hdq&l+I1bHWih~3LZ)!0^_BR^cJJ>@jc6#gu=w&&lElm3+1uwf`e!2vbgM&1 zY-P#*!DGtro&JGkcFQd>OjO*4D3j)>Pk=ctT)1$Vf?|H#LSt}`k2NPpZ_s2o&j#~ z=$BF?d`dT(sQHF_dwP&Hxu3}Iv~V;XEft%RvdWDIu~H+PoXKrUXQ8eY&`IyRj&}9x zRo~Nt`3u9bj-nBX{Z;L;rVnX_uOte)xyGG3xb8KZnz*2>$K!16H-JU~ zY2Ak;TReYuxRgtSj4=D*N38ovf@XC=m;_z0cq+b-a7LZmZXVDT^jUWZs;xswpJ&&= ze6Lkt4yo%o{N;3dd=R;Nur+VtqgOKOj0Y*itTmQ}%8r6l*KoKHNp^8aCNwZ{l$%Sn znqzqY$i;YXb&S9-Tb-ReqS44}_z4Dfvbs2z+ULmL2|^30c_`E($!appHT)Q`Vr#=T zxtNA6FRzaJZgps8tFKlc+24_tF8li}Q}es&MGajiOsKLSjOv2{TISsvpcb$uHSpcQ zgvv4p1)<5j0G7c4K~J!qp^EJM?VIjVBF-h{CKv2-18HHg(dN3pmr5bee5OfD6F6MHn1lAB*+Ly7okYh`>OUzUQCk zy2!3v8O*T`WO7f+_p_k02mdjZ%YCAa2u*vh%ABE@G_B*k;;qU71JOE3ZLPbd@z zGp|&>v$)SUJ|&cFfs`ohJcFYmdB999XnUS`-8;LxAHYN9CaV3k@(j^b#5XRms-&2X zS9%Ru2a*QEG;YC8Hz^qM+#RyGCogY^{Ewgw63+mJ2w;!1aB@a9Mo{oMP03^k=)t@; z6bj8zChYQE4e%D6Y?L61klITOa3!obFcOs!h6?a-ZocZ{mXTKEp8Q(>X6 zQNXsmGN7bzhXO8xK@@my7)Q}bC^$ND12vlY6tAzkewC3i z77tll;nocUHqJcgOAU#y%aXT zNOveTCVlq#X#UKV@FcZl&B)oAHzp>ADs_Z;jWm$->aLlFk&%%;-YtcA&ik6038%ky z)XGCnRrb1T7Ece5&(3H1e3{)m$arq^e=m(-HxLfl3c~YoeNzex`4!&WXar=JH)Kmk z`PMTj(}$9jG(8*bu8d5&yeeu+4!?eK;n&CGtu84#F#|{yBCZQBiN7Adh6^uWz6F&H z2N!qq&jK>w?`m-Ua-AHM5(F4Oc^VA!2Jv`*=)2j@fV0%>GTktqHXxpd74CMJ@rdM; zejT+z0@aymAIRHYi%4&8uSmeDIAng@TgWpsKPiyG%>Q_fM^Tua4zo_mcKCadby>VPsZ?CD z8~eUAsD}?9HZ(W;xN;!#bgG0FN?I-*Lcn8Ki?Z&|y7%D0<#=7^i}0J-hA@&cI%+Da zd#b9$m#76@kGws`+$d^Jc6DwCFY`So5)VUOiUs#p`U5C>(dHeA`4(MtN&di zAh~~ekcR%}&!186rR-w}doS;7z?C0?1ON+H1(5|w;@Ms4_g-24{z7E-^Yv9;-dH(0 zuV;{IG4kxkL=X4Yx*(-OsDShX&%>-0TdR~VFz>jokwXJ7pP`Z}NdvrIWts#S6&o&T z;A@797cY}xu8c^hNODhAp^dSVa#(=Ik^vYjT@tK?A z5u>A{Cy2V;sBm8~hFL}A6Y-tjYA7I6;rsiZKYsj>S5RPt5fNJJDf)nfki1$D=okUht-R93jf7XtZ768$M8DJ1BZpH!D3L5`LgSuHkgH{6Q(>D6)A0H1+5#q4(D&PU zjDTYW|HDPrrfB-qY0aMA-nUW#l2EoVCdYl&kg-xVk2y8d5}eF;zEcFeFj(bNqI19s zJDVCQU9g{MJCcO34FSdt>HFyF>Nf2`&>%%Sgw8t@CgU?cL+u9L zS#{WfMhPQDO^syZ2AA+HDBRNkMu|wCK~XdJtu3hlI_@mt@aWMa*>$uB2=5yT1Nzim z;o$%&Ur|$&65b0%BktLq?F3-3>-CMt;UEDCe$3Xd@*X1osgbLHAC~dU<4kfG{xpmp z3F`Fp^cl}nyOH8w**Zej13C90x0n72rrzY2M3$%FG^DRSgm#34q+|Do_Sn^wG*tS9 z!Mv+ST$bj+Mt{1m7NoN3xeuAa2KPTbu*m2_o(%ji2DBm5!Z&PcO$AT)Rr;+b&jH=z z68kY>*vbx7JLE}14(2dBfp2lv*g$wfFvlmS=_X$g91yev)NJ1S9TZGQpaUcj(UAHe zed4vn-Q3#WhY3Bt-5H=MP(waPul{KgA_sNvUdqaR&icBesN3HLq`3R+X4ShOu=CH4 z=LjwJx{>Gsg4cJqCH0VEsC%TA$*juBlK`m98bXO&7rL*SSZV4b!~}|S9!yDOu|dFz z022>gyH+G*aQ%Q2x15?&@0`*pT*$>!jw$cozqjpc3pkji0J)$J0!ax-?^li76yol? zGU*LJPY5$ff6}Wrx*+c-VC`9KpkE140dys27*&D)i8rVb4WM=|{{BjW5IO-5rcA(s z8*r<2fZ1Ck4mBIFP&~jy8P57@*wwS-L90X5O`pBhS-8q{Fwe+Kv>Ax-J=nig{FaxI zd4;za4LCa?Xx)p~bEmShvI0fr1*l{jonmX;HvJqSTQYa=Ivs9X^=E0-Z%j9XBAf;} z6=BdcdmzX103i0QQir4zFrNuwIe#6+hBjRMJQT-q=U~*BCp41($ZHr9YbSuEuYiWD zymzJmI?vW&)2G985Wooabav4f1T!NLahREzyGxx+%sZ3c=Hsb5IyzQ2LDj59l&505 z5lh%m(Nd?Lvavq;pcO@fq~=_IN$4^ONj;LsA4Efny@tTpFcQ`tfa{QVTL3cBbRwD> zo%h03hz!nekG}q3&#k-zA)Ejaj!20bdTwM~HOIW52y0jCXF_GE*_wsr;Ny_h=Y96+ z0ShauTD7m2@;lMHfFkN$UvJuU(I{3`gwr`M!sgdRORXfp?cBY)NZ;H{p}Y z$Ow!6bUUOkRvu0MqDj#m*TMroZ&7B}BUj-AUaw8lYbq(rOGfaCP{N_JymJ4l1FyMP zD)05gI(+vrZq@-LB_gUZExMB=IJajve0_hN;{R=DYG29KmEXz9NxxzoUozn@1_`L8x3qw>?t51g!tp^xO#N=w)>GzU z5gQvz6XgR{_^UyUBmhAqF~KI7nQy*^yb}i-Duxk$4edi5&^)98m%+&XtN!v12NTj0 z)FOHkXqukDIS$}e%b<6HXz#!w&py8FVb* zopSo8Pdt#_kZw^e{l~wI)&N07|Lquy299j3{&{kbeGvm~Syz`$T-b7K6% zJ(j#e&=rCAb~;;Y8B?jGf%0kWYM=2TW4~?g^nm1?rOpnCye+OpzZiw~Rt&m$v~)Tg z;cKVx0{N?9;o-&r-w>P)T9#Uwvl+BOh5Zhp%a?_8z+Q9eCBg&; z0kB1I{04wKmz_S1EvV4><{ekAfFulzn2OgF2a#}qSAT>mh(ryhzW;30ua9zkrY)C2 z?Nxzr2I_0J)SrEPvNwTGEtu7v%LT8kJ7_!CF4sSa(O!I=;K54D6HT?6^m_-J+@?5> zGUra7D5M;ms%5kUz}Be;2?yzWd{zB~Ye?a=qPey z>vFU%*MwqTdW)kQA>Q-}<8!8)H(wy)w~l=oi%wJwsb6^jP~|+!)@0jiA0gAR+co4N zUP(ub?ei$xbb$aB?}+X48m|?)xoxleqaRr`5oS2$(iz*q#T#mdw$bqLiCQvK!n|h~ z8@`!auWRh9fURA}PpEAR2cc|(niPJ{AF&LyR z7w7}75vn7>7g{i6I3}uDN!b+1^Xlh2O!~fiQ%v?Ik|$ql*#uo^?+@LsG@~qH%r3ND z+(}bJv%+e)4?%_O6?{r=hL0_}<~3)hVu<(!F&0TDkqE6=05YFuVYL|V|W~UQcjVH4nMIz8twkY3-*;fF9hw{s}~pN0wzy< zzU(Q~Sy7Ms0;A>7DTev>Mmf&35J6SF3;j#2Ld%D;H6!*FFF@GO1BoePo(d$_k8;tS z{ngO8Rj~LfXrHh71;k{8{OXoDr}*%wa(qfpM{WY;j#M`s><=0z6>FBfCRkU`j-|bC zp?p?LpBnh={J0*Z!<3Pp-VHLQUA+z}5p5$7(!ScaM{GIee{Y2BLg%Q!X<9bESpphn z1bz9hUcCy7jGXzLWbb?!dly$(nsNBtx}i_bO=d=lyLxZJ?(J7(TWgf*$i=f zGbT1R2@OqhwgfkK_afJWZ0({v?QH0&RZc!_I$rk%xeo;GovVE+W#u8zheY&M@L14C zDR2JhTdUf~9+NuD@L8Z;8NTf)%zW)fN0UWm$I0(096@x?H>^}euhSOyjr6`=mxZ8I6VWA*S#k4q?sVi=pPpD%K~o60>(F=TK-?Z07P zX!aG<(Ke>!_U7017y11K&2GdxX>3X!Ei|dveoWzLcZH8`Bwo3(sR=Q?Ahi^PBcxwV z2}xc<--`ulf7mS#snVGiY3F-Smi)3Va)!+g1{5eUY-7@(ezIq3xQuLJ1WKoy7~x8L zrEDaBDy;7>SFJ>X8(?JF>=Gd*cOcMmPb(QDE%;AuTX}BYOAu)D)h*#{8rdox?uin) zm$-7>>Ys5+{*P7(0Tw=Yga-=r7Nz9SB3rEwej=P3RR642v8;mBwu7j9A|3k4A{bqg zc)g$B60#4Nck#Jckq+GEqh(3{XU=lcxf7(-alHN~0ss=X74f65##k&GbZ3c~8N2nH z6IhZCo2dHenx>lidPMb7d%g597U`P7Psw?OeJOBrcijjykUPR{l=_pL`prRgM%Fwp zMSSZzsQiGGyKv}zV@OZ$k$i`YES5c~Bl*Cwh_%bj)?930ojI2%uulB&*UMCzAi`2l zU)^LcWj3#WgM7^(nDmyS+B5&4Z;S!JNVA!S`|Whzl==N&_22Upv0s#hB#lv9!gnz< z=6UgjU0cL6UW;o7LG@=;y;J&g!jYAgiH*%iN3GfdEuY_<6@|B0Z=y8qaHC9s&SL)c zlnSC)GcvLSN(3-1aRf`SGF`noKW+27bl;C*-Ye#zZ?hYGs`<+ue0oPhyfFgF?PiQy<#r-!e`AufdSI~_a@e!C z9E!z?kh?5%B{jq~1Fga{x7VpX)eWmrQ&@IUjAjF7vLf($BK zQ-V9+XHC;H>I<#bmkS(sIbO44zhbQqM57R^C=Eux7PMWZ?+YjS4>SVYHlcPY0XQoZy#EpdF42V z|C$XWw+ibi7TfyeXf`t`q=_K(Dc@I8<0EPuD)OWu+0zyZ;M%vU~5_1|4BoWI$w zhD$eYNfFfFEUCpHtgSh_lc^3a5P)PC7N*lkIsfs=4ZgC+f*y_B_#X(Xp8hh#NfyDZ ztK+s$)@qP$6lqZWx1~vWa){ejMzd{Gv;?9yuMs*^vrpo8SBh|GqIQ;&26QrvpG?sv znw*QRcZi7@Zu}g*RH8z^W%KCK=g~`}xwiJarAdv;AJ9tjgSIYwUptMTOmcYd?^lw; zI(6?Kg$>8i2%FU+X<2#G;WBcygg0PA(&KxA_z zXnBvGEd88&VVz>=b0X<`OXb@pg;Y=I(teaz4A=T9_7n5QEni)g2DR7EIAMuYFO()} zrj!}<|D3zD=OCBdzSq zV>1p3Vx;3<&9+$v^ld?yx;>R5@t*tMjF_MPA;7!0?89cs@nmEZPiTC1srYRzvFOpz z)_<$z`Bjv4*c<7pqzC?I70^Uj;zmG>u+Wx$lZ?MN;h@eh<$Qs&hDOl-Ss2Mx=7uep zoy-5;K+?FNuG}pTvQUwa$9&i<5s`U?#FJzJoA(cy68M@U$)~0an+Yt3cvS{G-n68w zcr((a)0`V$34dmXm+9RJD!XJq_wEZLW4l%u2DWbU^tP2tSYP|wIW)JWAC+F+IeOL2 zNdhqvTR=N*GJ2(*`)C`aopEpQc3m69Lz!pS8F8T&Tz8F5ycZ_up&-#qZHAVOezP4y zj~=mpzOZmyMIKZ6pN&oESn|y?1rPN(J>k-?U*_u%D+IIjFZE{lFz;V)u_0=O))x{j zn6KmCGpb;sY7Vdx1qCu_@#~dDC(1}fU9UgWFj9T)%4Yj-H{o9Ay8T@2`ALw7T+u)( z?<>yTWuAftsU!SxZ@eEr#DyGLA6?bMO*$_oG3Y-PA8(A}9toJ>jg$o+(%0ZFE?%a_ zlRCNZPK?6$y?xZLS0^&x{{@!nEw8UPR==SPFMo|RyO3nr`uI5VVfGc@{j2S%gk(27 zy<0^7_sg?ThLFthI;iSA6^y1IB#mpjuLOqc+oBO8<5JMj%`tUFOSr^sU&C|0B)}dO%UdQ``^_ zr;|(%Pls;KFL%mGuaPm5Lf+VTnfxu>qSO&h-;Ye+mq=0j%A;==dNb5!b1HOmeKyfb z^dsaY|K-#T28+jye8=c^bxXPReHux1 zatE7vhEK}c9ur-Xl);TKKTnppy(tpiHB!DOMF*uW76tDOWu7@SvrI7|{ZwFM_=}6& zZa4U?&M(I-Bt zbB^oTijy_1(QIm)#YvB;vajN z(lGkpK?@B5!sG&0*-hxk_kdf$fDmb2;u_XNGm+r!(9@8Pi(%bG?D#Y|t*zbPS(XRU zq(fr2GkoX^VqRue3g!}45uulo#I%R+#e%?j#1-*?=$yz)s=+WOnHgpvX;E3YmuzV`@uPu2vt z`~fzTaKiSlkN4O}DPsl@L!pE@o4`l0lc znFizhJli2&=(nNOf~1XjGDb=qx>`=4xyT5ffYMUo`2U3t0r8}i1`#p_9T!?ziS5bv zUYvbnml7b0#Z$=xI823H-2N*$7d~P=>zd+|r+Y7EFeNmjbA;=x7TN|3P_9 zwk{g7MO;x-RIP|(CZ%}@U*6P|8LW1DKdD85{sVCT^;L~^HVc8w2xFLVJv;6SCv#k@ zqS#^uK{`RqgA4=PeQJ5=);W3Mvyi_c5CnF!Sp!Ne3A;5O5xeVul4r!9Xv#)EV-1mJ zn~zXf9ynTC$B#R6?pYadX{v$z`p91eMf(Z-c8IwSh_dv z1CFVW(jy&06YW)d(Nor&?rGWpm-PjTDhmu?NB(odL_0I#r*zWm((Chxti*C zsrXppmNJ(o4UM<=RxeZHkgz6JD4{*04&ZqzSNiG`%68sbSy}s5b2Ig<=Y5}d(P`4O zE+ULfS0yF)L>aW2|8RtQ9hl)1lxYvaoPu;TT;bYjE$t{X^JX{N@XgKt6Qza5=_elsJzNrB!@9<1Q<+o0k zix1bHWN1@E!tMM15jexmF#@4sp^jXkL~Pcifu&X;MHPada(W}rs2&yi;)NNwqa?4q zK_mwDjIqzjyJB9k350Y^a}A8B(=gkXaUwiQ-t|OrE|2fp9q+Hz;9hAs@2-!M($e17 z?=jPz^+WUthu>dfLj36i@Cn6Ha?y8gp~ScF$-oO^{x(i|#CH4=&iUua&Z|wjjO9qb zZt?4c1<|ylZ;5B!_WCr(6X*r``VyLXsGN$1DuTPzRNK3m>hlmKiqp(nyf6RhK zVeZ-LcArg|f6HYB)-y9n5mOwc1QaJO`n((KO`=xie>WHIFUSbfKg3r`B?x?&K@jJ) z1-1ZZan3F=t1x-Nf1@=W%0oNcdFpqB8k{KOBZ?p=(#$u`37NBk`#355yAM7a+xqdA z`L%MRTc*qu=3R5mTk~Ppb^5c_N()}8%RC!Wkx5n~E{BOG4M-BKgF5o5{t^ac`gdYH zqVDazR?Z{$@Y)r>+?`>B5`U)Re>2!&S~tr2F?UKUQuFWXZ2Dz4;4S_J98?n%0* zNI;6gVbrIwo{O)4G(G&r6FTH85f!PoZW6_I7?TgSD09YmU)6j`oHn{aetnAie7p_0pr|f4{;H=awLh`>t+mb= zw>6(;d^bVz-9+X@hk=l`vqW?_X83;aIfmJwzIc(__4;d(W4x_JIXyv)m#!<>zcn|m z{r+-WC+VmWy|l#v_&d2`w%ek|qGFamcWmeA zfA&Tn{2tyVx|r0?_TrcvPf0%T%XP~My2EXr8ri#VR~V;6{;f)j6FGilsSV*$>5~B} zWt^{BGv-$|N$^53!DVQXSxJtkoBv}pWpCZ6dAC8PK<{>F=)C2{^X}RUF~wwJ;&#H5 z-B~sA9;$ZNYoDd=TXk-7nNc+{kI(tnCik>d7QCqvl+zE#lsqZin$-?A>P&2Cd^_Lc z%n=jxk3H!dbxpL0w_PSO;*9^^B|m6uPVd8gxzT@)H*hx#!|;+2Z(teC3~|PQX2CU| zyg$nMwGA=@T_Sk)GR$Y^>m{GoCYos!pMc{riuO^iem1^7HDDNn^y%&PIe}ocIKJdG zewED|1)exeA!IYtO?tv@sDWE^#7%GB4b4?vBFQs_f zg6^o4UuB?Z-a)wSpoP$Ggnfz%@re<|+$l1W-kq_Z$3NtYPql2hpEbpCwSniYW&f4ktJ-A&)qim}<;(zsaF}fl0PhD0npJz5Uo`v0ZNHOzJuNW!6|-HhiNsx8k0u z?xz2?@vHk5}2wH~8I`|E)OHx5qBD_=R>$;-&co zn(gyr9TScoBl<*$*oUCFSTQk8iS5hD5;mL$qW(1AJ3q(IX6|h*nUO{Dt**%}G#;Ur z-(SqdSv|oHDd9J&{&|HlQPqh~J9#V2wdti2TF!bJ91Z zdOKom><4RQBgSv$i_~aJGgh3mCyX9?)cBr)8#)KnjHkEH6REJH1$O4>GpF!Y@lMnn z+B%*FaT|K|M@$`P^Yfk)|A9;~p?>|()(ehRV>y1!Ps=mqV>ylJ zX=!=h0>^6s4?g{D9Q%g)pw$-5--#pnSv$DpGTK z@M=!XC4bdOU46yc3wGj4gGVw7%q(f(liLp)C2mBUno8DS>Use?=Y61wbJ>Ygo>SE0 z0m-LDdNzFfUmjveo>IrvO!5FJZy4{`{(%Ea=C(Nm}O-!ED z!4Vjsq>wuhCdEcMWweT;@iI2V`j!eb26p%U#4JH_%0qv{lN zOrQp(=COubbo|OIU=1I!&GY2R(ut4ueObs)DMp?s!1pwI-4U!0o_l)m@>4|TtH;Ki zlGA6TLb^88i!aE_`f-FlRRWJzOy9Pvcek>_{kAQK?TESL>MsoQjv(v4O({#F7>;wP zOBDx^dvGCoB>mcRA3ikqxm~J2n)|5r*n8@kNrj)!I8Cn4A9ST;oB>@EEP68bA7`f) zbm^1QGUDKgOhV*tur7VkD!4`-@qD%|-a@{c+JWGEt)|X{ z#fhv^m+Pm^9L2>Ny-WhGwA$gKJWC=F3)0d$kLJoH)^cmWAFZok8A+b(F3afdEAU$(tQNG+5Y z?NEMk+@G3}NrI07*e@7^nBkbt5955~*krt)s+t;fUOPOKlauii6w48JtxqV`zU+>)VDGN)PKEWF;)!4E>uUQ}Eu8s?2YTR!YG$Tjrk_cg8!Te~eWt&?W#N+rL zgqRD}ggasjXO(`0JNj(G5k|sE%yG%!H-jUOvV;`R6Tr_b2k;tfS9Cy2UAF^Tvemuif6gV6^jFC5%MM3j`8 z3;#u2I)+XPhJdgOJ2!aI!2#D*!=349%#m23Ofq&b9d@kI7SA`nudyR|g^|LzK5E5z zA>MrADc8fJ*^oS}8)T1ao}PA%>~V{TyoClAJBkf;vu^V}G+mH0e~7UgZ1QiHl6ZxM z6DB7oZCBt3f&PhH_kUwfH@8mk@cBIoSB83hIc>5D0^<#WUtaEts?(o00irH)oruQR zX#LjkJE1L7q3+<*uUq?m!)7uZZPI=(iEkl~*V%ip_A011RZ_fx&UYD1L(s4zp`%+} zx(aTa=+bX}L_|i#^E=Wt9p>r+UD@ScO}mu_S8Tl<>5kg?)Ajz|=p_Czt;CqG{U!+hh9O$X$uT0;H?+--oB24|6#m- zy+xxQ+T!$KVNX`a@boWAT&;6b$8gTEw?Em!`IRe$lj@6JTl{`$(Zye~#_5x^R6Vza z>C{xalee=-La4m*|0VN+(?P!5zvNK-cEi8_lor_x5U+goBZolB9kg+qiLZKZ)UQi? zwEVo@Hry!T@kM$c{L@qFprHM#3CbKF7vV+WXii)cMMI*P(d+*jOd_*O?C}ONGU99{ zLBRwC6wPPPLg<6d+S&;Q^zrb>*TL^`R(6`uZ5Y=^91Sckr~6fj&Y zuyvQ1M9<+O4Uy3<3DE}mxp$xRwn&G9tA$8~W$hS89ZuelP@?rQ4}v=E1QAG62@@kF zsNw>tsAvuJ@=(us1eC`xwn+NKh&X3cc87Ni=5Ema@VGLY5YxNu%P?>I&0Hq;mcx2da?EtVRXMii9_HHV{5^0t1;zCi7~LY!xPMLCFKe!M@gfYr{s9QgG1oVmjl104PN&McJ&pMwaA z*ox1~%M@OcP*MS1&9SlM>Hy(2m0(;lU*YTU;eYioNmb40_jS)%GI^DdzkPqQOTg?} zB}tlezwshat#jDm2|h>=b1U56MjvhSyy|3sym|P5nAmXPfw1qsv5w3$EkB8CgqQ?( zWi}Pyd>13*^Oa*S&yBm5zkc9LetYzUP!jxEe&oK}%Zrr0DDWAsT)e1H9~=6b;a}lY zk~+2Q^j;n`lC0iRPLLeKzw>>)DfT+jF653}?xModJ^LrA z{y{#gPB@auECD07IbBPOED!BQ5-aphgwky}$Pvpb6j!YCeTf;9(z$wD?Ve5d>&=Rq zSyH2I3(lf|?A@pAyRxwJQ7C1HHw z{@f+jXD+_CS+C^3I@o622yHY{92t$RahYyqdC0?Ku759EJ8Ff9D5V3AOFNx^ZHK)6 zr;PgT#nn zOn3v1XW#qhY=Au&4UgQgq4D9$Z?;aN_N_?P6yctHVg>D}5FL&=XaxtLH=>P9H@fFjbxX_OJ3=8e-9_ zvtzH)-tH~D=|vzp?j?Ljatck!R^HO>=|mV^Dz+-g^j1FnTlWu1vy~6%JbycIPteHUAI3J zq!=x`0lbEcw=w!xCe}yKUJ4;eTC~0IY;*W2U zm*;k=C#0_)BquWJRG2wJNfdAZ1} zPibs6YI1j_JBteR(#6H@48rAM%&~G234NU<*c!ATco%|~7rrk7G)VzCtioYXJ^IJ1 zo*Pb6QXrNrI9B8e$6(<^$-a3WBctTYmvA_&ySj>su+YIlQd!;+U+MGxwvqObdXBr^ ziEp`kK42bilRWy0PVbAtqqy@)K_rFsTGMEZ$A3>-L=I{Mp-G6V>eaRTlyHWdNBPuY z2mF%UZhs$J|qZ$A`T zh=rlg*J^}P7lug8+qs{<Dt+8 zGsL6?VJ@z$tc=9~l%cS& z@CWU7z(DKq>sJ;!NTzFM41JM9M?_2lI7@BVC%q_|LL+(Bx}&)NT39 z6E4nEaGHv_H{zD=>GQ3(il@9{?QnN|do7l$@z3cSS7?X;DR{8@S^M7_ zPB4AaK!HTyII94!-LIZZ4KDCsD#md*dH-*0=s7PKkZTMJoQCA+A3FSE%(Ajdf5X|) ziA^{8z_qYfi;#%O0XYu>XVa2J-NN&@_x|FCF?9s)cf(16HfUe)(y_9#l0dKNzR=jr z8zEP1?JIC{`vWwnE?{AiAMP}4!KqCHr_vB=p*sUPDIyv&7b` zED}Us$rf4vYH8&GBh|3!wX&K+>(zn%84}ChrUQ{EIssM|C{bdZn+&YOkIjJ;l2}%T_;!Mkz%J4o+VvP1tEs;i>;9cXcazm_&r>)c33*-3Mr= z8{v*5o3LH|5*paY(}06zfeP^PCa^O&7S{XSOp!iHNhW=L_R#_t>+UdJv;FGRYo$N@$mxMlF=1E4;b%cg*v)M@Tpw}EHrL7y4s=DkHti>|mOr4BPcR~a$#J;=i~*UlxuZ^)vilGw^{!! zzC={%AFKp1iog9G?yJWfML*lq68;2~(NYV}_)69XN{6)je}notCDO=?vI2esXCskg zk91-dV9gV;qcqRggzrzmhp%ne7!mT!nd#4yv1xC_KrNGIleCWX<-(LXVA>u2+OcXHNw^?d6tx6$3{D{DfuN-txmx2W?v1kv!3K7EPvLVqZ#;rz zFHF9{qTr_gP=ZRiarXwTNE@+tif#7b`#cGuiL;I})?IM;a91iy!NzvBcmp(~SYRmz zCMMGU>?=^qR)56r2Ixl_`qVIGLZ{zni0Sc|d`xBRMi@@;_;0T{OAE`kr>9JNiJOd8 z5)=%%MK0QOo8 z{OaH+M8K37RZ#ssWzBLbH@@6@-Ap|{g5eGi=3C9`Ohb_gjoV0Ddv0*faE0*dX%=E22w9R~1SJY<5A*i%13-RfF_)V(1yfw+xP8=jFl8<50jvbn z-Y{|o51#>REBlOHI$ih!+`;T#Q0(d{Vr7sz3dp7p_XIoy~g+m zBLeAyE}Xj4y_K^~jn1;y5z zPH0_vN9X+|pCm`4?)NO}0k%;T*s5QZ7z9lU-mQ?W-;+e^SPmI;dtY>apAQQ5aF2su ze@3U34BEH$<#Vb_F&;U?hF#}kvijw8@(sztzf4uPrK`_3lpem%C3M8+GI#p!)R%wx z_~z&Vgg21eb-t_N{Jt>N+C4(ED7Fh{;U$IaClgni+YC^FibDE1F~-fQylw~E$E?0? z7rb@1I$L4S)L=$P#TESU<*iBi5z|Xkww0&SyNPBYDCYZflc8ZJF)qT*eXp>GuSU93 zv33WZlNoG0Z7bxicP>EfA4`T#$`N#K?}vCV()al-Qx1ud^63innRceAlt?a&J*sDV z0YkvB4S+yg=7-G3KAi7S`MMJp27+Oon-fb$uUoo1 zvY2=`yMBQ%mw=ZjY!vrc+rDvt-%sY6iM}lwGv$aVwbfZ#Eq}9NMC%~o_1f7$mQVWN;XwbZ zWAUXUf*Yg9;lmUtB-S6ZLQ`^U^yjzRRbiW%YQ zol(mX$zui{NqZT7IWyCqu~0>Gg12o{1YYQMgA9~3Evs=1kDpTU@E{!~_|`QF3JQl= zba*(4asS-ZPE#dTCOUj)PL z4gtZ8Q)jt`j(gQyOMd3FQ>oXkzsNeaBtK%#oT^1qd*03v%UQxO`-I_GO|+wMwe zUyZatETyKXpU^Sx%Bm{kjAVPH{EnSIw2mwZ&?R+4VaXQZ)si9Ni!t z7Y{M*@h3hi@fA$_k}m$RY)?73SseMEww;)cOW%`lvHz%{RQIRIJi5Bj(s+sT9r{a= zWo0Q>>p}srqX>D0xHBH95)Sb+#szX|9yB=}E5~6!A^SZST5?J3%`2v9i=Uq&u0AgFIsOSA z0X2Zv)bQ=6u~PI&{C*JT&wk~ZIy+4hq4dYzf*Y_RARJ8G83~_4S9a$B>54?!;?M4o zZt_{Z6|g(%S0uA5kf#*Y?6fJM>q=)cbhM!Qa#V$)xI?Y(i0P<^^=CF((GFeuZ&^`u z?8a#mF@0xXNeqUVJfpG5uaM6&pbGfMrMce6g?3l20CmD&b|0&D{l`l!PF0}K2z}7X zqj_+QgH5hLf52_=Ek6Z!uKzQ+!{;J|8Kcf(wr^Nv{xHcU?WDyPYf>OyX^IRlJq#3+~V=XDdoLuJFA(*@IlIV2yP!h?>XDW{) z#{xr{F!k?kQ!M)h`Wl7?&Wo>7ouv@-B*hCe)k8U><8OGY&+dBimiw5T``*1X28{m4 zxjSkztu=*IiwvCG;vV$5xXq2#^Ql6!P7nf7DH;g-A#hIXEwR=F#v@Wz6&rS;0*Yg5 zK_~}{T}1fl!LFNIe1#z6CABB~&dwH}NyNH7E4_Zu-U5$_kPvWs17w|dyfUu;d<2X9 zW*81R*z#f&2t2q!W`d;mZ2`s|qW3>W1pR0Jgc;adFh3L)!p?EJu55mbYGDH7Y_e&jXWWK`Z6% zpfp(KI0?s+{T4W?PyD8}5Ml<&A*6oFZT|y`Z=ll z9eC_8asY`F7_di}k3fZi5!i1Ea{eZlp^(omEj>Ja4wP$=-kUWUG4b!8viC=-)7;Y* zo=5Heeq7%0b$uQ)nMlhcWTF1X>Z>l9Z69fU!#Kc8mIsOhNU@>h$X8(1r&@k$9~JWs z?>EQz(?{Lmvcg6*R5H&2gZm7?Lc^&&;z<+8|kZMkzb%69ZoZTT$8;WFNK{sY% za?(edI);+-bX{(8jL6GQeKnI=bu#b7(t(cGV_P#ox~Z@4_`xCi?Op(>n9H1bJOR9i zxaXHhlke}pcEIXPZ2-$_W5KkBT7&Vqxw|fl`u=2VUK;ZrsYAmqrAA_tO_n(l}BR-9^H&cGH86f`ebIXUUrY}d~Gr=ap9uC!w z#sVl{_t|&S7Z(g(Nm*YE#m4QharIxHH(JmQi#S_riHMV;dud_6XTOhety{GPwUx@-SF2uDVB;ybGnc46-)I<{u z^gQpLj=Te>^C?t2^W}%soK>j???zM+XO_LbYh&*8IYTTq&W5$VhDWE&U0$HP4@Fe( zf!@Uot+0QUAC4+Tew;rVSiKu%UPRKNz#uOV;RI|bn)nF3j1$kLbsbqRDhB?sXwYvdyMtgeO=i39>8H+xyVdSl}YO^ zU4^9_|HurE#zceC+k@f79|F1I1);F&s!t&BU_`-V&Tti4g^uuGtX-;4{#C3emiqVl zF#3cLid`TIMt4gCd<-N9Amvor>$83LY~?0P=lwt*X+h{1N>t9E=Fd`15|P4mi!m8^ zyee6-@L*ti7s;|=DRtwJLKSDv5{&wCx{ z*#8vWjxyy4J(KTI#n7kAL3&XBsJMOgYG&ZU9!&^YsMx45lYwWp1n%d|hhhfz;TB~G zUA3vJps+5-D#ZXw5hD-+c&-b(l}3cu@%W6?$nGwO4!|MOupaNs&1P;B1ly}bX;iEJeyd>=}kD@q!NlzCEb)u&BCkUug^fj=6fmsmu1-fl=NS>Hy*ZuRF%64gcKCr*U>XPj+^owo$K$|(CwtU%7PUrLHz8rY*9qA|AX?=!N-I8 zZ3^v9@#x$5mJAThoQHcfr9u-eC((;IEmB=L%fHMs+7scq+eTs4^CYS~U4reV%*%8i zI!)b_nZUpxJfWrxA1_D}?9v~_ULfomQC+OC6IbU;Uu^-7RGtU6l&nEK- z$v{*3tycu?Wl?UMp%LY2V*FPsoMLardK-0>LH|%&ptU9osuE8bORSQjPOjpPI-X*s zyTWCYvGL(SRlA#G-wVd8X}?A!hPA&>KN^aiI%d+06y?fpo+77kY|}P#$|-TkKMueu zdzHztvG6bY0{A(+B+%RK9Z7gY9-Mgr-wqzmuJv_Jt96;P^PF&2(HwlAMwd__#Fh5c z5t^Ed5C!T3?$WcKeSEpLchoHwlylz;|M-O4p0DQssd9CYAVl#;U2m3_&;*LmGsHxstGf;zh-_l5JD5X6W&t{Kkmow%t z5ieZEf#L>0`q=a~7UpSPE?h_~ru5h!1GTE20w(XBysa{8P50GnueF8x6itkud2Q4i zu$ZSi&K^Ry4s?nBGz41@tO=$LS%Mzl=%S?TFD0juKIT;H%>+!u34G_7`iSFpkoQ60 zrey3JE-vGkEO+a}7X0(Yk7|M?Mv2APj*ghz3m7?O9Tu<7(V~&jgNgSy#D?+gYi#pP z&em6oOhO+YRvBZ6x2|P&Ri3hSc{dOrZOAus-kX*uV^u(?ylaK})kA6ke-Cy23?R_u z)S^DOP6rbTsyJ|{jjc;_nYT(F9P(ZY*jn3k{PDG2s)e1wkQ8^eHo>qq;oZz`j`QrU zVcew_G@kb5p-3NlI?L8>81$Yn@l|f4B*4O#wJ&-y76NlKg=t7BJgykUed zs4JlA5t!NIZ+fV39t_^!PHl+NxmQ*7v(h zMn#F?3!=%PZ?ch2pTQ^SyD1e+QVhF2gUJapiUvWf_fEV;JceQVTrfwIzGxgsio$D~cw$9-F{CQW?2 zKW)b9C$!{5DU5IR`(}J6EEDEz8kZ-RAP!03InA&c(A>D*^L?X_rv`=K==k0s%In&X|S)*AJ=|tbhdyAr3g$>;C2P^)^U^ z3R^eN*V;;-D*a_UD7wQFQZcw-*rqnhfDf zC3$6KB|i(Db@SKufI82IR&PWtr~0 z@8}a5d@qt<&JGnrk0SeS&}*qyMM4+83KGnWaiD}Ky)lI33!s!IZ1p7!L{hdrwI(k8 zSLkEf=&7@%+98i}jX58dxeV(H3A*n(f|BYeV1(o$1%%mHXS*l4Gr8%`{tSAV+Kos~ zY6|3fGC>9a3Op+V7U@M^8+J$x4N~Jj=AMVAf7DcWml?2NeT$D{wv~`1)p*wKg=nY% zUln!rHWA0Q`#n8424Wn|S5*rDZ91IxE*}-jS(?)ShFu`jfD~5gY@xuiJRa7VJ|)2= zmEQNU@}2dH>5s2-#*VcowOXXMZ-(Mx?T$>};PW{!J9Cp`w4gmHk#_YS^}3)Cnx;>w z{oOyJdI=&JAw7E#H@pan3hrA2|6*F^=#%YB6JDL# z^1dx$J-j`!frK*HV|>Z>0Ofmth)g5Zp`HcQDNOX7qdjV59{~ zDCj}5fWY|dIe?NH|Nil5;5!ZPoePH+1(hsVPki^2aFyhQcy5g6TUFI>8_ix+}cf%aPS0o{WtIF(9_n_fX7w^{NPb96&1X zf}x?|a|1Qq!7_>uuANn*oav_N*sZgS-)(wc$4qt*$b~t^)9^(ae++iV5fHHYR=(FI_rGRFB(z>9~si>_2o~|7cp=rQspFJN!YU zW`8?J5p;|8kOjcRONwyW<*5@TNu?{N#1@RbfD1b#QT_b*+Ey^z8)t5A+FB{nJ)Jt- z0tML4*bc`z01#*3`_rI^YYd7eJa^uOL2dOhSQqSgT263E6LZ}y)^Nh$!ic*US3`X@ua>!MJieKXkM#S z+v$@ZJ<=?sx`ooz`^A-x4iI<(x_BXRvMskwD zLWX{s^;p=nl`GZ~qnlvjEJGI2v!7^pn>Yz+W%aAOrH}bE_?8$Z2QCZcn-jDUW{vg>P(Fld$$8jhMu#7fS`wb)^NMBYZxlqzSFH#Le=?wA0 z0n1W}wE0N3pj-QyI8o;w2LC?NQKGT#9d+X+wL3g(*dk;lmz~Whsfym)tJRi{QsQ{m z^GbcxVR&w?#5C;%pHRN>97qg)PtsItzhuAj+jYdL-a7%X}ZhH+Y!|j)HZHmP83ej_N8;o0nZLmsS$UrRQW#;6(XxYuItcF}| zV4wr!Ln%pc*J0F0I4p{j`OKM@I=-bV=p4#r1C26q`hRECvhHu<0{a!8EJVnH`TWyk zfIMyK6f?NG0*^t#H33H>cR2+dfYNClC1*bO$%g+rxiRh1`e4s%id=2n=g$T1z1i|f zJ%5D06g5F9JP{XjGD!%j$YfCNFIz`P^BO5hZ(0!k1tg*0!E^!lo#L%drb6izTD%{9 z=q+}mWa`4GdqPMCEMx?QkhsRL8PNuRh?R^KH+P)@G(}aZv^H8ju??)kU!PGnmV#fM z@`ExqJG;kwCKVL{OY&ST>{|1D*7zg4m#bh4e5D6ddTg)! zdsv%sz(?ic^eZiol5W!b?9`9?HHh>T-ot35UGc@&A*Fhvy?R+H_BR^!>Ht~~qmKR; zR0xi#nG^dv<5e3V?!?*pgUQ>l%MV2nxNXJ5-(*xv0Ie(M4Pii&Ohm99t3C>^4y z$JA#)<0_2hiYi;kOmfmwwjUU=`iDz3g>25N29il?LX_~`sxR-bSt*#{n52CAW94o( zL+e#z+6^HB|IxA($WQa~YP-}o5egonn}OuX)tWMJ2#|D2`%OyDRN#qrNp)c~yzthi z)lO-3>f&Ed{-?~1V$D#0f~(nk7cQy2cP4-mrSooVq_*6I@38~}m^(+UzUHK820|rdT4R(OhQY@qT*vc8C zD0i=8IV?Ht|SG2=KFhf~N~e~Sc_fvCj+DjeKnu7|_a9*8+{ z;-bmgY>GZi|C#csMH{CaElDaM zYN5_DCG2Gc^wV|^35{=U6P;U+7R#S}W2l`AY|bAJZnDWYK>`XA6$>~I*iEd5p~zC;q3!x4A?f7dYb!}GPb91)-(p0x zqM7J-cExoWDsU>#$W#a>0^J4hVVPUg@rWMmc-UmzHRQ6GuZtEot~6L|49+U6m$%pZ z*X-c~Xgl*7W|B{DEU)yfS`xLKzPa74O2l1`U`5S!>siK1?&n^kHtNXCYeu~spB37d z+m}jYl(TtTL?s@QY0EOpPjVqi0Z(c9y2x_vymLVztZ3F5N#;wkg@aap67KW z!NqjIY0+rS>L`g>_sg4>KKobJZ}v@})-GM;eT~yOgg(6~F@K-EDZbOyv10hOdT6aluM;jr_KF&)uuQca;|uYi9An+lARoCmxP${gsRao z;^yto;t&fI-pO`stXe&;q+ZrO?~hWM5$B*G3yS_o_4V)m%&v^c{q>}|mz2p&LV8oy z7{vOjUrIduT+R7>VJR{jpFJ3bhlpOV91(;U79r?XIe(a_nI1TmIaYIdQjyq`Zt?8{ ze3uzk5apxe=!vl3Y*HURoh?PBup!zm7=WeqG#|p9NWr=HN-JVeEXHy1+Hay@zVb{Y3jjtYi1}jFvtT?Hh zcAeK&XmwMxl#o#O0jUH zVnY(be-K#)WKCJ3HXmhHW0EetFPC=2*pv5>c*Kp#Qpcnudo^$kbeMZa3ZI^*IGp{3PLBH7wim@XKd{bwg`aeK4=&C z^3ro(pZ<5@{)Cer_pAh>4=zszGagRWIKwx%6GnjqWSL+Hf?%E?0zBO>_V0Qb8m}kc z8E~%l)q{wo!+@E?RM;x}wG$7Lc768N#ufy4()}K-fnW(6hp`qSBM_q{dNUi=HgdN-e`vQ^bED!sQR#D!pAdG7OGwb*uZ}ejeL0Gc9B9Y zovg1ENU5F%nLhBL0cViQ-rkkH`~MagdA!@tx^H9whBTqPI{g@*HcxI zRF)cNit&DDo9xVokCmm?a8nK3Jus8!?-h2WN0sPFI!V5JHhIMP*mwuwY)p(fY53mO zi~7Mux@9TAPX5bBW8wJ-=aDQZdm&Ro02QA44h98kAl;1|y+jhknQa> zRQq5ifyAV#9{`%`Chh}Ml9q?E&OmZ?R|biAknDc0sFNgU26h$Q-}uUvRRU(x0<&*+ zuBnw+H>61P6us;Vjh#81!WWz}z=0y(zWQ8g-*9n@x0D0()u(uOOt{btQeGQ4;2lpkkl(I~K$O4-tA>qK|B32f|Hfl0< z6Z>JJqM|~t(yh(vosO&a$DPpmjLY>Fp`KG5vJp6s&tzzq1qy0g-qo)%femGTyneXi z`5lqXB}J`5IaJRF{1l*Ubl(niB#~J>G5&ji-`V%F9ARjV5>s>77zRS@kSiEnK(z>b zFhShU@h%doVM?Myxbk&pojdfAj3j+}1d?tF(`|(=Ts->399#F5z^_3d@L`91n9l@@%t#aE znPd{EAi0%az81VP-I*P+v*0W-XT+q~oi>2WXi-O?%b=sn0K4(@p)%}6NZMoT`Yp+N zeBQm29cw}kA_w?Psuri#e+BICjn5Tywup_|oH!mC_VJs@T;zisy;7%G2|Ahc=j~gd z`T&S`F#C9JBidi~X?H)Tz-h#;&p4pxx>gnaqf_mtwyfB4Pa&&_?XF5 zFDoSq5xjVz`>1Xp@``*}vhbluY&Fm}*due=FbfXn8w_cIsw8Y>iVwCb$&$Kxccuk5 zKW5h&`2szPF6oM3C3<3NsOfXb6K&VY4iY!i1!7hJh1k(zI|y=P4zsTS249L3>Jel8 z_rqN1!z(-J!+}P%L*j#ufJ_M7qtOqVU4CV+?x5hM!;a$8c&K>` zrn6I3Q}0QEqgI~zwfZz^JsR;8!6WBgKK9L`#{!KhFy}Bn7$X~KcQV}@8?6w#FluP% zbD(G0Q%fv^gKIP-zKKcpCSY;}`qP3EqCd3(FCNC~h%l~teZTDH;GBQIS&q$qp8;SQ z%`N=lKvsuiIn@8sr2?!S;7xKr-S{F6^RSbcT!%|kq17gn)6+rh$<5Ti!934;gITf37#7QepVS zaF$HALoGp9VIEZ0z4Pfs5Wfz7A~+%Oa|r}BPY89~F&ggr6WybijMIgcgf&+qQLqVQ zL;ld+4nt2Cc9`4CfLPZ0KyCHa$tEgHV9>q%Ip_z!hs7-YPQcv)~Vuij{K zM!#~rcBPQ5o09UGg<8uPF3QxXDKB-Fp?hcifONWtF=F?G#Oz6U>FB2XX+}0~xE$w6 zQPcFTj~xPI$iM_Og0co|Eoy(*i178xC(x&mW5?ld<9HwmZdo5hh|Gk+3-<=dJ0oWu zup0Y0XXJ5f@IA&(^TdPI8Q#Aa;4Esf#G=%?gYZSq*2Hz08T0c?`@H<;p(T?Qv4kF@qG963D{)x z?*R%EX0gZ-=HMTo9*za3#;q-^%asVEuZOsJkkPaUudG-QH3rvNu%8w|u1()L|HF~* zhsisGm&|=u|1*C*A)QthI-&DNf(uEe$%2q^l_pV_F>Tl7HWhhku;=v#|1+DRvKS!N zXZZkwy9vCpic9z*UkdulH0$Jt4-oaAGSozM$dUlOfIfm^Gk|d(wfp|J$FToGs|P)> zzYo&@%GYN#^K-E>umHXkNZc@ntmwcU27Dp-&`9|2sqz21$gpCS8WBX^1SH^Y080AH z;0TC}$-owkNDl0L2uVoRmJi*$E_kb34prH}^_Gz(zd?xmRI4EVAow34mJkfE z2IC^??KOaXp`rkIO$8m=u^p0k;KKh%>-Pu{Bg!hgrH~NuN1%QkH;a;yyc!GhU16&!D9UKY^LRq#D$>twNX1LI$ zKXSV)6C#J)Ww_7(dHsl{v;kljINDH9QYwJv!zPdqfc)Xu3p&!4Bb5^HvM+)D_4~)C zK=AYV+Sd^4jhs(`1J~Hp1U@dY1mIgbh4r zkHG!sI*_r9K(4P6%Soxug%fb81P5_m_Rb6+y720t}~Gy|v|LI{G^ z{qkB5TNJnh)`JSe-J!A~Xflr_FqP;9!)h23Tfd6C!LdpVR-*IZviN(gr|}vUr>ZH8 zR^&9a3vNtELms5GgTWVa3yK)^;Aw%Z!hne5w!I6EIrXr9AcHnA4g#lGL1d(F1RBLB~*Vdx1#}{e~-GAq(TL75UYG;U>2Dy`R*uG@5{j9x{`VVaPLmMHfx^ z1H58Tgas@r^LIz^@Oq#RL~XxMHN>d+0z{O^9~Az!+}UDj{szLNH4i43WVU~>J_Rp$ zsK}|nHOseu=AancTbide5Sev?@q{nvwPX2ijuVL54JiZ3&|6BdHR>-RFw{>Cd=AuL z*!>>JJbHF|4m)h)l&mj9awjm{zA}8zxt-ID5QQ&qsQ7{h2News5-Yh2;Zs2pcBk(r`UnYu^C+7f!dh)-6Y65m|%K`X_ zSXt?|zq(aELHVY!8!c_=zT4p-XTR-vW+D?g`+=c28eq!GVQ~MgXmBus`lI{os|2hv zc=N5v$Y;S>!uaWKuH37g*V{pCzn=&GB z)1EthnGY6LDS7Zi z>jz^ON!MQ=Hw%DY2SvIBpyC;p-0_jV(0UPis@T?N4=RF=t?UV#mKS0*L5>p-Pu!RI z?VUW3Fx|1dpicgm7f70J3#;isrAM*MAhrCR`?nQf$BhKADjHp2KXwURTakGMSXIO3 zUuFc3rl`IM?tIa3q%h01=QXI7g3`SVW9n2Um?I3V+(XVm?(StP?z@dZNK*xxCF-dk zV5N<0>5vT={Kblann`Szvx4Y}w-v_4+h0$v{4iu)OFZj}@>=>2$9Ib6Mow z4DJ6~uR;_6waCa0S_HPXp90`54YMq%=w>|i>5w=ra7PpZmnd5peso|=n~LOQw>_07 zIBIA8z{_A2R;F}2VE=)p%=2o-kg2+eS1)k=j;J|8y zq=k+W5}t#HwUz>-I3+8qH}LR$xq21fW)F6ZO-x7{1d!9337EyA=@SVFk(V%Po6$jQ zQ2xQqH;6%VxTE|Lfu>jnv&+N(nGk`J1^Q{UhWzm1Pao7Kw+_}9uCsqQ6Is7R*(9*R ztVQxd8_$v0wT><9EAxqD{6I}ZC-N%dK-zb-=5n<7@;oQ(YmL=+i+wPI^#@YRDQ|za z%OvAs$4@=@Qd4a!$^A9(j$%!5;`gvK{J<(X$hAh6mzMtn^g;vWyE13J^GtYSEI%1oHv%-6SiUJmOiv`^&Mh6Y7ZQBfy9zx1zPzZxuxiixeR ytxezL@jpn!!p6dCE5rTwru;{%{(t=I7C{~V>Km6F1r99uQMsskAz#7p{{H}zjf(&P diff --git a/test/outputtest.py b/test/outputtest.py new file mode 100644 index 0000000..838be56 --- /dev/null +++ b/test/outputtest.py @@ -0,0 +1,17 @@ +import numpy as np + +# 创建一个二维数组 +array = np.array([[1, 2, 3], [4, 5, 6]]) + +# 对整个数组求和 +total_sum = np.sum(array) + +# 对每一列求和 +column_sum = np.sum(array, axis=0) + +# 对每一行求和 +row_sum = np.sum(array, axis=1) + +print("总和:", total_sum) +print("列和:", column_sum) +print("行和:", row_sum) \ No newline at end of file diff --git a/week1/C1_W1_Lab02_Model_Representation_Soln.ipynb b/week1/C1_W1_Lab02_Model_Representation_Soln.ipynb index 93b57fc..a08c3ae 100644 --- a/week1/C1_W1_Lab02_Model_Representation_Soln.ipynb +++ b/week1/C1_W1_Lab02_Model_Representation_Soln.ipynb @@ -2,6 +2,7 @@ "cells": [ { "cell_type": "markdown", + "id": "d5947faf528d757", "metadata": {}, "source": [ "# Optional Lab: Model Representation\n", @@ -9,21 +10,21 @@ "
\n", " \n", "
" - ], - "id": "d5947faf528d757" + ] }, { "cell_type": "markdown", + "id": "428fc5f273aad770", "metadata": {}, "source": [ "## Goals\n", "In this lab you will:\n", "- Learn to implement the model $f_{w,b}$ for linear regression with one variable" - ], - "id": "428fc5f273aad770" + ] }, { "cell_type": "markdown", + "id": "7b23d466e8a13579", "metadata": {}, "source": [ "## Notation\n", @@ -41,34 +42,34 @@ "| $w$ | parameter: weight | `w` |\n", "| $b$ | parameter: bias | `b` | \n", "| $f_{w,b}(x^{(i)})$ | The result of the model evaluation at $x^{(i)}$ parameterized by $w,b$: $f_{w,b}(x^{(i)}) = wx^{(i)}+b$ | `f_wb` | \n" - ], - "id": "7b23d466e8a13579" + ] }, { "cell_type": "markdown", + "id": "d6756737db18e1c", "metadata": {}, "source": [ "## Tools\n", "In this lab you will make use of: \n", "- NumPy, a popular library for scientific computing\n", "- Matplotlib, a popular library for plotting data" - ], - "id": "d6756737db18e1c" + ] }, { "cell_type": "code", "execution_count": 1, + "id": "792fae4c5017098a", "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "plt.style.use('./deeplearning.mplstyle')" - ], - "id": "792fae4c5017098a" + ] }, { "cell_type": "markdown", + "id": "f8e92dd846374938", "metadata": {}, "source": [ "# Problem Statement\n", @@ -83,20 +84,20 @@ "| 2.0 | 500 |\n", "\n", "You would like to fit a linear regression model (shown above as the blue straight line) through these two points, so you can then predict price for other houses - say, a house with 1200 sqft.\n" - ], - "id": "f8e92dd846374938" + ] }, { "cell_type": "markdown", + "id": "d877986e09640e0f", "metadata": {}, "source": [ "Please run the following code cell to create your `x_train` and `y_train` variables. The data is stored in one-dimensional NumPy arrays." - ], - "id": "d877986e09640e0f" + ] }, { "cell_type": "code", "execution_count": 2, + "id": "5306a3aeca0c549a", "metadata": {}, "outputs": [ { @@ -115,29 +116,29 @@ "y_train = np.array([300.0, 500.0])\n", "print(f\"x_train = {x_train}\")\n", "print(f\"y_train = {y_train}\")" - ], - "id": "5306a3aeca0c549a" + ] }, { "cell_type": "markdown", + "id": "1f2af3b208024cc1", "metadata": {}, "source": [ ">**Note**: The course will frequently utilize the python 'f-string' output formatting described [here](https://docs.python.org/3/tutorial/inputoutput.html) when printing. The content between the curly braces is evaluated when producing the output." - ], - "id": "1f2af3b208024cc1" + ] }, { "cell_type": "markdown", + "id": "8e8c52a75e71157d", "metadata": {}, "source": [ "### Number of training examples `m`\n", "You will use `m` to denote the number of training examples. Numpy arrays have a `.shape` parameter. `x_train.shape` returns a python tuple with an entry for each dimension. `x_train.shape[0]` is the length of the array and number of examples as shown below." - ], - "id": "8e8c52a75e71157d" + ] }, { "cell_type": "code", "execution_count": 3, + "id": "eca4f6257ac4de85", "metadata": {}, "outputs": [ { @@ -154,20 +155,20 @@ "print(f\"x_train.shape: {x_train.shape}\")\n", "m = x_train.shape[0]\n", "print(f\"Number of training examples is: {m}\")" - ], - "id": "eca4f6257ac4de85" + ] }, { "cell_type": "markdown", + "id": "a0f74fc14328cbb1", "metadata": {}, "source": [ "One can also use the Python `len()` function as shown below." - ], - "id": "a0f74fc14328cbb1" + ] }, { "cell_type": "code", "execution_count": 4, + "id": "314bdb01cd4b140b", "metadata": {}, "outputs": [ { @@ -182,11 +183,11 @@ "# m is the number of training examples\n", "m = len(x_train)\n", "print(f\"Number of training examples is: {m}\")" - ], - "id": "314bdb01cd4b140b" + ] }, { "cell_type": "markdown", + "id": "7954c480ba221f81", "metadata": {}, "source": [ "### Training example `x_i, y_i`\n", @@ -195,12 +196,12 @@ "\n", "To access a value in a Numpy array, one indexes the array with the desired offset. For example the syntax to access location zero of `x_train` is `x_train[0]`.\n", "Run the next code block below to get the $i^{th}$ training example." - ], - "id": "7954c480ba221f81" + ] }, { "cell_type": "code", "execution_count": 7, + "id": "b6a441b1c3984a36", "metadata": {}, "outputs": [ { @@ -217,36 +218,36 @@ "x_i = x_train[i]\n", "y_i = y_train[i]\n", "print(f\"(x^({i}), y^({i})) = ({x_i}, {y_i})\")" - ], - "id": "b6a441b1c3984a36" + ] }, { "cell_type": "markdown", + "id": "34065d7bc1038bf0", "metadata": {}, "source": [ "### Plotting the data" - ], - "id": "34065d7bc1038bf0" + ] }, { "cell_type": "markdown", + "id": "e89956448ccd316d", "metadata": {}, "source": [ "You can plot these two points using the `scatter()` function in the `matplotlib` library, as shown in the cell below. \n", "- The function arguments `marker` and `c` show the points as red crosses (the default is blue dots).\n", "\n", "You can use other functions in the `matplotlib` library to set the title and labels to display" - ], - "id": "e89956448ccd316d" + ] }, { "cell_type": "code", "execution_count": 10, + "id": "c1b08142e0243c78", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAERCAYAAAB8eMxzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3de1QV9d7H8Tc30VAuKqWgmYmgIoiaiQSIiihFXlrVScmIzjE6abfT0+2sk+XxeSofO5w0KzN71LyXXRRLLUpEMI9ZXtpmeE1NJBVU0HS7gXn+oHYSChthIN2f11os9v7Nnpnvz7X87OE3M79xMQzDQEREnIZrYxcgIiINS8EvIuJkFPwiIk5GwS8i4mQU/CIiTkbBLyLiZBT88od03XXXsWHDhkptDzzwAM8//7xp+wwNDeWrr76q123OmTMHd3d3mjdvjo+PD5GRkXz55ZcNWoPI7yn4RX6xfft2+vTpU+/bjY+P59SpUxw7dozY2Fhuu+02fn/7jM1mM7UGkfMp+OWyNXXqVDp27MjVV19NWloaZ86cASqOsocOHWr/3A8//EDTpk0BKC8vZ9y4cbRu3dp+BP5r6J7/V0ZcXBz//Oc/ueGGG/Dx8WHUqFGcO3fOvs3nn38ef39/goODefnll7nuuutqrNfDw4OUlBQKCgooLCwkLi6OCRMm0KtXL3x9favUcPr0aR588EECAwPx8/NjzJgx9m0tXbqU0NBQWrZsybBhwzhy5AgAP/30EwkJCfj4+NCqVSvGjx9/qf+8cgVT8MtlafXq1bz88st8+umn7Nq1iz179jBp0qQa1/v000/ZuHEj+/bto6ioiFdeeQVX1wv/N3jvvff44IMP2L9/P9u2bWPJkiUAZGRkMHfuXL766ivWr1/P0qVLHar53LlzzJkzh8DAQFq3bg3AokWLWLp0KceOHavy+UcffZQDBw6wdetWjhw5QlpaGgBfffUVf/vb31i8eDE//fQTXbp04a9//SsA//73v+ncuTOFhYX8+OOPlb4sRH6l4Jc/rMGDB+Pr62v/mT17tn3ZkiVLSEtLo3Pnzvj4+DBhwgQWL15c4zY9PDwoKSlh586duLq6EhkZiZub2wU/O3bsWK699lp8fX255ZZb2Lp1KwDvv/8+Y8eO5brrrqN169Y8/PDD1e7z888/x9fXl8DAQL766is+/PDDSvu4/vrradasWaV1ysvLmTdvHtOmTaN169Z4eHgQHR0NwNtvv8348eMJCwvDw8ODCRMmsHz5ckpLS/Hw8ODw4cMcOnSIZs2a0bdv3xr/TcT5KPjlD+uzzz7jxIkT9p/U1FT7svz8fNq3b29/36FDBw4fPlzjNgcNGsTYsWNJSUkhMDCw2pPFV199tf31VVddxalTpwAoKCigXbt29mWBgYE17vPEiRMcPXqUrKysSmP45/fhfEePHuXcuXMXHEI6cOAAEydOtH8htmvXDnd3dwoKCnjiiScIDAwkKiqK7t278/7771dbmzgnBb9clgICAjh48KD9/YEDB2jbti0AXl5e/Pzzz/ZlP/30U6V1H3/8cSwWC9nZ2bz99tt89tlntdp3mzZtOHTokP39+a9ry8XF5YLt/v7+NGnShP3791dZFhgYyAsvvFDpS/HMmTO0a9cOb29vXn31VQ4dOsS//vUvRo8ebf/CEvmVgl8uS3fccQczZ85k9+7dFBcXM2nSJO68804AwsPD+frrr8nLy6OkpISXXnrJvt6mTZv4+uuvKSsrw9vbG3d394sO9VzMbbfdxltvvcX+/fspLCxk+vTp9do3AFdXV+655x4eeeQRCgsLsdls5ObmApCamsq0adPsQ09FRUUsW7YMgE8++YQffvgBAD8/P1xcXGrdP7nyKfjlspSYmMhjjz3GoEGDCAoKokOHDkyYMAGAkJAQnnzySfr160ePHj0YMmSIfb2TJ0+SkpKCj48P4eHhjBo1ioEDB9Zq38OGDePuu++md+/e9O3bl1tuuQVPT8967R9Aeno6AQEBhIaGcs011zBz5kwAoqKimDJlCvfccw/e3t706tXL/qXw/fffExsbS/PmzUlOTmbu3LlVzh+IuGg+fpG6eeedd5gzZw5ffPFFY5ci4hAd8YtcgmXLllFaWsqBAwd4+eWXGT58eGOXJOIwHfGLXIL+/fvzzTff4OXlxZ133snLL79MkyZNGrssEYco+EVEnIyGekREnIx7YxdQnZMnTzZ2CSIilzUfH58qbTriFxFxMgp+EREn84ce6jnfhf5cERGRqmoaJtcRv4iIk1Hwi4g4GQW/iIiTUfCLiPzRTJwIvz5YaPHiivf1yLTg/+GHH7jmmmuIi4sjISEBgClTphAdHU1ycrL9OacLFiwgKiqKpKQkiouLzSpHROTy8PzzFT/JyTBiRMXvX9vqialH/IMHDyYrK4tPP/2Uo0ePsmbNGnJycggPD+ejjz7CZrMxY8YMsrOzGTNmDG+++aaZ5YiI/LFNnPjb0X15OSxbVvH798vqyNTgX7NmDTExMfz73/9m48aNxMXFARAfH8+GDRvYuXMnYWFhuLu729tERJxWSAi4XiSWXV0rltcD067jb9u2LTt37sTT05Phw4dTXFzMNddcA1Rck3/8+HFOnDiBt7d3pTYREad1110VY/q/PFGtkltvrVheD0w74vf09MTLywt3d3eSkpIICgqyj+EXFxfbHxT9+zYREae1eDFkZFx4WUbGbyd868i04C8pKbG/zs3NJSgoiLVr1wKQmZlJZGQkwcHBWCwWysrK7G0iIk4rL++3Mf3fKy+vWF4PTAv+devW0bt3b6KioggICKBv377ExsYSHR3Nli1bGDFiBB4eHowdO5aYmBjmzp1LWlqaWeWIiPzxPfdcxQ9UjOkPH/7bmP/5y+roD/0glvPnm9BcPSLiNCZOrDiR++uYf15erUK/puxU8IuIXGFqyk7duSsi4mQU/CIiTkbBLyLiZBT8IiJORsEvIuJkFPwiIk5GwS8i4mQU/CIiTkbBLyLiZBT8IiJORsEvIuJkFPwiIk5GwS8i4mQU/CIiTkbBLyLiZEwP/vT0dPtTt+Li4oiLi6Njx4688sorAISEhNjbv/vuO7PLERFxeu5mbtxqtbJ161YAIiIiyMrKAmD48OEkJSUB4O/vb28XERHzmXrEP2vWLFJSUiq1nT59moKCAoKCggAoKioiNjaWtLQ0zp49a2Y5IiKCicFvs9lYu3YtAwcOrNS+cuVKhg4dan+fk5NDdnY2HTp0YObMmWaVIyIivzAt+OfNm8fo0aOrtH/44Yfcdttt9vctW7YEYOTIkVgsFrPKERGRX5gW/Hl5ebzxxhsMHTqU7du38+qrr2Kz2dixYwc9evQA4Ny5c1itVgByc3Pp1KmTWeWIiMgvTDu5O3nyZPvr6OhoHnroIVavXl1p6Of48eMkJibSvHlz/Pz8mD9/vlnliIjIL1wMwzAau4iLOXnypP21j49PI1YiInL5qCk7dQOXiIiTUfCLiDgZBb+IiJNR8IuIOBkFv4iIk1Hwi4g4GQW/iIiTUfCLiDgZBb+IiJNR8IuIOJka5+qxWq2sXLmS//znPxQUFNC0aVO6dOlCQkICXbt2bYgaRUSkHlU7V8+ECRP47LPPiImJoWfPnvj7+2O1Wtm9ezfr1q3j1KlTvPTSS0RERJhSnObqERGpvZqys9rgX7NmDQMGDLjoxo8fP87BgwcJDw+vY5kXpuAXEam9OgX/hZgd9udT8IuI1F69zM4ZExNDSUkJR48epWfPnjz88MOMGzeu/qoUEZEG41Dwnz59mhYtWrB06VLGjh1LVlYWubm5ZtcmIiImcCj4S0tLWbt2LXPmzOHWW2+1t4mIyOXHoeB/9dVX+de//sXIkSMJDw9n37591Z70PV96ejrR0dFAxVhTXFwccXFxFBUVAbBgwQKioqJISkqiuLj4ErshIiKOqvHkbllZGX/5y1+YPXt2rTdutVq5//772bNnDzk5OURHR5OTk2NfbrPZGDhwIGvWrOH999/nwIEDPPHEE/blOrkrIlJ7dT656+bmRkFBAWfOnKn1zmfNmkVKSor9/Y4dO4iJieHpp5/GMAx27txJWFgY7u7uxMfHs2HDhlrvQ0REaqfGO3cBWrVqRc+ePRkyZAheXl729hdeeOGi69hsNtauXcu4ceOYMGECALt27cLPz48HHniAjIwMWrVqhbe3N1DxrXT8+PG69EVERBzgUPAPHjyYwYMH12rD8+bNY/To0ZXaWrZsCcCIESPYvHkzw4cPt4/rFxcX4+vrW6t9iIhI7TkU/OcP1zgqLy+PLVu2MGPGDLZv387UqVMZP348bm5u5ObmEhYWRnBwMBaLhbKyMjIzM4mMjKz1fkREpHYcCn6LxcKTTz7Jjh07sFqt9vb8/PyLrjN58mT76+joaPr370+fPn3w8vLi+uuvZ+LEibi5uTF27FhiYmLw8/Nj4cKFdeiKiIg4wqEpGyIjI3njjTe47777yMnJYfbs2Zw4cYJ//OMfphanq3pERGqvXqZsKC0tpWfPnpSVleHl5cX48eNZuXJl/VUpIiINxqGhnquuugqbzUZ4eDgTJ04kICCAU6dOmV2biIiYwKEj/jlz5lBaWsprr72GYRjs2LGD999/3+zaRETEBLWelrkhaYxfRKT2asrOaod62rZti4uLC4ZhXPB3dVf1iIjIH1O1wX/48OGGqkNERBpItcH/6aefVrtyQkJCvRYjIiLmqzb4Fy1adNFlLi4uCn4RkcuQTu6KiFxh6uUGrt27d5OQkED79u1p3749Q4YMYc+ePfVXpYiINBiHgj81NZXHHnuMgwcPcvDgQR577DHuvfdek0sTEREzOBT8xcXFJCYm2t8PHTpUj0kUEblMOTRlQ2hoKI8//jijRo3CxcWFxYsXExoaanZtIiJiAodO7p45c4bp06ezfv16DMPgpptuYvz48TRr1szU4nRyV0Sk9mrKTl3VIyJyhanTlA0dO3bExcXlosv37t1bh9JERKQxVBv833//PYZh8D//8z+0adOGP/3pTxiGwZIlS3RyV0TkMuXQUE+PHj3YunVrpbYbb7yRjRs31riD9PR0PvjgA+bNm8c999yDi4sL7dq1Y968ebi5uRESEkLbtm0BeP311+nWrZt9XQ31iIjUXr3cwNWqVStef/11CgsLKSws5LXXXsPLy6vG9axWq/0Lw9fXl4yMDLKzs+nYsSOffPIJAP7+/mRlZZGVlVUp9EVExBwOBf/ixYvZvn078fHxxMfHs2PHDpYsWVLjerNmzSIlJQUAPz8/fH19AXB3d8fNzQ2AoqIiYmNjSUtL4+zZs5faDxERcZBpV/XYbDaSk5N59913iY6OJicnB4D8/HzuuOMO1q5di7u7O0VFRbRs2ZIXXniB5s2b8/DDD9u3oaEeEZHaq5ehnksxb948Ro8eXanNarWSkpLCW2+9hbt7xXnlli1bAjBy5EgsFotZ5YiIyC8cunP3UuTl5bFlyxZmzJjB9u3befXVV9m0aRMPPvigfSz/3LlzGIaBp6cnubm5dOrUyaxyRETkF9UO9YwaNYpFixbxv//7vzz55JOXvJPo6GimTJlCQkICvXv3BuCRRx4hKiqKxMREmjdvjp+fH/Pnz6dFixb29TTUIyJSe3W6c7dbt24sWbKEu+66i48++ojffzQ4OLgeS61KwS8iUnt1Cv7Fixczd+5ccnJyuOGGGyqv6OLCF198UY+lVqXgFxGpvXqZq2fy5Mk89dRT9VuZAxT8IiK1Vy/B//PPPzN16lT7JZnR0dE8+uijmp1TROQPqF4u57zvvvs4ceIEL730Ei+++CLFxcWkpqbWX5UiItJgHLqc8/vvv2fx4sX29+Hh4URERJhWlIiImMehI35vb29WrFhhf//xxx/j7e1tWlEiImIeh8b49+zZw8MPP8yWLVtwdXWlR48eTJ061fQbrjTGLyJSe3oCl4iIk2m0uXpEROSPScEvIuJkFPwiIk7GoeD/29/+RklJCVarlQEDBtC2bVtmz55tdm0iImICh4J/zZo1tGjRgmXLltG1a1f27NnDK6+8YnZtIiJiAoeC/+zZs1itVpYuXcrtt9/OVVddZXZdIiJiEoeCPy0tjfbt21NSUsKAAQM4cOBApXnzRUTk8nHJ1/GXlpbaH59oFl3HLyJSe3W6jt8wDN577z3uvfdeEhISSEhIICUlhXfffRdXV8cuCEpPTyc6OhqAKVOmEB0dTXJyMjabDYAFCxYQFRVFUlISxcXFDndMREQuTbXpfe+997Jq1SrGjBnDtGnTmDZtGvfccw+rV68mJSWlxo1brVa2bt0KwNGjR1mzZg05OTmEh4fz0UcfYbPZmDFjBtnZ2YwZM4Y333yzfnolIiIXVe1YzZdffsnOnTsrtXXp0oVBgwY59NjFWbNmkZKSwoQJE9i4cSNxcXEAxMfHs3DhQrp160ZYWBju7u7Ex8dz//33X3pPRETEIdUe8bdt25ZZs2Zx+vRpe9vp06eZOXMmbdq0qXbDNpuNtWvXMnDgQABOnDhhn9HTx8eH48ePX7BNRETMVW3wL126lO+++45evXrRrl072rVrR+/evdmxYwdLly6tdsPz5s1j9OjR9ve+vr72Mfzi4mJ8fX0v2CYiIuaqdqjH39+f9PR00tPTa73hvLw8tmzZwowZM9i+fTubNm1i48aNPPnkk2RmZhIZGUlwcDAWi4WysjJ7m4iImKvGyzm/+uorPv74Y/Lz84GK4Z9bbrmFG2+80eGdREdHk5OTw+TJk8nIyODaa69lzpw5NGnShHnz5vHGG2/g5+fHwoULK116pMs5RURqr07z8T/99NNs2rSJUaNGERgYCMChQ4dYtGgRvXv3ZvLkySaU/BsFv4hI7dUp+IODg6tc1QMV1/cHBweza9eueirzwhT8IiK1V6cbuFq0aEFmZmaV9szMTE3ZICJymar25O7ixYt56qmnSE1Nxd/fH8MwOHbsGDfccAOLFi1qqBpFRKQeOTRXj2EYFBYWAtCqVStcXFxMLww01CMicilqys4aZ1krKChg1apVla7qGTp0KG3btq3HMkVEpKFUO8Y/bdo0Bg8ezJ49e2jZsiUtW7Zk7969JCQkMG3atIaqUURE6lGNV/Vs374dDw+PSu1Wq5WwsLALXvFTnzTUIyJSe3W6qsfDw4O9e/dWad+3b5/pc/GLiIg5qk3vWbNmkZycjJubm/0Grh9//JHy8nJmzZrVIAWKiEj9cuiqnvz8fPvJ3YCAAAICAkwvDDTUIyJyKep8VQ9cOOwtFgvdu3evY3kiItLQHHt+4gXcfPPN9VmHiIg0kGqP+M+fT/98hmFQVFRkSkEiImKuaoN/1apVzJs3j+bNm1dqNwyDL774wtTCRETEHNUG/6BBg2jRogWxsbFVlvXp08e0okRExDwOXdXTWHRVj4hI7dXpBi4REbnymBb8FouFqKgoYmJiSE1NZfPmzcTFxREXF0fHjh155ZVXAAgJCbG3f/fdd2aVIyIivzBt3oWQkBDWr18PQGpqKqWlpWRlZQEwfPhwkpKSgIoHuv/aLiIi5nM4+M+cOcPhw4cpLS21twUHB1/08+dP7Obp6Un79u0BOH36NAUFBQQFBQFQVFREbGwsXbt2ZerUqTRt2rTWnRAREcc5NNTzwgsvEBISwn333UdaWhppaWk88MADNa63fPlyunfvzpEjR2jVqhUAK1euZOjQofbP5OTkkJ2dTYcOHZg5c+YldkNERBzlUPDPnTuXvLw8srKyWLNmDWvWrHHoOv5hw4ZhsVgIDAxkxYoVAHz44Yfcdttt9s+0bNkSgJEjR2KxWC6lDyIiUgsOBX9ISAhWq7VWGz7/897e3jRr1gybzcaOHTvo0aMHAOfOnbN/Ljc3l06dOtVqHyIiUnsOjfGfO3eOrl27EhUVhaenp7194cKFF11n1apVpKenA9C5c2cSEhL47LPPGDhwoP0zx48fJzExkebNm+Pn58f8+fMvtR8iIuIgh27gWrt27QXb+/fvX+8FnU83cImI1F6dpmUuLS3F3d2dfv361X9lIiLSKKoN/hEjRrBixQpCQkJwcXGxtxuGgYuLywUfyygiIn9smqtHROQKU6e5ej799NNqN37s2DE2b958iaWJiEhjqHaoZ+PGjTz33HP069ePiIgIWrdujdVqZe/evWRnZ2MYBi+88EJD1SoiIvWgxqEem81GZmYmGzZsoKCggKZNm9KlSxeGDBnC9ddfb2pxGuoREam9mrJTY/wiIlcYzccvIiKVKPhFRJyMgl9ExMk4FPybN28mMjLSPonat99+yzPPPGNqYSIiYg6Hgv/BBx9k0aJFeHt7AxAWFkZGRoaphYmIiDkcCv7y8nI6duxYqc3Nzc2UgkRExFwOTcvcuXNn+4NUCgoKmD59Or169TK1MBERMYdDR/wzZsxg3bp1uLm5kZSURGlpKdOnTze7NhERMYFDN3CVlZVVGdq5UFt90w1cIiK1Vy83cMXExFBcXFxpo7GxsfVQnoiINDSHgv/nn3+2X9EDFd8gp0+frnYdi8VCVFQUMTExpKamYhgGPj4+xMXFERcXR1FREQALFiwgKiqKpKSkSl8uIiJiDoeC39fXl+zsbPv77OzsSl8EFxISEsL69etZt24dAJs2bSIsLIysrCyysrJo2bIlNpuNGTNmkJ2dzZgxY3jzzTfr0BUREXGEQ1f1vPHGG6SkpHDq1CkAWrRowdy5c6tdx8PDw/7a09OT9u3bs2PHDmJiYrjpppt48cUX2blzJ2FhYbi7uxMfH8/9999fh66IiIgjHAr+rl27snHjRkpKSoCK4HfE8uXL+fvf/05wcDCtWrVi165d+Pn58cADD5CRkUGrVq3sfzn4+Phw/PjxS+yGiIg4qtrgnz59OuPHj+eZZ56p9MzdX9X0EJZhw4YxbNgwHnroIVasWMHIkSOBimf5bt68meHDh9vH9YuLi/H19b3UfoiIiIOqDf4OHToA0KVLl1pv2Gq14unpCYC3tzdNmjSxXwKam5tLWFgYwcHBWCwWysrKyMzMJDIy8hK6ICIitVFt8N96662UlZWRlZXF7Nmza7XhVatWkZ6eDlTc+du2bVv69OmDl5cX119/PRMnTsTNzY2xY8cSExODn58fCxcuvPSeiIiIQxy6gSsxMZEPPviAZs2aNURNdrqBS0Sk9mrKTodO7rZq1YqePXsyZMgQvLy87O160LqIyOXHoeAfPHgwgwcPNrsWERFpADUG/4cffsjRo0fp1q0bN998c0PUJCIiJqr2zt3777+fadOmUVhYyD//+U+effbZhqpLRERMUu3J3e7du7Nt2zZcXV05c+YMN910E998802DFaeTuyIitVen2TmbNGmCq2vFRxr6ih4RETFHtWP83377LQEBAQAYhkFhYSEBAQEYhoGLiwv5+fkNUqSIiNSfaoPfZrM1VB0iItJAHJqWWURErhwKfhERJ6PgFxFxMgp+EREno+AXEXEyCn4RESej4BcRcTIKfhERJ6PgFxFxMqYFv8ViISoqipiYGFJTU9m3bx8xMTHExsYyevRoysrKAAgJCSEuLo64uDi+++47s8oREZFfmBb8ISEhrF+/nnXr1gFw7NgxMjIyyM7OpmPHjnzyyScA+Pv7k5WVRVZWFt26dTOrHBER+YVpwe/h4WF/7enpSfv27fH19QXA3d0dNzc3AIqKioiNjSUtLY2zZ8+aVY6IiPzC1DH+5cuX0717d44cOUKrVq0AyM/PJzMzk4SEBABycnLIzs6mQ4cOzJw508xyREQEk4N/2LBhWCwWAgMDWbFiBVarlZSUFN566y3c3SsmBm3ZsiUAI0eOxGKxmFmOiIhgYvBbrVb7a29vb5o1a8b999/Pgw8+aB/LP3funP1zubm5dOrUyaxyRETkFzU+bP1SrVq1ivT0dAA6d+5MixYt+OCDD9i/fz9Tp07lkUceISoqisTERJo3b46fnx/z5883qxwREflFtc/cbWx65q6ISO3V6Zm7IiJy5VHwi4g4GQW/iIiTUfCLiDgZBb+IiJNR8IuIOBkFv4iIk1Hwi4g4GQW/iIiTUfCLiDgZBb+IiJNR8IuIOBkFv4iIk1Hwi4g4GQW/iIiTuTKDf+JEWLy44vXixRXvRUQEMDH4LRYLUVFRxMTEkJqaimEYTJkyhejoaJKTk7HZbAAsWLCAqKgokpKSKC4urvuOn3++4ic5GUaMqPj9a5uIiJgX/CEhIaxfv55169YBsGnTJtasWUNOTg7h4eF89NFH2Gw2ZsyYQXZ2NmPGjOHNN9+s204nTvzt6L68HJYtq/j9+2UiIk7MtOD38PCwv/b09GTnzp3ExcUBEB8fz4YNG9i5cydhYWG4u7vb2+okJARcL9IlV9eK5SIiTs7UMf7ly5fTvXt3jhw5QmlpKd7e3kDFMyCPHz/OiRMnqrTVyV13wa23XnjZrbdWLBcRcXKmBv+wYcOwWCwEBgbi7u5uH8MvLi7G19cXX1/fKm11sngxZGRceFlGxm8nfEVEnJhpwW+1Wu2vvb29KSsrY+3atQBkZmYSGRlJcHAwFouFsrIye1ud5OX9Nqb/e+XlFctFRJycu1kbXrVqFenp6QB07tyZSZMmcfjwYaKjo7n22mt59NFH8fDwYOzYscTExODn58fChQvrttPnngPDqDiJ6+paMbyTkVER+s89V/EjIuLkXAzDMBq7iIs5efKk/bWPj4/jK06cWHEi9667KoZ38vIU+iLiNGrKzisz+EVEnFhN2Xll3rkrIiIXpeAXEXEyCn4RESdj2lU99e38MSsREbl0OuIXEXEyCn4RESfzh76cU0RE6p+O+EVEnMwVE/z5+fn06tWLpk2bUlpaWmXZwIEDiYqKIjMzs5EqrH/V9XnixIn069ePfv368fnnnzdShfWvuj4DGIZBjx49mDVrViNUV/+q6+/Zs2f585//zMCBA3nooYcaqcL6V12f165dS9++fYmMjGTGjBmNVGH9+89//mN/cNVjjz1WaZkp+WVcIc6cOWMUFRUZ/fv3N2w2W6VlDz30kJGbm2uUlJQY/fv3b5wCTVBdn/fu3WsYhmEcP37ciImJaYzyTEKGLIUAAAg4SURBVFFdnw3DMD766CMjPj7eeOuttxqhuvpXXX8nT55sZGZmNlJl5qmuz7feequxf/9+o6yszLjxxhsbqcL6d/jwYePMmTOGYRjG6NGjjW3bttmXmZFfV8wRf9OmTfHz87vgsm3bttGvXz+aN29OixYtKCkpaeDqzFFdnzt27AhUPATHxcWlIcsyVXV9Bli0aBF/+tOfGrAic1XX36ysLJYvX05cXBzLly9v4MrMU12fQ0NDOXnyJFarFS8vrwauzDxt2rShadOmALi7u+Pm5mZfZkZ+XTHBX52ysjJ7+NXLA18uI88//zxpaWmNXUaDWL16Nf3798fd/bK5PaVO9uzZwy233MLHH3/MpEmTLjj0daUZMWIESUlJdOnSheTk5MYup95t27aNY8eO0a1bN3ubGfnlFMF//rdnvTzw5TLx4YcfUlhYyOjRoxu7lAYxa9YsUlNTG7uMBuPj40P//v3x8vIiKCiIn376qbFLMt0TTzxBTk4Ou3bt4p133uHnn39u7JLqTVFREePHj+ftt9+u1G5GfjnFoVF4eDhffvkl4eHhFBcX2x/3eCXbtm0br732Gh9//HFjl9Jgdu3axYgRIzh06BCGYRAdHU2XLl0auyzTREVFsW3bNnr16sUPP/yAv79/Y5dkOjc3N3x9fWnSpAmurq7YbLbGLqlelJaWcvfddzNlyhTatGlTaZkp+VUvZwr+AM6dO2cMGjTI8PX1NQYOHGhs2LDBGD9+vGEYhnHw4EFjwIABRmRkpLF69epGrrT+VNfnhIQEo3v37kb//v2NYcOGNXKl9ae6Pv9q9uzZV8zJ3er6m5+fbwwePNjo27evMWvWrEautP5U1+eVK1caN954oxEZGWlMnDixkSutPwsXLjRat25t9O/f3+jfv7+xfv16U/NLN3CJiDgZpxjjFxGR3yj4RUScjIJfRMTJKPhFRJyMgl9ExMko+OWyMWHCBEJDQwkLCyMqKopTp06Rn5/PPffcU+dtT5o0iVWrVgHw4osvcu2111a5nvrIkSPExsYSFBTEmDFjKCsrA+DMmTMMGzaMzp07k5iYyKlTpwAoLy/nL3/5C0FBQURFRZGfn1/nOm+//XZ69OjBggULePnll+3tu3fvJiUlpc7bF+eg4JfLwvr161m/fj1bt27l22+/5Z133sHDw4OAgADeeeedOm373LlzrFixgqFDhwIwePBgNmzYUOVzL774IsnJyezevRsPDw+WLl0KwMyZMwkNDWXXrl3069eP1157DYCMjAxOnz7N7t27eeCBB5g0aVKd6iwoKGDPnj1s3bqV5OTkSsEfFBTEsWPHOHjwYJ32Ic5BwS+XhcOHD+Pv72+fhycoKAhPT09++OEHIiMjAbj55puJiIggIiKCpk2bsnXrVkpKSkhOTqZPnz707duXr7/+usq2MzMz6devn/39DTfcQEBAQJXPffzxx/bpL0aPHm2/K3rFihXcfffd1bbfeeedrF69uso2s7KyCAsLIyIigptuugmA06dPM3LkSEJDQxk3bpz9L4+kpCR27txJREQEd955J4WFhURERNin8U1MTOS9996r7T+tOKN6uQ1MxGQnT540unbtaoSHhxv/9V//ZVgsFsMwDGPfvn1G3759K312+fLlxqBBg4yysjLjiSeeMJYtW2YYhmHs2bPnglP5Pvvss8bs2bOrtF9zzTWV3gcEBNhff/fdd8agQYMMwzCMbt26GcePHzcMwzB+/vlno1OnToZhGMbNN99sbN682b5OYGCgUV5eXmmbSUlJxhdffGEYhmGcOHHCMIyK6ZYff/xxwzAMIyMjw/j1v+nv+/r7+nJzc40777yzSj9Efk9H/HJZ8Pb2ZsuWLbz00ktYrVb69evHt99+W+Vz+/fv5+mnn2bBggW4urry+eef8+yzzxIREcFtt912wYnMCgoKaN26db3UWdspsKOionjqqad4/fXXsVqtQMWw1q9TSyclJXHVVVc5tC1/f38KCgpqV7A4JaeYpE2uDE2aNCExMZHExETKy8tZvXo1t99+u325zWZj1KhRTJ8+nWuuuQaoeCLXypUrLzh086umTZvaQ7c6Xl5elJSU0KJFCw4dOkTbtm0BCAgI4NChQ/j6+vLjjz9WaY+IiODs2bM0adKkyhfDM888Q2JiIitWrKBPnz588803GJc4i4rVarXP6S5SHR3xy2UhLy+Pffv2ARUzGebl5dG+fftKn3niiSe4+eabGTBggL0tPj7efrIVKmYt/b0uXbqwd+/eGmtITExk4cKFACxcuJBbbrkFqDi3MH/+/Grb3333XRISEqpsc+/evURERPCPf/yDDh06cPDgQW666SaWLFkCVJwnuNjUwy4uLpSXl9vf7969+4qejVTqj4JfLgunTp1i1KhRhIaGEh4eTkhICHfccUelz0ydOpV3333XfoI3Ly+PCRMmcOjQIcLDw+nWrRsLFiyosu0hQ4awbt06+/v//u//pl27dhw9epR27drx5ptvAvD3v/+d+fPnExQUhNVqtf+1kZaWhsViISgoiPXr1zNu3DgAhg8fTrNmzejUqRNvvPEGzz77bJV9p6en2/sUGhpKjx49GDduHLt376Znz56sXbvW/tfL740ePZru3bvbT+5mZ2czZMiQS/jXFWej2TlFqBhL/7//+z+uvvrqxi6lijZt2tQ4dl9aWsqAAQNYs2aN0zyBTC6dgl+EiiEgm81G7969G7uUKhwJ/v3797Nnzx4GDhzYQFXJ5UzBLyLiZDTGLyLiZBT8IiJORsEvIuJkFPwiIk5GwS8i4mQU/CIiTub/AdtOrR2H7MLzAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAERCAYAAAB8eMxzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3de1QV9d7H8Tc30VAuKqWgmYmgIoiaiQSIiihFXlrVScmIzjE6abfT0+2sk+XxeSofO5w0KzN71LyXXRRLLUpEMI9ZXtpmeE1NJBVU0HS7gXn+oHYSChthIN2f11os9v7Nnpnvz7X87OE3M79xMQzDQEREnIZrYxcgIiINS8EvIuJkFPwiIk5GwS8i4mQU/CIiTkbBLyLiZBT88od03XXXsWHDhkptDzzwAM8//7xp+wwNDeWrr76q123OmTMHd3d3mjdvjo+PD5GRkXz55ZcNWoPI7yn4RX6xfft2+vTpU+/bjY+P59SpUxw7dozY2Fhuu+02fn/7jM1mM7UGkfMp+OWyNXXqVDp27MjVV19NWloaZ86cASqOsocOHWr/3A8//EDTpk0BKC8vZ9y4cbRu3dp+BP5r6J7/V0ZcXBz//Oc/ueGGG/Dx8WHUqFGcO3fOvs3nn38ef39/goODefnll7nuuutqrNfDw4OUlBQKCgooLCwkLi6OCRMm0KtXL3x9favUcPr0aR588EECAwPx8/NjzJgx9m0tXbqU0NBQWrZsybBhwzhy5AgAP/30EwkJCfj4+NCqVSvGjx9/qf+8cgVT8MtlafXq1bz88st8+umn7Nq1iz179jBp0qQa1/v000/ZuHEj+/bto6ioiFdeeQVX1wv/N3jvvff44IMP2L9/P9u2bWPJkiUAZGRkMHfuXL766ivWr1/P0qVLHar53LlzzJkzh8DAQFq3bg3AokWLWLp0KceOHavy+UcffZQDBw6wdetWjhw5QlpaGgBfffUVf/vb31i8eDE//fQTXbp04a9//SsA//73v+ncuTOFhYX8+OOPlb4sRH6l4Jc/rMGDB+Pr62v/mT17tn3ZkiVLSEtLo3Pnzvj4+DBhwgQWL15c4zY9PDwoKSlh586duLq6EhkZiZub2wU/O3bsWK699lp8fX255ZZb2Lp1KwDvv/8+Y8eO5brrrqN169Y8/PDD1e7z888/x9fXl8DAQL766is+/PDDSvu4/vrradasWaV1ysvLmTdvHtOmTaN169Z4eHgQHR0NwNtvv8348eMJCwvDw8ODCRMmsHz5ckpLS/Hw8ODw4cMcOnSIZs2a0bdv3xr/TcT5KPjlD+uzzz7jxIkT9p/U1FT7svz8fNq3b29/36FDBw4fPlzjNgcNGsTYsWNJSUkhMDCw2pPFV199tf31VVddxalTpwAoKCigXbt29mWBgYE17vPEiRMcPXqUrKysSmP45/fhfEePHuXcuXMXHEI6cOAAEydOtH8htmvXDnd3dwoKCnjiiScIDAwkKiqK7t278/7771dbmzgnBb9clgICAjh48KD9/YEDB2jbti0AXl5e/Pzzz/ZlP/30U6V1H3/8cSwWC9nZ2bz99tt89tlntdp3mzZtOHTokP39+a9ry8XF5YLt/v7+NGnShP3791dZFhgYyAsvvFDpS/HMmTO0a9cOb29vXn31VQ4dOsS//vUvRo8ebf/CEvmVgl8uS3fccQczZ85k9+7dFBcXM2nSJO68804AwsPD+frrr8nLy6OkpISXXnrJvt6mTZv4+uuvKSsrw9vbG3d394sO9VzMbbfdxltvvcX+/fspLCxk+vTp9do3AFdXV+655x4eeeQRCgsLsdls5ObmApCamsq0adPsQ09FRUUsW7YMgE8++YQffvgBAD8/P1xcXGrdP7nyKfjlspSYmMhjjz3GoEGDCAoKokOHDkyYMAGAkJAQnnzySfr160ePHj0YMmSIfb2TJ0+SkpKCj48P4eHhjBo1ioEDB9Zq38OGDePuu++md+/e9O3bl1tuuQVPT8967R9Aeno6AQEBhIaGcs011zBz5kwAoqKimDJlCvfccw/e3t706tXL/qXw/fffExsbS/PmzUlOTmbu3LlVzh+IuGg+fpG6eeedd5gzZw5ffPFFY5ci4hAd8YtcgmXLllFaWsqBAwd4+eWXGT58eGOXJOIwHfGLXIL+/fvzzTff4OXlxZ133snLL79MkyZNGrssEYco+EVEnIyGekREnIx7YxdQnZMnTzZ2CSIilzUfH58qbTriFxFxMgp+EREn84ce6jnfhf5cERGRqmoaJtcRv4iIk1Hwi4g4GQW/iIiTUfCLiPzRTJwIvz5YaPHiivf1yLTg/+GHH7jmmmuIi4sjISEBgClTphAdHU1ycrL9OacLFiwgKiqKpKQkiouLzSpHROTy8PzzFT/JyTBiRMXvX9vqialH/IMHDyYrK4tPP/2Uo0ePsmbNGnJycggPD+ejjz7CZrMxY8YMsrOzGTNmDG+++aaZ5YiI/LFNnPjb0X15OSxbVvH798vqyNTgX7NmDTExMfz73/9m48aNxMXFARAfH8+GDRvYuXMnYWFhuLu729tERJxWSAi4XiSWXV0rltcD067jb9u2LTt37sTT05Phw4dTXFzMNddcA1Rck3/8+HFOnDiBt7d3pTYREad1110VY/q/PFGtkltvrVheD0w74vf09MTLywt3d3eSkpIICgqyj+EXFxfbHxT9+zYREae1eDFkZFx4WUbGbyd868i04C8pKbG/zs3NJSgoiLVr1wKQmZlJZGQkwcHBWCwWysrK7G0iIk4rL++3Mf3fKy+vWF4PTAv+devW0bt3b6KioggICKBv377ExsYSHR3Nli1bGDFiBB4eHowdO5aYmBjmzp1LWlqaWeWIiPzxPfdcxQ9UjOkPH/7bmP/5y+roD/0glvPnm9BcPSLiNCZOrDiR++uYf15erUK/puxU8IuIXGFqyk7duSsi4mQU/CIiTkbBLyLiZBT8IiJORsEvIuJkFPwiIk5GwS8i4mQU/CIiTkbBLyLiZBT8IiJORsEvIuJkFPwiIk5GwS8i4mQU/CIiTkbBLyLiZEwP/vT0dPtTt+Li4oiLi6Njx4688sorAISEhNjbv/vuO7PLERFxeu5mbtxqtbJ161YAIiIiyMrKAmD48OEkJSUB4O/vb28XERHzmXrEP2vWLFJSUiq1nT59moKCAoKCggAoKioiNjaWtLQ0zp49a2Y5IiKCicFvs9lYu3YtAwcOrNS+cuVKhg4dan+fk5NDdnY2HTp0YObMmWaVIyIivzAt+OfNm8fo0aOrtH/44Yfcdttt9vctW7YEYOTIkVgsFrPKERGRX5gW/Hl5ebzxxhsMHTqU7du38+qrr2Kz2dixYwc9evQA4Ny5c1itVgByc3Pp1KmTWeWIiMgvTDu5O3nyZPvr6OhoHnroIVavXl1p6Of48eMkJibSvHlz/Pz8mD9/vlnliIjIL1wMwzAau4iLOXnypP21j49PI1YiInL5qCk7dQOXiIiTUfCLiDgZBb+IiJNR8IuIOBkFv4iIk1Hwi4g4GQW/iIiTUfCLiDgZBb+IiJNR8IuIOJka5+qxWq2sXLmS//znPxQUFNC0aVO6dOlCQkICXbt2bYgaRUSkHlU7V8+ECRP47LPPiImJoWfPnvj7+2O1Wtm9ezfr1q3j1KlTvPTSS0RERJhSnObqERGpvZqys9rgX7NmDQMGDLjoxo8fP87BgwcJDw+vY5kXpuAXEam9OgX/hZgd9udT8IuI1F69zM4ZExNDSUkJR48epWfPnjz88MOMGzeu/qoUEZEG41Dwnz59mhYtWrB06VLGjh1LVlYWubm5ZtcmIiImcCj4S0tLWbt2LXPmzOHWW2+1t4mIyOXHoeB/9dVX+de//sXIkSMJDw9n37591Z70PV96ejrR0dFAxVhTXFwccXFxFBUVAbBgwQKioqJISkqiuLj4ErshIiKOqvHkbllZGX/5y1+YPXt2rTdutVq5//772bNnDzk5OURHR5OTk2NfbrPZGDhwIGvWrOH999/nwIEDPPHEE/blOrkrIlJ7dT656+bmRkFBAWfOnKn1zmfNmkVKSor9/Y4dO4iJieHpp5/GMAx27txJWFgY7u7uxMfHs2HDhlrvQ0REaqfGO3cBWrVqRc+ePRkyZAheXl729hdeeOGi69hsNtauXcu4ceOYMGECALt27cLPz48HHniAjIwMWrVqhbe3N1DxrXT8+PG69EVERBzgUPAPHjyYwYMH12rD8+bNY/To0ZXaWrZsCcCIESPYvHkzw4cPt4/rFxcX4+vrW6t9iIhI7TkU/OcP1zgqLy+PLVu2MGPGDLZv387UqVMZP348bm5u5ObmEhYWRnBwMBaLhbKyMjIzM4mMjKz1fkREpHYcCn6LxcKTTz7Jjh07sFqt9vb8/PyLrjN58mT76+joaPr370+fPn3w8vLi+uuvZ+LEibi5uTF27FhiYmLw8/Nj4cKFdeiKiIg4wqEpGyIjI3njjTe47777yMnJYfbs2Zw4cYJ//OMfphanq3pERGqvXqZsKC0tpWfPnpSVleHl5cX48eNZuXJl/VUpIiINxqGhnquuugqbzUZ4eDgTJ04kICCAU6dOmV2biIiYwKEj/jlz5lBaWsprr72GYRjs2LGD999/3+zaRETEBLWelrkhaYxfRKT2asrOaod62rZti4uLC4ZhXPB3dVf1iIjIH1O1wX/48OGGqkNERBpItcH/6aefVrtyQkJCvRYjIiLmqzb4Fy1adNFlLi4uCn4RkcuQTu6KiFxh6uUGrt27d5OQkED79u1p3749Q4YMYc+ePfVXpYiINBiHgj81NZXHHnuMgwcPcvDgQR577DHuvfdek0sTEREzOBT8xcXFJCYm2t8PHTpUj0kUEblMOTRlQ2hoKI8//jijRo3CxcWFxYsXExoaanZtIiJiAodO7p45c4bp06ezfv16DMPgpptuYvz48TRr1szU4nRyV0Sk9mrKTl3VIyJyhanTlA0dO3bExcXlosv37t1bh9JERKQxVBv833//PYZh8D//8z+0adOGP/3pTxiGwZIlS3RyV0TkMuXQUE+PHj3YunVrpbYbb7yRjRs31riD9PR0PvjgA+bNm8c999yDi4sL7dq1Y968ebi5uRESEkLbtm0BeP311+nWrZt9XQ31iIjUXr3cwNWqVStef/11CgsLKSws5LXXXsPLy6vG9axWq/0Lw9fXl4yMDLKzs+nYsSOffPIJAP7+/mRlZZGVlVUp9EVExBwOBf/ixYvZvn078fHxxMfHs2PHDpYsWVLjerNmzSIlJQUAPz8/fH19AXB3d8fNzQ2AoqIiYmNjSUtL4+zZs5faDxERcZBpV/XYbDaSk5N59913iY6OJicnB4D8/HzuuOMO1q5di7u7O0VFRbRs2ZIXXniB5s2b8/DDD9u3oaEeEZHaq5ehnksxb948Ro8eXanNarWSkpLCW2+9hbt7xXnlli1bAjBy5EgsFotZ5YiIyC8cunP3UuTl5bFlyxZmzJjB9u3befXVV9m0aRMPPvigfSz/3LlzGIaBp6cnubm5dOrUyaxyRETkF9UO9YwaNYpFixbxv//7vzz55JOXvJPo6GimTJlCQkICvXv3BuCRRx4hKiqKxMREmjdvjp+fH/Pnz6dFixb29TTUIyJSe3W6c7dbt24sWbKEu+66i48++ojffzQ4OLgeS61KwS8iUnt1Cv7Fixczd+5ccnJyuOGGGyqv6OLCF198UY+lVqXgFxGpvXqZq2fy5Mk89dRT9VuZAxT8IiK1Vy/B//PPPzN16lT7JZnR0dE8+uijmp1TROQPqF4u57zvvvs4ceIEL730Ei+++CLFxcWkpqbWX5UiItJgHLqc8/vvv2fx4sX29+Hh4URERJhWlIiImMehI35vb29WrFhhf//xxx/j7e1tWlEiImIeh8b49+zZw8MPP8yWLVtwdXWlR48eTJ061fQbrjTGLyJSe3oCl4iIk2m0uXpEROSPScEvIuJkFPwiIk7GoeD/29/+RklJCVarlQEDBtC2bVtmz55tdm0iImICh4J/zZo1tGjRgmXLltG1a1f27NnDK6+8YnZtIiJiAoeC/+zZs1itVpYuXcrtt9/OVVddZXZdIiJiEoeCPy0tjfbt21NSUsKAAQM4cOBApXnzRUTk8nHJ1/GXlpbaH59oFl3HLyJSe3W6jt8wDN577z3uvfdeEhISSEhIICUlhXfffRdXV8cuCEpPTyc6OhqAKVOmEB0dTXJyMjabDYAFCxYQFRVFUlISxcXFDndMREQuTbXpfe+997Jq1SrGjBnDtGnTmDZtGvfccw+rV68mJSWlxo1brVa2bt0KwNGjR1mzZg05OTmEh4fz0UcfYbPZmDFjBtnZ2YwZM4Y333yzfnolIiIXVe1YzZdffsnOnTsrtXXp0oVBgwY59NjFWbNmkZKSwoQJE9i4cSNxcXEAxMfHs3DhQrp160ZYWBju7u7Ex8dz//33X3pPRETEIdUe8bdt25ZZs2Zx+vRpe9vp06eZOXMmbdq0qXbDNpuNtWvXMnDgQABOnDhhn9HTx8eH48ePX7BNRETMVW3wL126lO+++45evXrRrl072rVrR+/evdmxYwdLly6tdsPz5s1j9OjR9ve+vr72Mfzi4mJ8fX0v2CYiIuaqdqjH39+f9PR00tPTa73hvLw8tmzZwowZM9i+fTubNm1i48aNPPnkk2RmZhIZGUlwcDAWi4WysjJ7m4iImKvGyzm/+uorPv74Y/Lz84GK4Z9bbrmFG2+80eGdREdHk5OTw+TJk8nIyODaa69lzpw5NGnShHnz5vHGG2/g5+fHwoULK116pMs5RURqr07z8T/99NNs2rSJUaNGERgYCMChQ4dYtGgRvXv3ZvLkySaU/BsFv4hI7dUp+IODg6tc1QMV1/cHBweza9eueirzwhT8IiK1V6cbuFq0aEFmZmaV9szMTE3ZICJymar25O7ixYt56qmnSE1Nxd/fH8MwOHbsGDfccAOLFi1qqBpFRKQeOTRXj2EYFBYWAtCqVStcXFxMLww01CMicilqys4aZ1krKChg1apVla7qGTp0KG3btq3HMkVEpKFUO8Y/bdo0Bg8ezJ49e2jZsiUtW7Zk7969JCQkMG3atIaqUURE6lGNV/Vs374dDw+PSu1Wq5WwsLALXvFTnzTUIyJSe3W6qsfDw4O9e/dWad+3b5/pc/GLiIg5qk3vWbNmkZycjJubm/0Grh9//JHy8nJmzZrVIAWKiEj9cuiqnvz8fPvJ3YCAAAICAkwvDDTUIyJyKep8VQ9cOOwtFgvdu3evY3kiItLQHHt+4gXcfPPN9VmHiIg0kGqP+M+fT/98hmFQVFRkSkEiImKuaoN/1apVzJs3j+bNm1dqNwyDL774wtTCRETEHNUG/6BBg2jRogWxsbFVlvXp08e0okRExDwOXdXTWHRVj4hI7dXpBi4REbnymBb8FouFqKgoYmJiSE1NZfPmzcTFxREXF0fHjh155ZVXAAgJCbG3f/fdd2aVIyIivzBt3oWQkBDWr18PQGpqKqWlpWRlZQEwfPhwkpKSgIoHuv/aLiIi5nM4+M+cOcPhw4cpLS21twUHB1/08+dP7Obp6Un79u0BOH36NAUFBQQFBQFQVFREbGwsXbt2ZerUqTRt2rTWnRAREcc5NNTzwgsvEBISwn333UdaWhppaWk88MADNa63fPlyunfvzpEjR2jVqhUAK1euZOjQofbP5OTkkJ2dTYcOHZg5c+YldkNERBzlUPDPnTuXvLw8srKyWLNmDWvWrHHoOv5hw4ZhsVgIDAxkxYoVAHz44Yfcdttt9s+0bNkSgJEjR2KxWC6lDyIiUgsOBX9ISAhWq7VWGz7/897e3jRr1gybzcaOHTvo0aMHAOfOnbN/Ljc3l06dOtVqHyIiUnsOjfGfO3eOrl27EhUVhaenp7194cKFF11n1apVpKenA9C5c2cSEhL47LPPGDhwoP0zx48fJzExkebNm+Pn58f8+fMvtR8iIuIgh27gWrt27QXb+/fvX+8FnU83cImI1F6dpmUuLS3F3d2dfv361X9lIiLSKKoN/hEjRrBixQpCQkJwcXGxtxuGgYuLywUfyygiIn9smqtHROQKU6e5ej799NNqN37s2DE2b958iaWJiEhjqHaoZ+PGjTz33HP069ePiIgIWrdujdVqZe/evWRnZ2MYBi+88EJD1SoiIvWgxqEem81GZmYmGzZsoKCggKZNm9KlSxeGDBnC9ddfb2pxGuoREam9mrJTY/wiIlcYzccvIiKVKPhFRJyMgl9ExMk4FPybN28mMjLSPonat99+yzPPPGNqYSIiYg6Hgv/BBx9k0aJFeHt7AxAWFkZGRoaphYmIiDkcCv7y8nI6duxYqc3Nzc2UgkRExFwOTcvcuXNn+4NUCgoKmD59Or169TK1MBERMYdDR/wzZsxg3bp1uLm5kZSURGlpKdOnTze7NhERMYFDN3CVlZVVGdq5UFt90w1cIiK1Vy83cMXExFBcXFxpo7GxsfVQnoiINDSHgv/nn3+2X9EDFd8gp0+frnYdi8VCVFQUMTExpKamYhgGPj4+xMXFERcXR1FREQALFiwgKiqKpKSkSl8uIiJiDoeC39fXl+zsbPv77OzsSl8EFxISEsL69etZt24dAJs2bSIsLIysrCyysrJo2bIlNpuNGTNmkJ2dzZgxY3jzzTfr0BUREXGEQ1f1vPHGG6SkpHDq1CkAWrRowdy5c6tdx8PDw/7a09OT9u3bs2PHDmJiYrjpppt48cUX2blzJ2FhYbi7uxMfH8/9999fh66IiIgjHAr+rl27snHjRkpKSoCK4HfE8uXL+fvf/05wcDCtWrVi165d+Pn58cADD5CRkUGrVq3sfzn4+Phw/PjxS+yGiIg4qtrgnz59OuPHj+eZZ56p9MzdX9X0EJZhw4YxbNgwHnroIVasWMHIkSOBimf5bt68meHDh9vH9YuLi/H19b3UfoiIiIOqDf4OHToA0KVLl1pv2Gq14unpCYC3tzdNmjSxXwKam5tLWFgYwcHBWCwWysrKyMzMJDIy8hK6ICIitVFt8N96662UlZWRlZXF7Nmza7XhVatWkZ6eDlTc+du2bVv69OmDl5cX119/PRMnTsTNzY2xY8cSExODn58fCxcuvPSeiIiIQxy6gSsxMZEPPviAZs2aNURNdrqBS0Sk9mrKTodO7rZq1YqePXsyZMgQvLy87O160LqIyOXHoeAfPHgwgwcPNrsWERFpADUG/4cffsjRo0fp1q0bN998c0PUJCIiJqr2zt3777+fadOmUVhYyD//+U+effbZhqpLRERMUu3J3e7du7Nt2zZcXV05c+YMN910E998802DFaeTuyIitVen2TmbNGmCq2vFRxr6ih4RETFHtWP83377LQEBAQAYhkFhYSEBAQEYhoGLiwv5+fkNUqSIiNSfaoPfZrM1VB0iItJAHJqWWURErhwKfhERJ6PgFxFxMgp+EREno+AXEXEyCn4RESej4BcRcTIKfhERJ6PgFxFxMqYFv8ViISoqipiYGFJTU9m3bx8xMTHExsYyevRoysrKAAgJCSEuLo64uDi+++47s8oREZFfmBb8ISEhrF+/nnXr1gFw7NgxMjIyyM7OpmPHjnzyyScA+Pv7k5WVRVZWFt26dTOrHBER+YVpwe/h4WF/7enpSfv27fH19QXA3d0dNzc3AIqKioiNjSUtLY2zZ8+aVY6IiPzC1DH+5cuX0717d44cOUKrVq0AyM/PJzMzk4SEBABycnLIzs6mQ4cOzJw508xyREQEk4N/2LBhWCwWAgMDWbFiBVarlZSUFN566y3c3SsmBm3ZsiUAI0eOxGKxmFmOiIhgYvBbrVb7a29vb5o1a8b999/Pgw8+aB/LP3funP1zubm5dOrUyaxyRETkFzU+bP1SrVq1ivT0dAA6d+5MixYt+OCDD9i/fz9Tp07lkUceISoqisTERJo3b46fnx/z5883qxwREflFtc/cbWx65q6ISO3V6Zm7IiJy5VHwi4g4GQW/iIiTUfCLiDgZBb+IiJNR8IuIOBkFv4iIk1Hwi4g4GQW/iIiTUfCLiDgZBb+IiJNR8IuIOBkFv4iIk1Hwi4g4GQW/iIiTuTKDf+JEWLy44vXixRXvRUQEMDH4LRYLUVFRxMTEkJqaimEYTJkyhejoaJKTk7HZbAAsWLCAqKgokpKSKC4urvuOn3++4ic5GUaMqPj9a5uIiJgX/CEhIaxfv55169YBsGnTJtasWUNOTg7h4eF89NFH2Gw2ZsyYQXZ2NmPGjOHNN9+s204nTvzt6L68HJYtq/j9+2UiIk7MtOD38PCwv/b09GTnzp3ExcUBEB8fz4YNG9i5cydhYWG4u7vb2+okJARcL9IlV9eK5SIiTs7UMf7ly5fTvXt3jhw5QmlpKd7e3kDFMyCPHz/OiRMnqrTVyV13wa23XnjZrbdWLBcRcXKmBv+wYcOwWCwEBgbi7u5uH8MvLi7G19cXX1/fKm11sngxZGRceFlGxm8nfEVEnJhpwW+1Wu2vvb29KSsrY+3atQBkZmYSGRlJcHAwFouFsrIye1ud5OX9Nqb/e+XlFctFRJycu1kbXrVqFenp6QB07tyZSZMmcfjwYaKjo7n22mt59NFH8fDwYOzYscTExODn58fChQvrttPnngPDqDiJ6+paMbyTkVER+s89V/EjIuLkXAzDMBq7iIs5efKk/bWPj4/jK06cWHEi9667KoZ38vIU+iLiNGrKzisz+EVEnFhN2Xll3rkrIiIXpeAXEXEyCn4RESdj2lU99e38MSsREbl0OuIXEXEyCn4RESfzh76cU0RE6p+O+EVEnMwVE/z5+fn06tWLpk2bUlpaWmXZwIEDiYqKIjMzs5EqrH/V9XnixIn069ePfv368fnnnzdShfWvuj4DGIZBjx49mDVrViNUV/+q6+/Zs2f585//zMCBA3nooYcaqcL6V12f165dS9++fYmMjGTGjBmNVGH9+89//mN/cNVjjz1WaZkp+WVcIc6cOWMUFRUZ/fv3N2w2W6VlDz30kJGbm2uUlJQY/fv3b5wCTVBdn/fu3WsYhmEcP37ciImJaYzyTEKGLIUAAAg4SURBVFFdnw3DMD766CMjPj7eeOuttxqhuvpXXX8nT55sZGZmNlJl5qmuz7feequxf/9+o6yszLjxxhsbqcL6d/jwYePMmTOGYRjG6NGjjW3bttmXmZFfV8wRf9OmTfHz87vgsm3bttGvXz+aN29OixYtKCkpaeDqzFFdnzt27AhUPATHxcWlIcsyVXV9Bli0aBF/+tOfGrAic1XX36ysLJYvX05cXBzLly9v4MrMU12fQ0NDOXnyJFarFS8vrwauzDxt2rShadOmALi7u+Pm5mZfZkZ+XTHBX52ysjJ7+NXLA18uI88//zxpaWmNXUaDWL16Nf3798fd/bK5PaVO9uzZwy233MLHH3/MpEmTLjj0daUZMWIESUlJdOnSheTk5MYup95t27aNY8eO0a1bN3ubGfnlFMF//rdnvTzw5TLx4YcfUlhYyOjRoxu7lAYxa9YsUlNTG7uMBuPj40P//v3x8vIiKCiIn376qbFLMt0TTzxBTk4Ou3bt4p133uHnn39u7JLqTVFREePHj+ftt9+u1G5GfjnFoVF4eDhffvkl4eHhFBcX2x/3eCXbtm0br732Gh9//HFjl9Jgdu3axYgRIzh06BCGYRAdHU2XLl0auyzTREVFsW3bNnr16sUPP/yAv79/Y5dkOjc3N3x9fWnSpAmurq7YbLbGLqlelJaWcvfddzNlyhTatGlTaZkp+VUvZwr+AM6dO2cMGjTI8PX1NQYOHGhs2LDBGD9+vGEYhnHw4EFjwIABRmRkpLF69epGrrT+VNfnhIQEo3v37kb//v2NYcOGNXKl9ae6Pv9q9uzZV8zJ3er6m5+fbwwePNjo27evMWvWrEautP5U1+eVK1caN954oxEZGWlMnDixkSutPwsXLjRat25t9O/f3+jfv7+xfv16U/NLN3CJiDgZpxjjFxGR3yj4RUScjIJfRMTJKPhFRJyMgl9ExMko+OWyMWHCBEJDQwkLCyMqKopTp06Rn5/PPffcU+dtT5o0iVWrVgHw4osvcu2111a5nvrIkSPExsYSFBTEmDFjKCsrA+DMmTMMGzaMzp07k5iYyKlTpwAoLy/nL3/5C0FBQURFRZGfn1/nOm+//XZ69OjBggULePnll+3tu3fvJiUlpc7bF+eg4JfLwvr161m/fj1bt27l22+/5Z133sHDw4OAgADeeeedOm373LlzrFixgqFDhwIwePBgNmzYUOVzL774IsnJyezevRsPDw+WLl0KwMyZMwkNDWXXrl3069eP1157DYCMjAxOnz7N7t27eeCBB5g0aVKd6iwoKGDPnj1s3bqV5OTkSsEfFBTEsWPHOHjwYJ32Ic5BwS+XhcOHD+Pv72+fhycoKAhPT09++OEHIiMjAbj55puJiIggIiKCpk2bsnXrVkpKSkhOTqZPnz707duXr7/+usq2MzMz6devn/39DTfcQEBAQJXPffzxx/bpL0aPHm2/K3rFihXcfffd1bbfeeedrF69uso2s7KyCAsLIyIigptuugmA06dPM3LkSEJDQxk3bpz9L4+kpCR27txJREQEd955J4WFhURERNin8U1MTOS9996r7T+tOKN6uQ1MxGQnT540unbtaoSHhxv/9V//ZVgsFsMwDGPfvn1G3759K312+fLlxqBBg4yysjLjiSeeMJYtW2YYhmHs2bPnglP5Pvvss8bs2bOrtF9zzTWV3gcEBNhff/fdd8agQYMMwzCMbt26GcePHzcMwzB+/vlno1OnToZhGMbNN99sbN682b5OYGCgUV5eXmmbSUlJxhdffGEYhmGcOHHCMIyK6ZYff/xxwzAMIyMjw/j1v+nv+/r7+nJzc40777yzSj9Efk9H/HJZ8Pb2ZsuWLbz00ktYrVb69evHt99+W+Vz+/fv5+mnn2bBggW4urry+eef8+yzzxIREcFtt912wYnMCgoKaN26db3UWdspsKOionjqqad4/fXXsVqtQMWw1q9TSyclJXHVVVc5tC1/f38KCgpqV7A4JaeYpE2uDE2aNCExMZHExETKy8tZvXo1t99+u325zWZj1KhRTJ8+nWuuuQaoeCLXypUrLzh086umTZvaQ7c6Xl5elJSU0KJFCw4dOkTbtm0BCAgI4NChQ/j6+vLjjz9WaY+IiODs2bM0adKkyhfDM888Q2JiIitWrKBPnz588803GJc4i4rVarXP6S5SHR3xy2UhLy+Pffv2ARUzGebl5dG+fftKn3niiSe4+eabGTBggL0tPj7efrIVKmYt/b0uXbqwd+/eGmtITExk4cKFACxcuJBbbrkFqDi3MH/+/Grb3333XRISEqpsc+/evURERPCPf/yDDh06cPDgQW666SaWLFkCVJwnuNjUwy4uLpSXl9vf7969+4qejVTqj4JfLgunTp1i1KhRhIaGEh4eTkhICHfccUelz0ydOpV3333XfoI3Ly+PCRMmcOjQIcLDw+nWrRsLFiyosu0hQ4awbt06+/v//u//pl27dhw9epR27drx5ptvAvD3v/+d+fPnExQUhNVqtf+1kZaWhsViISgoiPXr1zNu3DgAhg8fTrNmzejUqRNvvPEGzz77bJV9p6en2/sUGhpKjx49GDduHLt376Znz56sXbvW/tfL740ePZru3bvbT+5mZ2czZMiQS/jXFWej2TlFqBhL/7//+z+uvvrqxi6lijZt2tQ4dl9aWsqAAQNYs2aN0zyBTC6dgl+EiiEgm81G7969G7uUKhwJ/v3797Nnzx4GDhzYQFXJ5UzBLyLiZDTGLyLiZBT8IiJORsEvIuJkFPwiIk5GwS8i4mQU/CIiTub/AdtOrR2H7MLzAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -265,11 +266,11 @@ "# Set the x-axis label\n", "plt.xlabel('Size (1000 sqft)')\n", "plt.show()" - ], - "id": "c1b08142e0243c78" + ] }, { "cell_type": "markdown", + "id": "3d4f63fe1b74df05", "metadata": {}, "source": [ "## Model function\n", @@ -283,12 +284,12 @@ "Let's try to get a better intuition for this through the code blocks below. Let's start with $w = 100$ and $b = 100$. \n", "\n", "**Note: You can come back to this cell to adjust the model's w and b parameters**" - ], - "id": "3d4f63fe1b74df05" + ] }, { "cell_type": "code", "execution_count": 17, + "id": "6ef1590ead23e422", "metadata": {}, "outputs": [ { @@ -305,11 +306,11 @@ "b = 100\n", "print(f\"w: {w}\")\n", "print(f\"b: {b}\")" - ], - "id": "6ef1590ead23e422" + ] }, { "cell_type": "markdown", + "id": "2c9b74a9dafeb729", "metadata": {}, "source": [ "Now, let's compute the value of $f_{w,b}(x^{(i)})$ for your two data points. You can explicitly write this out for each data point as - \n", @@ -321,12 +322,12 @@ "For a large number of data points, this can get unwieldy and repetitive. So instead, you can calculate the function output in a `for` loop as shown in the `compute_model_output` function below.\n", "> **Note**: The argument description `(ndarray (m,))` describes a Numpy n-dimensional array of shape (m,). `(scalar)` describes an argument without dimensions, just a magnitude. \n", "> **Note**: `np.zero(n)` will return a one-dimensional numpy array with $n$ entries \n" - ], - "id": "2c9b74a9dafeb729" + ] }, { "cell_type": "code", "execution_count": 12, + "id": "b6247cda89575683", "metadata": {}, "outputs": [], "source": [ @@ -345,25 +346,25 @@ " f_wb[i] = w * x[i] + b\n", " \n", " return f_wb" - ], - "id": "b6247cda89575683" + ] }, { "cell_type": "markdown", + "id": "ab0afd05a817d94f", "metadata": {}, "source": [ "Now let's call the `compute_model_output` function and plot the output.." - ], - "id": "ab0afd05a817d94f" + ] }, { "cell_type": "code", "execution_count": 18, + "id": "95d34926475c6344", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAERCAYAAAB8eMxzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3deVhU9f4H8DeboiQMCMqi4oK4IIgLOqDI6oIr+XT1KpnZTazEflnXrFuZZEVeTbMylyhRg7Q0F7TUSBDBcA/Ea4IoLiCKCIKKCMP5/THOOCM4DDCHbd6v5+HROTNz5nMo3xy+53u+HwNBEAQQEZHeMGzsAoiIqGEx+ImI9AyDn4hIzzD4iYj0DIOfiEjPMPiJiPQMg5+apK5duyIlJUVt2yuvvILFixeL9pkuLi44fvy4TvcZFRUFY2NjPPPMM7CwsIBUKsWff/7ZoDUQPYnBT/TI2bNn4eHhofP9BgYG4u7du7h16xZGjBiByZMn48nbZ8rLy0WtgUgVg5+arVWrVqFbt27o0KED5syZg9LSUgDys+wxY8YoX5ednQ1TU1MAQGVlJebOnQtra2vlGbgidFV/y/D19cVHH32EwYMHw8LCAtOmTcPDhw+V+1y8eDFsbGzg7OyM5cuXo2vXrjXWa2JigpkzZyIvLw8FBQXw9fXFokWLMHDgQEgkkio13Lt3D6+99hocHBxgaWmJGTNmKPe1bds2uLi4wMrKChMnTsTNmzcBADdu3MCoUaNgYWGB9u3bIywsrK7fXmrBGPzULO3fvx/Lly/HgQMHkJmZiaysLCxZsqTG9x04cADHjh3DpUuXcPv2bXzxxRcwNKz+n8HPP/+MX375BZcvX0ZaWhq2bt0KAIiNjcXGjRtx/PhxHDlyBNu2bdOq5ocPHyIqKgoODg6wtrYGAPz444/Ytm0bbt26VeX1b7zxBq5cuYLU1FTcvHkTc+bMAQAcP34cb775JrZs2YIbN26gd+/eePXVVwEAK1euRM+ePVFQUIBr166p/bAgUmDwU5M1cuRISCQS5deGDRuUz23duhVz5sxBz549YWFhgUWLFmHLli017tPExAQlJSXIyMiAoaEhpFIpjIyMqn3t7Nmz0aVLF0gkEowbNw6pqakAgO3bt2P27Nno2rUrrK2t8frrr2v8zD/++AMSiQQODg44fvw4duzYofYZ3bt3R5s2bdTeU1lZic2bN+PLL7+EtbU1TExMMHz4cADAd999h7CwMLi6usLExASLFi3C7t27UVFRARMTE1y/fh05OTlo06YNhg4dWuP3hPQPg5+arN9//x1FRUXKr1mzZimfy83NRefOnZWPHR0dcf369Rr3GRAQgNmzZ2PmzJlwcHDQeLG4Q4cOyr+3bdsWd+/eBQDk5eWhU6dOyuccHBxq/MyioiLk5+cjISFBbQxf9RhU5efn4+HDh9UOIV25cgXh4eHKH4idOnWCsbEx8vLysGDBAjg4OMDLywv9+vXD9u3bNdZG+onBT82Svb09rl69qnx85coV2NnZAQDMzMxw//595XM3btxQe+9bb72F9PR0JCYm4rvvvsPvv/9eq8+2tbVFTk6O8rHq32vLwMCg2u02NjZo1aoVLl++XOU5BwcHfPrpp2o/FEtLS9GpUyeYm5vjq6++Qk5ODj7//HNMnz5d+QOLSIHBT83SP/7xD6xfvx4XLlxAcXExlixZgilTpgAA3NzccPLkSZw/fx4lJSX47LPPlO87ceIETp48CZlMBnNzcxgbGz91qOdpJk+ejG+//RaXL19GQUEBvv76a50eGwAYGhrihRdewP/93/+hoKAA5eXlSE5OBgDMmjULX375pXLo6fbt29i1axcA4Ndff0V2djYAwNLSEgYGBrU+Pmr5GPzULAUFBWH+/PkICAiAk5MTHB0dsWjRIgBAr1698Pbbb8PT0xP9+/fH6NGjle+7c+cOZs6cCQsLC7i5uWHatGnw9/ev1WdPnDgRzz//PAYNGoShQ4di3LhxaN26tU6PDwBWrFgBe3t7uLi4oGPHjli/fj0AwMvLC8uWLcMLL7wAc3NzDBw4UPlD4e+//8aIESPwzDPPICQkBBs3bqxy/YDIgOvxE9XPpk2bEBUVhYMHDzZ2KURa4Rk/UR3s2rULFRUVuHLlCpYvX45JkyY1dklEWuMZP1Ed+Pj44NSpUzAzM8OUKVOwfPlytGrVqrHLItIKg5+ISM9wqIeISM8YN3YBmty5c6exSyAiatYsLCyqbOMZPxGRnmHwExHpmSY91KOqul9XiIioqpqGyXnGT0SkZ5rNGb9CWVkZ7ty589TFraj2BEGAmZkZzMzMGrsUImoAzS7479y5A2tr66c2z6C6uXnzJoOfSE80u/Q0MDBg6IuAv0ERNSHh4YCisdCWLfLHOiRagmZnZ6Njx47w9fXFqFGjAADLli3D8OHDERISouxzGh0dDS8vL4wfPx7FxcVilVMn+/fvh7e3N3x9ffHmm29CJpPVeh8WFhbw8/PD8OHDkZGRUav3JiQkKBuFzJs3r9rXZGdnKxcHy8vLwyeffFLrGomoCVm8WP4VEgIEB8v/VGzTEVFPnUeOHImEhAQcOHAA+fn5iI+PR1JSEtzc3LBz506Ul5dj7dq1SExMxIwZM7Bu3Toxy6mVW7du4ZNPPsG+ffuQkJAAGxsbfPvttzW+r7KyUu2xq6sr4uPj8fnnn+O///2vxtdq8tVXX1W7XTX4bW1t8d5772m9TyJqYsLDH5/dV1YCu3bJ/3zyuXoSNfjj4+Ph7e2NlStX4tixY/D19QUABAYGIiUlBRkZGXB1dYWxsbFyW20YGNTvS5O9e/dixowZynHv+fPnK3ulKnqfZmdn48UXXwQASKVSvPrqq/j3v/9d7f7c3d1x7do1REVFYerUqRg3bhzS0tLw0UcfwdfXF/7+/soGGi+99BICAwOxefNm5fsVn5mcnIxhw4bBz88PW7duxfr167F582YEBAQgOzsbzz//PADghx9+gFQqxbBhw5QNOzw9PREWFgZ3d3fs27evVt9rImoAvXoBTxvKNjSUP68Dol3ctbOzQ0ZGBlq3bo1JkyahuLgYHTt2BCAf/igsLERRURHMzc3VtjUV169fh6urq/KxqakpHj58+NTX37p1C++9955aL1ZViYmJ6PXoP5pEIsHWrVtx5swZ5OTkICEhAefOnUNERAT+9a9/wcjICHFxcfj000+rfOY777yDXbt2wdraGpWVlejYsSO6d++Ojz/+WPmDQyaT4csvv0RycjJycnIQFhaGPXv2oKCgAIsWLUJ5eTnCwsIwZsyYen6XiEin/vlP+Zj+o45qaiZMkD+vA6IFf+vWrZVdicaPHw9zc3Nlb9Li4mJlo2jFuL5iW1NhZ2eH3Nxc5eMHDx7AxMRE7TWqC5t26NCh2tA/c+YM/Pz8IJFI8M0332D//v0YNGgQAODcuXNISEhQ/iZkZ2eHixcvYsCAAQCAQYMG4c8//6yyT2trawB46kXu/Px8ODo6wsTEBF27dlXezGFjY6NsIF5UVKTV94GIGtCWLUBsbPXPxcbKn9dB+Is21FNSUqL8e3JyMpycnHDo0CEAQFxcHKRSKZydnZGeng6ZTKbc1lQEBQVh06ZNuHfvHgBg5cqVCA4OBiD/IQDIQ13haSGsGOPfsWOHshm44rW9evXCqFGjkJCQgISEBGzatAndunVTDs2cPn26yv4MDAxQUFAAQH6NwMTEpMpFZxsbG2RnZ6O8vBzZ2dnKu55VZ+5wNW6iJuj8+cdj+k+qrJQ/rwOiBf/hw4cxaNAgeHl5wd7eHkOHDsWIESMwfPhw/PXXXwgODoaJiQlmz54Nb29vbNy4EXPmzKnVZwhC/b406dChA959912MGTMGPj4+uHHjBkJDQwEA48aNw/Dhw5U/yOqqf//+sLW1ha+vL/z8/LBhwwYMHToUZWVlCAgIqHYWUEREBCZMmAA/Pz/8/PPP6NevH5KTkzF16lTla4yMjBAWFgZvb29Mnz4dS5YsqVedRNRAPvxQ/gXIx/QnTXo85q/6XD016UYsqutNKM5a8/PzYWNj01gltVj8vhI1IeHh8gu5ijH/8+drFfrVZaeqZnfnLhFRi6ca8jq6oKuKt8ASEekZBj8RkZ5h8BMR6RkGPxGRnmHw18DJyQlbFKvkVeOvv/7CqVOnarXPhIQEvP/++8rHxcXFyiUZFLy8vFBaWlrlvS+++CIuXLhQq88jIlLVMoNfR0uapqamwtvbG7FPu5MOdQv+J5mbm8PCwgLXrl0DAFy6dAl2dnZo06ZNvfZLRFSdlhf8OlzS9JdffsFrr72G+/fvo6ysDACwc+dOSKVS+Pn54dChQ1i/fj2WLVuGkJAQREVFITIy8lEZi5GQkIDc3FzlssyvvfbaUz/r2Wefxc6dOwEAO3bswLPPPosNGzbA19cXgwcPxoEDB544zMWIi4sDIP8tIDs7G6WlpZg2bRr8/f0xdepUlJeXY8eOHRgyZAj8/f3x66+/1vp7QEQtT8sKfh0vaXrq1Cl4eHhgzJgxiIuLQ2VlJT755BPEx8crVx4NDQ3FggULEB0dXe0+rK2t8fvvvyMpKQnFxcXIzMys9nWTJk3Cnj17AAB79uzB+PHjMXXqVCQkJOCPP/7A8uXLa6w3MjISEydOxMGDB+Hr64tt27Zh+/bt+Omnn3Dw4EEEBQXV6viJqGVqWTdwKZY0rW6ti1ouaZqVlYX09HSMGTMGZWVlcHZ2xuDBg+Ho6KgcgnlyfZ7q1sIpKCjAq6++iqKiImRnZ6st/KbKxsYGFRUVOH/+PFq3bg2JRIIdO3Zg1apVEAQBN2/erPGzzp07h5MnT2LdunV48OABpk2bhvfffx8ff/wxKioq8N5776Fnz55afw+IqGVqWWf8//ynfOnS6tRySdPt27cjMjIS+/btQ3x8PK5fvw5ra2tcuXJFuUjbk4ukWVhY4Pr16wAeL+AWExOD4OBgJCQkYNiwYRoXR5swYQLmzJmDiRMnApCvy/Pbb79h165dVX7IKD5LEAScPXsWgHzRt7fffhsJCQlISUnBa6+9BkdHR0RGRiI0NBQrVqzQ+viJqOVqWcGvzZKmWtq7dy+8vLyUj/v27YukpCS8++678PHxgb+/Pw4fPgypVIoffvgB8+bNQ0BAAPbt26cMbgDw9/fH559/juDgYOVKn08zefJkHD58GJMmTQIgX856xIgReO+996osWT158mR88cUXmDJlCiwtLQEAoaGh2LFjBwICAuDv749Tp05h8eLF8PHxwbx589QWciMi/dWyFmkLD9d8EXfxYp2tbtfScJE2opajpkXaWtYZfwMtaUpE1Jy1rIu7gPys3sCgXkuaEhG1ZC0v+AHRlzQlImrOmt1QjyAIqHxaazKqsyZ8qYeIdKzZnfFLJBLcunVLbR471Y8gCDAzM2vsMoiogTS74G/VqhU6dOjQ2GUQETVbzW6oh4iI6ofBT0SkZxj8RER6hsFPRKRnGPxERHqGwU9EpGdED/4VK1Yo+8laWFjA19cXvr6+uH37NgAgOjoaXl5eGD9+PIqLi8Uuh4hI74ka/GVlZUhNTVU+dnV1RUJCAhISEmBlZYXy8nKsXbsWiYmJmDFjBtatWydmOUREBJGDPzIyEjNnzlQ+PnfuHLy9vfHOO+9AEARkZGTA1dUVxsbGCAwMREpKipjlEBERRAz+8vJyHDp0CP7+/sptmZmZSExMRGFhIWJjY1FUVARzc3MA8mGgwsJCscohIqJHRAv+zZs3Y/r06WrbrKysYGBggODgYKSnp0MikSjH9YuLi6t0mSIiIt0TLfjPnz+PNWvWYMyYMTh79ixWrVql7E2bnJyMHj16wNnZGenp6ZDJZIiLi4NUKhWrHCIiekS0RdqWLl2q/Pvw4cPh4+MDDw8PmJmZoXv37ggPD4eRkRFmz54Nb29vWFpaIiYmRqxyiIjokWbXc5eIiDTTr567RERUoxqHesrKyvDbb7/h6NGjyMvLg6mpKXr37o1Ro0ahT58+DVEjERHpkMahnkWLFuH333+Ht7c3BgwYABsbG5SVleHChQs4fPgw7t69i88++wzu7u6iFMehHiKi2qspOzUGf3x8PPz8/J6688LCQly9ehVubm71LLN6DH4iotqrV/BXR+ywV8XgJyKqPZ1c3PX29kZJSQny8/MxYMAAvP7665g7d67uqiQiogajVfDfu3cP7dq1w7Zt2zB79mwkJCQgOTlZ7NqIiEgEWgV/RUUFDh06hKioKEyYMEG5jYiImh+tgv+rr77C559/jmeffRZubm64dOmSxou+RETUdNV4cVcmk+Hll1/Ghg0bGqomJV7cJSKqvXpf3DUyMkJeXh5KS0t1WxkRETUKrRZpa9++PQYMGIDRo0fDzMxMuf3TTz8VrTAiIhKHVsE/cuRIjBw5UuxaiIioAXB1TiKiFkYnN3Clp6dj7Nix6NatG+zt7ZVfRETU/Gg11PPyyy9jzZo1eOmll5CUlIQNGzagqKhI7NqIiEgEWt/ANWDAAMhkMpiZmSEsLAy//fab2LUREZEItDrjb9u2LcrLy+Hm5obw8HDY29vj7t27YtdGREQi0OqMPyoqChUVFVi9ejUEQcC5c+ewfft2sWsjIiIRcFYPEVELU1N2ahzqsbOzg4GBAQRBqPbP3Nxc3VdMRESi0hj8169fb6g6iIiogWgM/gMHDmh886hRo3RaDBERiU9j8P/4449Pfc7AwIDBT0TUDIl+cXfFihX45ZdfkJSUhGXLlmHXrl1wdHREVFQUTExMEB0djdWrV8PKygoxMTEwNzdXvpcXd4mIak8nSzZcuHABo0aNQufOndG5c2eMHj0aWVlZNb6vrKwMqampAID8/HzEx8cjKSkJbm5u2LlzJ8rLy7F27VokJiZixowZWLdunbbHRUREdaRV8M+aNQvz58/H1atXcfXqVcyfPx8vvvhije+LjIzEzJkzAQDHjh2Dr68vACAwMBApKSnIyMiAq6srjI2NlduIiEhcWgV/cXExgoKClI/HjBmD4uJije8pLy/HoUOH4O/vDwAoKipSDuNYWFigsLCw2m1ERCQurZZscHFxwVtvvYVp06bBwMAAW7ZsgYuLi8b3bN68GdOnT1c+lkgkyMnJASD/QSKRSCCRSJQ/QBTbiIhIXFqd8X/33XewtbXFJ598giVLlqBDhw747rvvNL7n/PnzWLNmDcaMGYOzZ8/ixIkTOHToEAAgLi4OUqkUzs7OSE9Ph0wmU24jIiJxNciSDcOHD0dSUhKWLl2K2NhYdOnSBVFRUWjVqhU2b96MNWvWwNLSEjExMWpXoDmrh4io9mrKTo3B361bNxgYGDx15xcvXqxneZox+ImIaq9ea/X8/fffEAQBn3zyCWxtbTF16lQIgoCtW7fWeHGXiIiaJq2Gevr376+cj68wZMgQHDt2TLTCAJ7xExHVhU5u4Grfvj2++eYbFBQUoKCgAKtXr4aZmZnuqiQiogajVfBv2bIFZ8+eRWBgIAIDA3Hu3Dls3bpV7NqIiEgEbMRCRNTC6GSoh4iIWg4GPxGRntEY/NOmTQMA/Pe//22QYoiISHwa5/GnpqbizJkz2LhxI5599lk8eTnA2dlZ1OKIiEj3NF7c3bJlCzZu3IikpCQMHjxY/Y0GBjh48KCoxfHiLhFR7dVryQaFpUuXYuHChbqtTAsMfiKi2tNJ8N+/fx+rVq1CUlISAPmia2+88QbatGmjw1KrYvATEdWeTqZzvvTSSygqKsJnn32GiIgIFBcXY9asWbqrkoiIGoxWjVj+/vtvbNmyRfnYzc0N7u7uohVFRETi0eqM39zcHHv27FE+3rt3r7JlIhERNS9ajfFnZWXh9ddfx19//QVDQ0P0798fq1atQo8ePUQtjmP8RES1p5OLu42FwU9EVHtcq4eIiNQw+ImI9AyDn4hIz2gV/G+++SZKSkpQVlYGPz8/2NnZYcOGDWLXRkREItAq+OPj49GuXTvs2rULffr0QVZWFr744guxayMiIhFoFfwPHjxAWVkZtm3bhueeew5t27YVuy4iIhKJVsE/Z84cdO7cGSUlJfDz88OVK1fQrl07sWsjIiIR1Hkef0VFBYyNtVrxoc44j5+IqPZqyk6NyS0IArZt24a9e/ciNzcXAGBnZ4dx48bhueee0/jB6enpCA0NhZGREZycnPD9999DIpFgwIABAIBffvkFVlZWiI6OxurVq2FlZYWYmBguBUFEJDKNZ/wzZ86EsbExpk+fDgcHBwBATk4OYmJi8PDhQ2zevPmpOy4vL4eJiQkAYNasWXjttdcwf/585dLOitf4+/sjPj4e27dvx5UrV7BgwQLl8zzjJyKqvXqd8f/555/IyMhQ29a7d28EBATU2HZREfoA0Lp1a3Tu3Bnnzp2Dt7c3hg0bhoiICGRkZMDV1RXGxsYIDAxEaGioVgdFRER1p/Hirp2dHSIjI3Hv3j3ltnv37mH9+vWwtbWtcee7d+9Gv379cPPmTbRv3x6ZmZlITExEYWEhYmNjUVRUpBzasbCwQGFhYT0Ph4iIaqIx+Ldt24b//e9/GDhwIDp16oROnTph0KBBOHfuHLZt21bjzidOnIj09HQ4ODhgz549sLKygoGBAYKDg5Geng6JRILi4mIAQHFxMSQSiW6OioiInkrjUI+NjQ1WrFiBFStW1HrHZWVlaN26NQD5ev6tWrWCTCaDkZERkpOT4erqCmdnZ6Snp0MmkyEuLg5SqbRuR0FERFqrcT7m8ePHq53VM2TIEI3v27dvn/IHRs+ePWFnZwcPDw+YmZmhe/fuCA8Ph5GREWbPng1vb29YWloiJiZGB4dERESaaJzV88477+DEiROYNm2a2qyeH3/8EYMGDcLSpUtFLY6zeoiIaq9ejVicnZ2rzOoB5PP7nZ2dkZmZqaMyq8fgJyKqvXo1YmnXrh3i4uKqbI+Li+OSDUREzZTGMf4tW7Zg4cKFmDVrFmxsbCAIAm7duoXBgwfjxx9/bKgaiYhIh7Raq0cQBBQUFAAA2rdvDwMDA9ELAzjUQ0RUF/W6cxcA8vLysG/fPrVZPWPGjIGdnZ0OyyQiooaicYz/yy+/xMiRI5GVlQUrKytYWVnh4sWLGDVqFL788suGqpGIiHSoxlk9Z8+eVVt3B5DfnOXq6lrtjB9d4lAPEVHt1WtWj4mJCS5evFhl+6VLl0Rfi5+IiMShMb0jIyMREhICIyMj5Q1c165dQ2VlJSIjIxukQCIi0i2tZvXk5uYqL+7a29vD3t5e9MIADvUQEdVFvWf1ANWHfXp6Ovr161fP8oiIqKFp1Wy9OmPHjtVlHURE1EA0nvFPnz692u2CIOD27duiFEREROLSGPz79u3D5s2b8cwzz6htFwQBBw8eFLUwIiISh8bgDwgIQLt27TBixIgqz3l4eIhWFBERiUerWT2NhbN6iIhqr143cBERUcvD4Cci0jMMfiIiPaP1gjulpaW4fv06KioqlNucnZ1FKYqIiMSjVfB/+umnWLt2Lbp3765swmJgYMApnUREzZBWwb9x40acP38ebdq0EbseIiISmVZj/L169UJZWZnYtRARUQPQ6oz/4cOH6NOnD7y8vNC6dWvl9piYGNEKIyIicWgV/O+++67YdRARUQPRGPwVFRUwNjaGp6dnrXecnp6O0NBQGBkZwcnJCd9//z2WL1+OXbt2wdHREVFRUTAxMUF0dDRWr14NKysrxMTEwNzcvM4HoxQeDvTqBfzzn8CWLcD588CHH9Z/v0RELYDGMf7g4GAA8jH+3r17K78UjzXp1asXjhw5gsOHDwMATpw4gfj4eCQlJcHNzQ07d+5EeXk51q5di8TERMyYMQPr1q2r/xEtXiz/CgkBgoPlfyq2ERE1cUVFwIEDwJUr4n2GxjP+PXv2AJD32K0t1QbtrVu3RkZGBnx9fQEAgYGBiImJQd++feHq6gpjY2MEBgYiNDS01p+jJjxc/gUAlZXArl3qzxkY8MyfiJqMigrgzBkgJQU4elT+9fff8ue++AL4v/8T53M1Bv+BAwcwatSopz5/69YtXL16FQMGDKj2+d27d+M///kPnJ2dUVFRoRzGsbCwQGFhIYqKiqpsq5devQBDQ3noP8nQUP48EVEjuXZNHu6KoD9xAigtrf61R4+KV4fG4D927Bg+/PBDeHp6wt3dHdbW1igrK8PFixeRmJgIQRDw6aefPvX9EydOxMSJEzFv3jwYGxujuLgYAFBcXAyJRAKJRFJlW70oxvRVz/QVJkyQP09E1ADu3QNOnnwc8ikpwKPW5VpJSRGvNo3B//7772PhwoWIi4tDSkoKkpOTYWpqit69e2PlypXo3r37U99bVlamnPppbm4OmUyGQ4cO4e2330ZcXBykUimcnZ2Rnp4OmUym3FYvW7YAsbHVPxcbK3+e4U9EOlZZKZ9Dojpkc+YMIJPVfl8GBkC/fsDQofKhIGOtF9bRXo27NDExQVBQEIKCgmq143379mHFihUAgJ49e2LJkiW4fv06hg8fji5duuCNN96AiYkJZs+eDW9vb1haWtb/voDz56sf5gEe/5chIqqnW7fUh2yOHQNUlsCvlY4dAalU/jV0KDB4MNCunW7rfVLLa8SyeLH8Qq6hoXx4JzZWHvoffsiZPURUa2VlQGqq+pDNxYt125epKTBwoDzgFUHfpYv8LF+XaspOEX6JaGSLF8u/i5zHT0S1JAhAdrZ6yJ8+DTx8WLf99eypHvJubkCrVjotuU5a3hk/EZGW7twBjh9/PC6fkgLk59dtX5aWwJAhj0N+yBCgfXvd1qstnZzxnz59Gq+++iry8/ORlZWFM2fOICYmBhEREbqrlIhIRDIZcPas+tn8uXPys/zaMjaWn70rQn7oUPnZvWEzaW2l1Rm/p6cnYmJiMHnyZJw+fRoA0K9fP6Snp4taHM/4iaiucnPVz+RPnJBPsayLzp3Vh2wGDgTattVtvbqkkzP+yspKdOvWTW2bkZFRPUsjItKN0lL5nHnVmTZXr9ZtX2Zm8pk1qmfz9va6rbexaRX8PXv2VC7fkJeXh6+//hoDBw4UtTAioupUVgKZmepn82lp8jnvtWVgAPTpox7yLi7izJ1vSpnTC4kAABKQSURBVLQa6rl79y6WLFmCP/74A4B8rZ0PPvgAZmZmohbHoR4iKiiQz5NXhPyxY0BdV3exsVEPeQ8PoCVGS03ZqVXwy2SyKkM71W3TNQY/kX55+FB+9q46ZJOZWbd9tWr1eM68Yny+a1fdz5lvinQyxu/t7Y19+/YpF1S7c+cOxo4di+TkZB2VSUT6RhDkSw+rhvypU8CDB3XbX/fuj8/mpVKgf39ApWEgqdAq+O/fv6/WIMXCwgL36np5nIj0UkmJfGaNatDn5dVtX+bm6mfyQ4bIh3FIO1oFv0QiQWJiIkaMGAEASExM1E2nLCJqkWQy+Rx51ZA/e/bpS2lpYmgonzOvGvSKFdipbrQK/jVr1mDmzJm4e/cuAKBdu3bYuHGjqIURUfNx44Z6yB8/Lj/Drwt7e/Uhm0GD5FMsSXdqtWRDyaP/ku3EXjruEV7cJWp6HjyQr1+jugRxdnbd9tWmjXzOvOrNUZ066bRcvVSvi7tff/01wsLC8O6778KgmkvhmpqwEFHzJwhAVpb62fxffwHl5XXbX+/e6iHfrx+g0qWVGojG4Hd0dASAGhurE1HLUFQknyevejZfUFC3fbVvrz4u7+EhX8iMGp/G4J8wYQJkMhkSEhKwYcOGhqqJiBrAk42+U1Lq3qvIxARwd1c/m+/RQz/mzDdHNV7cNTIyQl5eHkpLS9GmTZuGqImIRHDtmvqZvKZG3zXp2lU95AcMkDcZoeZBq1k97du3x4ABAzB69Gi1ZRo4xk/UNN2793jOfF0afatq104+TKO61EHHjrqtlxqWVsE/cuRIjBw5UuxaiKgOnmz0nZICpKfXrdG3oaF8kTLVs/k+fQAuxtuy1Bj8O3bsQH5+Pvr27YuxY8c2RE1EpEF+vvqZ/PHjdW/0bWurHvIN0eibGp/G4A8NDUVmZiakUik++ugj/Pnnn1iyZElD1Uak98rK5NMnVYO+vo2+VYdsxGj0TU2fxhu4+vXrh7S0NBgaGqK0tBTDhg3DqVOnGqw43sBF+kSMRt+qId9UGn2T+Op1A1erVq1g+GhBDM7oIdIt1UbfirBvCY2+qenTGPxnzpyB/aOeY4IgoKCgAPb29hAEAQYGBsit6zQBIj1TUSFfpEw15HXV6FsqlZ/dc8iGtKUx+Mvrel82kZ7TdaNv1SGbpt7om5o+0TpLHj16FPPnz4eRkREGDx6MlStXwsLCAgMGDAAA/PLLL7CyskJ0dDRWr14NKysrxMTEcLlnanbu35c3ENFVo28Pj8ch3xIbfVPjEy34HR0dcfDgQZiamiIkJARnzpyBq6srEhISlK8pLy/H2rVrkZiYiO3bt2PdunVYsGCBWCUR1Ztqo29FyOuq0bdUCvTt2/IbfVPjE+1/MVtb28cfYmwMIyMjnDt3Dt7e3hg2bBgiIiKQkZEBV1dXGBsbIzAwEKGhoWKVQ1QnikbfipDXVaNvqVQ+Z56T1agxiH5ukZaWhlu3bqFv377IzMyEpaUlXnnlFcTGxqJ9+/bKoR0LCwsU1vVfFJEOsNE36QtRg//27dsICwvDTz/9BACwsrICAAQHB+P06dOYNGkSiouLAQDFxcWQSCRilkOkVF2j75Mn5TdM1UWPHuohz0bf1JSJFvwVFRV4/vnnsWzZMtja2uLevXswNTWFkZERkpOT4erqCmdnZ6Snp0MmkyEuLg5SqVSsckjPKRp9q65OWddG3xYW8nnybPRNzZVowf/zzz/j+PHjWLhwIQAgIiICc+fOhZmZGbp3747w8HAYGRlh9uzZ8Pb2hqWlJWJiYsQqh/SIotG3asjrotG3Ynyejb6puatVz92GxiUbSBtiNPpWhDwbfVNzVK8lG4iamicbfaekAJcv121fbPRN+orBT02WotG36pANG30T1R+Dn5qMwkL5PHlFyOui0bci5Nnom+gxBj81CjEafauuZ8NG30RPx+CnBqHa6DslRT5nno2+iRoHg590TrXRtyLs2eibqOlg8FO9VFYCf/+tvgRxfRt9q4Y8G30T6R6Dn2rlyUbfx44Bj1bdqDVbW/WQZ6NvoobB4KenUm30rRiy0VWjb6lU3mCEF2CJGh6DnwDI58xfuqQe8rpq9C2Vypc94Jx5oqaBwa+ndN3oW7VjFBt9EzVtDH49oOtG3/37qy9BzEbfRM0Lg78FUjT6VoS8rhp9S6Xycfo2bXRbLxE1LAZ/M6do9K26no0uGn0rwt7OTrf1ElHjY/A3I4pG36ohn5patznzBgbyxt6qQzZs9E2kH/jPvAl7stH30aNAUVHd9tWhg3rIe3gAj9odE5GeYfA3EYpG36ohr4tG34ohGzb6JiIFBn8jUDT6Vg15XTT6VoQ8G30TkSYM/gZQUvJ4zrxits2NG3XbFxt9E1F9Mfh17MlG3ykp8jn0dZkzb2QEuLqy0TcR6RaDv57y8tTP5I8fB+7erdu+HBzUQ56NvolIDAz+WnjwQD5nXjXo69voW3V1Sjb6JqKGwOB/CkEALlxQD/nU1Po1+lYNeVdXzpknosbB6HlEtdG3Yp35+jT6Vg35IUMAiUS39RIR1ZVeBn95ubzRt+p6Nrpq9C2VAt27c848ETVdogX/0aNHMX/+fBgZGWHw4MFYuXIlli1bhl27dsHR0RFRUVEwMTFBdHQ0Vq9eDSsrK8TExMBchNtJdd3oWzXk3d3Z6JuImhcDQajLRMOa5eXlQSKRwNTUFCEhIXjllVcQERGBX3/9FUuXLkX37t0RHBwMf39/xMfHY/v27bhy5QoWLFig3MedO3eUf7ewsKjV59+7B8yYUf9G34o582z0TUTNRU3ZKdoZv62t7eMPMTZGWloafH19AQCBgYGIiYlB37594erqCmNjYwQGBiI0NFRnn9+2LXDkiPY3ShkaAv36qa9n07s3G30TUcsj+hh/Wloabt26BYlEAqNHKWphYYHCwkIUFRUph3YU23TFwEAe4Lt3V/+8aqNvqVQ+tfKZZ3T28URETZaowX/79m2EhYXhp59+wsmTJ5GTkwMAKC4uhkQigUQiQXFxsdo2XVIEv6mp/GYo1Zuj2OibiPSVaDf/V1RU4Pnnn8eyZctga2sLDw8PHDp0CAAQFxcHqVQKZ2dnpKenQyaTKbfp0owZ8u5TxcVAUhLw+efAP/4BdOnC0Cci/SXaGf/PP/+M48ePY+HChQCAiIgIjBgxAsOHD0eXLl3wxhtvwMTEBLNnz4a3tzcsLS0RExOj0xo6d5Z/ERHRY6LN6tGF+szqISLSVzVlJ9d5JCLSMwx+IiI9w+AnItIzDH4iIj3TbBZpU71YQUREdcczfiIiPcPgJyLSM016Hj8REekez/iJiPRMiwn+3NxcDBw4EKampqioqKjynL+/P7y8vBAXF9dIFeqepmMODw+Hp6cnPD098ccffzRShbqn6ZgBQBAE9O/fH5GRkY1Qne5pOt4HDx7gX//6F/z9/TFv3rxGqlD3NB3zoUOHMHToUEilUqxdu7aRKtS9o0ePwsvLC97e3pg/f77ac6Lkl9BClJaWCrdv3xZ8fHyE8vJytefmzZsnJCcnCyUlJYKPj0/jFCgCTcd88eJFQRAEobCwUPD29m6M8kSh6ZgFQRB27twpBAYGCt9++20jVKd7mo536dKlQlxcXCNVJh5NxzxhwgTh8uXLgkwmE4YMGdJIFere9evXhdLSUkEQBGH69OlCWlqa8jkx8qvFnPGbmprC0tKy2ufS0tLg6emJZ555Bu3atUNJSUkDVycOTcfcrVs3AEDr1q1h0IKWItV0zADw448/YurUqQ1Ykbg0HW9CQgJ2794NX19f7H5a44lmSNMxu7i44M6dOygrK4OZmVkDVyYeW1tbmD7q4WpsbKzsXQKIk18tJvg1kclkyvDTdcOXpm7x4sWYM2dOY5fRIPbv3w8fHx8YGzeb21PqJSsrC+PGjcPevXuxZMmSaoe+Wprg4GCMHz8evXv3RkhISGOXo3OKxlV9+/ZVbhMjv/Qi+FV/eorR8KWp2rFjBwoKCjB9+vTGLqVBREZGYtasWY1dRoOxsLCAj48PzMzM4OTkhBva9hltxhYsWICkpCRkZmZi06ZNuH//fmOXpDOKxlXfffed2nYx8ksvTo3c3Nzw559/ws3NDcXFxcp2jy1ZWloaVq9ejb179zZ2KQ0mMzMTwcHByMnJgSAIGD58OHr37t3YZYnGy8sLaWlpGDhwILKzs2FjY9PYJYnOyMgIEokErVq1gqGhIcrLyxu7JJ14snGVKlHySydXCpqAhw8fCgEBAYJEIhH8/f2FlJQUISwsTBAEQbh69arg5+cnSKVSYf/+/Y1cqe5oOuZRo0YJ/fr1E3x8fISJEyc2cqW6o+mYFTZs2NBiLu5qOt7c3Fxh5MiRwtChQ4XIyMhGrlR3NB3zb7/9JgwZMkSQSqVCeHh4I1eqOzExMYK1tbXg4+Mj+Pj4CEeOHBE1v3gDFxGRntGLMX4iInqMwU9EpGcY/EREeobBT0SkZxj8RER6hsFPzcaiRYvg4uICV1dXeHl54e7du8jNzcULL7xQ730vWbIE+/btAwBERESgS5cuVeZT37x5EyNGjICTkxNmzJgBmUwGACgtLcXEiRPRs2dPBAUF4e7duwCAyspKvPzyy3BycoKXlxdyc3PrXedzzz2H/v37Izo6GsuXL1duv3DhAmbOnFnv/ZN+YPBTs3DkyBEcOXIEqampOHPmDDZt2gQTExPY29tj06ZN9dr3w4cPsWfPHowZMwYAMHLkSKSkpFR5XUREBEJCQnDhwgWYmJhg27ZtAID169fDxcUFmZmZ8PT0xOrVqwEAsbGxuHfvHi5cuIBXXnkFS5YsqVedeXl5yMrKQmpqKkJCQtSC38nJCbdu3cLVq1fr9RmkHxj81Cxcv34dNjY2ynV4nJyc0Lp1a2RnZ0MqlQIAxo4dC3d3d7i7u8PU1BSpqakoKSlBSEgIPDw8MHToUJw8ebLKvuPi4uDp6al8PHjwYNjb21d53d69e5XLX0yfPl15V/SePXvw/PPPa9w+ZcoU7N+/v8o+ExIS4OrqCnd3dwwbNgwAcO/ePTz77LNwcXHB3Llzlb95jB8/HhkZGXB3d8eUKVNQUFAAd3d35TK+QUFB+Pnnn2v7rSV9pJPbwIhEdufOHaFPnz6Cm5ub8O9//1tIT08XBEEQLl26JAwdOlTttbt37xYCAgIEmUwmLFiwQNi1a5cgCIKQlZVV7VK+H3zwgbBhw4Yq2zt27Kj22N7eXvn3//3vf0JAQIAgCILQt29fobCwUBAEQbh//77Qo0cPQRAEYezYscLp06eV73FwcBAqKyvV9jl+/Hjh4MGDgiAIQlFRkSAI8uWW33rrLUEQBCE2NlZQ/DN98lifrC85OVmYMmVKleMgehLP+KlZMDc3x19//YXPPvsMZWVl8PT0xJkzZ6q87vLly3jnnXcQHR0NQ0ND/PHHH/jggw/g7u6OyZMnV7uQWV5eHqytrXVSZ22XwPby8sLChQvxzTffoKysDIB8WEuxtPT48ePRtm1brfZlY2ODvLy82hVMekkvFmmjlqFVq1YICgpCUFAQKisrsX//fjz33HPK58vLyzFt2jR8/fXX6NixIwB5R67ffvut2qEbBVNTU2XoamJmZoaSkhK0a9cOOTk5sLOzAwDY29sjJycHEokE165dq7Ld3d0dDx48QKtWrar8YHj33XcRFBSEPXv2wMPDA6dOnYJQx1VUysrKlGu6E2nCM35qFs6fP49Lly4BkK9keP78eXTu3FntNQsWLMDYsWPh5+en3BYYGKi82ArIVy19Uu/evXHx4sUaawgKCkJMTAwAICYmBuPGjQMgv7bwww8/aNz+008/YdSoUVX2efHiRbi7u+P999+Ho6Mjrl69imHDhmHr1q0A5NcJnrb0sIGBASorK5WPL1y40KJXIyXdYfBTs3D37l1MmzYNLi4ucHNzQ69evfCPf/xD7TWrVq3CTz/9pLzAe/78eSxatAg5OTlwc3ND3759ER0dXWXfo0ePxuHDh5WPP/74Y3Tq1An5+fno1KkT1q1bBwD4z3/+gx9++AFOTk4oKytT/rYxZ84cpKenw8nJCUeOHMHcuXMBAJMmTUKbNm3Qo0cPrFmzBh988EGVz16xYoXymFxcXNC/f3/MnTsXFy5cwIABA3Do0CHlby9Pmj59Ovr166e8uJuYmIjRo0fX4btL+oarcxJBPpb+/fffo0OHDo1dShW2trY1jt1XVFTAz88P8fHxetOBjOqOwU8E+RBQeXk5Bg0a1NilVKFN8F++fBlZWVnw9/dvoKqoOWPwExHpGY7xExHpGQY/EZGeYfATEekZBj8RkZ5h8BMR6RkGPxGRnvl/YAYw2WFJiVEAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAERCAYAAAB8eMxzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3deVhU9f4H8DeboiQMCMqi4oK4IIgLOqDI6oIr+XT1KpnZTazEflnXrFuZZEVeTbMylyhRg7Q0F7TUSBDBcA/Ea4IoLiCKCIKKCMP5/THOOCM4DDCHbd6v5+HROTNz5nMo3xy+53u+HwNBEAQQEZHeMGzsAoiIqGEx+ImI9AyDn4hIzzD4iYj0DIOfiEjPMPiJiPQMg5+apK5duyIlJUVt2yuvvILFixeL9pkuLi44fvy4TvcZFRUFY2NjPPPMM7CwsIBUKsWff/7ZoDUQPYnBT/TI2bNn4eHhofP9BgYG4u7du7h16xZGjBiByZMn48nbZ8rLy0WtgUgVg5+arVWrVqFbt27o0KED5syZg9LSUgDys+wxY8YoX5ednQ1TU1MAQGVlJebOnQtra2vlGbgidFV/y/D19cVHH32EwYMHw8LCAtOmTcPDhw+V+1y8eDFsbGzg7OyM5cuXo2vXrjXWa2JigpkzZyIvLw8FBQXw9fXFokWLMHDgQEgkkio13Lt3D6+99hocHBxgaWmJGTNmKPe1bds2uLi4wMrKChMnTsTNmzcBADdu3MCoUaNgYWGB9u3bIywsrK7fXmrBGPzULO3fvx/Lly/HgQMHkJmZiaysLCxZsqTG9x04cADHjh3DpUuXcPv2bXzxxRcwNKz+n8HPP/+MX375BZcvX0ZaWhq2bt0KAIiNjcXGjRtx/PhxHDlyBNu2bdOq5ocPHyIqKgoODg6wtrYGAPz444/Ytm0bbt26VeX1b7zxBq5cuYLU1FTcvHkTc+bMAQAcP34cb775JrZs2YIbN26gd+/eePXVVwEAK1euRM+ePVFQUIBr166p/bAgUmDwU5M1cuRISCQS5deGDRuUz23duhVz5sxBz549YWFhgUWLFmHLli017tPExAQlJSXIyMiAoaEhpFIpjIyMqn3t7Nmz0aVLF0gkEowbNw6pqakAgO3bt2P27Nno2rUrrK2t8frrr2v8zD/++AMSiQQODg44fvw4duzYofYZ3bt3R5s2bdTeU1lZic2bN+PLL7+EtbU1TExMMHz4cADAd999h7CwMLi6usLExASLFi3C7t27UVFRARMTE1y/fh05OTlo06YNhg4dWuP3hPQPg5+arN9//x1FRUXKr1mzZimfy83NRefOnZWPHR0dcf369Rr3GRAQgNmzZ2PmzJlwcHDQeLG4Q4cOyr+3bdsWd+/eBQDk5eWhU6dOyuccHBxq/MyioiLk5+cjISFBbQxf9RhU5efn4+HDh9UOIV25cgXh4eHKH4idOnWCsbEx8vLysGDBAjg4OMDLywv9+vXD9u3bNdZG+onBT82Svb09rl69qnx85coV2NnZAQDMzMxw//595XM3btxQe+9bb72F9PR0JCYm4rvvvsPvv/9eq8+2tbVFTk6O8rHq32vLwMCg2u02NjZo1aoVLl++XOU5BwcHfPrpp2o/FEtLS9GpUyeYm5vjq6++Qk5ODj7//HNMnz5d+QOLSIHBT83SP/7xD6xfvx4XLlxAcXExlixZgilTpgAA3NzccPLkSZw/fx4lJSX47LPPlO87ceIETp48CZlMBnNzcxgbGz91qOdpJk+ejG+//RaXL19GQUEBvv76a50eGwAYGhrihRdewP/93/+hoKAA5eXlSE5OBgDMmjULX375pXLo6fbt29i1axcA4Ndff0V2djYAwNLSEgYGBrU+Pmr5GPzULAUFBWH+/PkICAiAk5MTHB0dsWjRIgBAr1698Pbbb8PT0xP9+/fH6NGjle+7c+cOZs6cCQsLC7i5uWHatGnw9/ev1WdPnDgRzz//PAYNGoShQ4di3LhxaN26tU6PDwBWrFgBe3t7uLi4oGPHjli/fj0AwMvLC8uWLcMLL7wAc3NzDBw4UPlD4e+//8aIESPwzDPPICQkBBs3bqxy/YDIgOvxE9XPpk2bEBUVhYMHDzZ2KURa4Rk/UR3s2rULFRUVuHLlCpYvX45JkyY1dklEWuMZP1Ed+Pj44NSpUzAzM8OUKVOwfPlytGrVqrHLItIKg5+ISM9wqIeISM8YN3YBmty5c6exSyAiatYsLCyqbOMZPxGRnmHwExHpmSY91KOqul9XiIioqpqGyXnGT0SkZ5rNGb9CWVkZ7ty589TFraj2BEGAmZkZzMzMGrsUImoAzS7479y5A2tr66c2z6C6uXnzJoOfSE80u/Q0MDBg6IuAv0ERNSHh4YCisdCWLfLHOiRagmZnZ6Njx47w9fXFqFGjAADLli3D8OHDERISouxzGh0dDS8vL4wfPx7FxcVilVMn+/fvh7e3N3x9ffHmm29CJpPVeh8WFhbw8/PD8OHDkZGRUav3JiQkKBuFzJs3r9rXZGdnKxcHy8vLwyeffFLrGomoCVm8WP4VEgIEB8v/VGzTEVFPnUeOHImEhAQcOHAA+fn5iI+PR1JSEtzc3LBz506Ul5dj7dq1SExMxIwZM7Bu3Toxy6mVW7du4ZNPPsG+ffuQkJAAGxsbfPvttzW+r7KyUu2xq6sr4uPj8fnnn+O///2vxtdq8tVXX1W7XTX4bW1t8d5772m9TyJqYsLDH5/dV1YCu3bJ/3zyuXoSNfjj4+Ph7e2NlStX4tixY/D19QUABAYGIiUlBRkZGXB1dYWxsbFyW20YGNTvS5O9e/dixowZynHv+fPnK3ulKnqfZmdn48UXXwQASKVSvPrqq/j3v/9d7f7c3d1x7do1REVFYerUqRg3bhzS0tLw0UcfwdfXF/7+/soGGi+99BICAwOxefNm5fsVn5mcnIxhw4bBz88PW7duxfr167F582YEBAQgOzsbzz//PADghx9+gFQqxbBhw5QNOzw9PREWFgZ3d3fs27evVt9rImoAvXoBTxvKNjSUP68Dol3ctbOzQ0ZGBlq3bo1JkyahuLgYHTt2BCAf/igsLERRURHMzc3VtjUV169fh6urq/KxqakpHj58+NTX37p1C++9955aL1ZViYmJ6PXoP5pEIsHWrVtx5swZ5OTkICEhAefOnUNERAT+9a9/wcjICHFxcfj000+rfOY777yDXbt2wdraGpWVlejYsSO6d++Ojz/+WPmDQyaT4csvv0RycjJycnIQFhaGPXv2oKCgAIsWLUJ5eTnCwsIwZsyYen6XiEin/vlP+Zj+o45qaiZMkD+vA6IFf+vWrZVdicaPHw9zc3Nlb9Li4mJlo2jFuL5iW1NhZ2eH3Nxc5eMHDx7AxMRE7TWqC5t26NCh2tA/c+YM/Pz8IJFI8M0332D//v0YNGgQAODcuXNISEhQ/iZkZ2eHixcvYsCAAQCAQYMG4c8//6yyT2trawB46kXu/Px8ODo6wsTEBF27dlXezGFjY6NsIF5UVKTV94GIGtCWLUBsbPXPxcbKn9dB+Is21FNSUqL8e3JyMpycnHDo0CEAQFxcHKRSKZydnZGeng6ZTKbc1lQEBQVh06ZNuHfvHgBg5cqVCA4OBiD/IQDIQ13haSGsGOPfsWOHshm44rW9evXCqFGjkJCQgISEBGzatAndunVTDs2cPn26yv4MDAxQUFAAQH6NwMTEpMpFZxsbG2RnZ6O8vBzZ2dnKu55VZ+5wNW6iJuj8+cdj+k+qrJQ/rwOiBf/hw4cxaNAgeHl5wd7eHkOHDsWIESMwfPhw/PXXXwgODoaJiQlmz54Nb29vbNy4EXPmzKnVZwhC/b406dChA959912MGTMGPj4+uHHjBkJDQwEA48aNw/Dhw5U/yOqqf//+sLW1ha+vL/z8/LBhwwYMHToUZWVlCAgIqHYWUEREBCZMmAA/Pz/8/PPP6NevH5KTkzF16lTla4yMjBAWFgZvb29Mnz4dS5YsqVedRNRAPvxQ/gXIx/QnTXo85q/6XD016UYsqutNKM5a8/PzYWNj01gltVj8vhI1IeHh8gu5ijH/8+drFfrVZaeqZnfnLhFRi6ca8jq6oKuKt8ASEekZBj8RkZ5h8BMR6RkGPxGRnmHw18DJyQlbFKvkVeOvv/7CqVOnarXPhIQEvP/++8rHxcXFyiUZFLy8vFBaWlrlvS+++CIuXLhQq88jIlLVMoNfR0uapqamwtvbG7FPu5MOdQv+J5mbm8PCwgLXrl0DAFy6dAl2dnZo06ZNvfZLRFSdlhf8OlzS9JdffsFrr72G+/fvo6ysDACwc+dOSKVS+Pn54dChQ1i/fj2WLVuGkJAQREVFITIy8lEZi5GQkIDc3FzlssyvvfbaUz/r2Wefxc6dOwEAO3bswLPPPosNGzbA19cXgwcPxoEDB544zMWIi4sDIP8tIDs7G6WlpZg2bRr8/f0xdepUlJeXY8eOHRgyZAj8/f3x66+/1vp7QEQtT8sKfh0vaXrq1Cl4eHhgzJgxiIuLQ2VlJT755BPEx8crVx4NDQ3FggULEB0dXe0+rK2t8fvvvyMpKQnFxcXIzMys9nWTJk3Cnj17AAB79uzB+PHjMXXqVCQkJOCPP/7A8uXLa6w3MjISEydOxMGDB+Hr64tt27Zh+/bt+Omnn3Dw4EEEBQXV6viJqGVqWTdwKZY0rW6ti1ouaZqVlYX09HSMGTMGZWVlcHZ2xuDBg+Ho6KgcgnlyfZ7q1sIpKCjAq6++iqKiImRnZ6st/KbKxsYGFRUVOH/+PFq3bg2JRIIdO3Zg1apVEAQBN2/erPGzzp07h5MnT2LdunV48OABpk2bhvfffx8ff/wxKioq8N5776Fnz55afw+IqGVqWWf8//ynfOnS6tRySdPt27cjMjIS+/btQ3x8PK5fvw5ra2tcuXJFuUjbk4ukWVhY4Pr16wAeL+AWExOD4OBgJCQkYNiwYRoXR5swYQLmzJmDiRMnApCvy/Pbb79h165dVX7IKD5LEAScPXsWgHzRt7fffhsJCQlISUnBa6+9BkdHR0RGRiI0NBQrVqzQ+viJqOVqWcGvzZKmWtq7dy+8vLyUj/v27YukpCS8++678PHxgb+/Pw4fPgypVIoffvgB8+bNQ0BAAPbt26cMbgDw9/fH559/juDgYOVKn08zefJkHD58GJMmTQIgX856xIgReO+996osWT158mR88cUXmDJlCiwtLQEAoaGh2LFjBwICAuDv749Tp05h8eLF8PHxwbx589QWciMi/dWyFmkLD9d8EXfxYp2tbtfScJE2opajpkXaWtYZfwMtaUpE1Jy1rIu7gPys3sCgXkuaEhG1ZC0v+AHRlzQlImrOmt1QjyAIqHxaazKqsyZ8qYeIdKzZnfFLJBLcunVLbR471Y8gCDAzM2vsMoiogTS74G/VqhU6dOjQ2GUQETVbzW6oh4iI6ofBT0SkZxj8RER6hsFPRKRnGPxERHqGwU9EpGdED/4VK1Yo+8laWFjA19cXvr6+uH37NgAgOjoaXl5eGD9+PIqLi8Uuh4hI74ka/GVlZUhNTVU+dnV1RUJCAhISEmBlZYXy8nKsXbsWiYmJmDFjBtatWydmOUREBJGDPzIyEjNnzlQ+PnfuHLy9vfHOO+9AEARkZGTA1dUVxsbGCAwMREpKipjlEBERRAz+8vJyHDp0CP7+/sptmZmZSExMRGFhIWJjY1FUVARzc3MA8mGgwsJCscohIqJHRAv+zZs3Y/r06WrbrKysYGBggODgYKSnp0MikSjH9YuLi6t0mSIiIt0TLfjPnz+PNWvWYMyYMTh79ixWrVql7E2bnJyMHj16wNnZGenp6ZDJZIiLi4NUKhWrHCIiekS0RdqWLl2q/Pvw4cPh4+MDDw8PmJmZoXv37ggPD4eRkRFmz54Nb29vWFpaIiYmRqxyiIjokWbXc5eIiDTTr567RERUoxqHesrKyvDbb7/h6NGjyMvLg6mpKXr37o1Ro0ahT58+DVEjERHpkMahnkWLFuH333+Ht7c3BgwYABsbG5SVleHChQs4fPgw7t69i88++wzu7u6iFMehHiKi2qspOzUGf3x8PPz8/J6688LCQly9ehVubm71LLN6DH4iotqrV/BXR+ywV8XgJyKqPZ1c3PX29kZJSQny8/MxYMAAvP7665g7d67uqiQiogajVfDfu3cP7dq1w7Zt2zB79mwkJCQgOTlZ7NqIiEgEWgV/RUUFDh06hKioKEyYMEG5jYiImh+tgv+rr77C559/jmeffRZubm64dOmSxou+RETUdNV4cVcmk+Hll1/Ghg0bGqomJV7cJSKqvXpf3DUyMkJeXh5KS0t1WxkRETUKrRZpa9++PQYMGIDRo0fDzMxMuf3TTz8VrTAiIhKHVsE/cuRIjBw5UuxaiIioAXB1TiKiFkYnN3Clp6dj7Nix6NatG+zt7ZVfRETU/Gg11PPyyy9jzZo1eOmll5CUlIQNGzagqKhI7NqIiEgEWt/ANWDAAMhkMpiZmSEsLAy//fab2LUREZEItDrjb9u2LcrLy+Hm5obw8HDY29vj7t27YtdGREQi0OqMPyoqChUVFVi9ejUEQcC5c+ewfft2sWsjIiIRcFYPEVELU1N2ahzqsbOzg4GBAQRBqPbP3Nxc3VdMRESi0hj8169fb6g6iIiogWgM/gMHDmh886hRo3RaDBERiU9j8P/4449Pfc7AwIDBT0TUDIl+cXfFihX45ZdfkJSUhGXLlmHXrl1wdHREVFQUTExMEB0djdWrV8PKygoxMTEwNzdXvpcXd4mIak8nSzZcuHABo0aNQufOndG5c2eMHj0aWVlZNb6vrKwMqampAID8/HzEx8cjKSkJbm5u2LlzJ8rLy7F27VokJiZixowZWLdunbbHRUREdaRV8M+aNQvz58/H1atXcfXqVcyfPx8vvvhije+LjIzEzJkzAQDHjh2Dr68vACAwMBApKSnIyMiAq6srjI2NlduIiEhcWgV/cXExgoKClI/HjBmD4uJije8pLy/HoUOH4O/vDwAoKipSDuNYWFigsLCw2m1ERCQurZZscHFxwVtvvYVp06bBwMAAW7ZsgYuLi8b3bN68GdOnT1c+lkgkyMnJASD/QSKRSCCRSJQ/QBTbiIhIXFqd8X/33XewtbXFJ598giVLlqBDhw747rvvNL7n/PnzWLNmDcaMGYOzZ8/ixIkTOHToEAAgLi4OUqkUzs7OSE9Ph0wmU24jIiJxNciSDcOHD0dSUhKWLl2K2NhYdOnSBVFRUWjVqhU2b96MNWvWwNLSEjExMWpXoDmrh4io9mrKTo3B361bNxgYGDx15xcvXqxneZox+ImIaq9ea/X8/fffEAQBn3zyCWxtbTF16lQIgoCtW7fWeHGXiIiaJq2Gevr376+cj68wZMgQHDt2TLTCAJ7xExHVhU5u4Grfvj2++eYbFBQUoKCgAKtXr4aZmZnuqiQiogajVfBv2bIFZ8+eRWBgIAIDA3Hu3Dls3bpV7NqIiEgEbMRCRNTC6GSoh4iIWg4GPxGRntEY/NOmTQMA/Pe//22QYoiISHwa5/GnpqbizJkz2LhxI5599lk8eTnA2dlZ1OKIiEj3NF7c3bJlCzZu3IikpCQMHjxY/Y0GBjh48KCoxfHiLhFR7dVryQaFpUuXYuHChbqtTAsMfiKi2tNJ8N+/fx+rVq1CUlISAPmia2+88QbatGmjw1KrYvATEdWeTqZzvvTSSygqKsJnn32GiIgIFBcXY9asWbqrkoiIGoxWjVj+/vtvbNmyRfnYzc0N7u7uohVFRETi0eqM39zcHHv27FE+3rt3r7JlIhERNS9ajfFnZWXh9ddfx19//QVDQ0P0798fq1atQo8ePUQtjmP8RES1p5OLu42FwU9EVHtcq4eIiNQw+ImI9AyDn4hIz2gV/G+++SZKSkpQVlYGPz8/2NnZYcOGDWLXRkREItAq+OPj49GuXTvs2rULffr0QVZWFr744guxayMiIhFoFfwPHjxAWVkZtm3bhueeew5t27YVuy4iIhKJVsE/Z84cdO7cGSUlJfDz88OVK1fQrl07sWsjIiIR1Hkef0VFBYyNtVrxoc44j5+IqPZqyk6NyS0IArZt24a9e/ciNzcXAGBnZ4dx48bhueee0/jB6enpCA0NhZGREZycnPD9999DIpFgwIABAIBffvkFVlZWiI6OxurVq2FlZYWYmBguBUFEJDKNZ/wzZ86EsbExpk+fDgcHBwBATk4OYmJi8PDhQ2zevPmpOy4vL4eJiQkAYNasWXjttdcwf/585dLOitf4+/sjPj4e27dvx5UrV7BgwQLl8zzjJyKqvXqd8f/555/IyMhQ29a7d28EBATU2HZREfoA0Lp1a3Tu3Bnnzp2Dt7c3hg0bhoiICGRkZMDV1RXGxsYIDAxEaGioVgdFRER1p/Hirp2dHSIjI3Hv3j3ltnv37mH9+vWwtbWtcee7d+9Gv379cPPmTbRv3x6ZmZlITExEYWEhYmNjUVRUpBzasbCwQGFhYT0Ph4iIaqIx+Ldt24b//e9/GDhwIDp16oROnTph0KBBOHfuHLZt21bjzidOnIj09HQ4ODhgz549sLKygoGBAYKDg5Geng6JRILi4mIAQHFxMSQSiW6OioiInkrjUI+NjQ1WrFiBFStW1HrHZWVlaN26NQD5ev6tWrWCTCaDkZERkpOT4erqCmdnZ6Snp0MmkyEuLg5SqbRuR0FERFqrcT7m8ePHq53VM2TIEI3v27dvn/IHRs+ePWFnZwcPDw+YmZmhe/fuCA8Ph5GREWbPng1vb29YWloiJiZGB4dERESaaJzV88477+DEiROYNm2a2qyeH3/8EYMGDcLSpUtFLY6zeoiIaq9ejVicnZ2rzOoB5PP7nZ2dkZmZqaMyq8fgJyKqvXo1YmnXrh3i4uKqbI+Li+OSDUREzZTGMf4tW7Zg4cKFmDVrFmxsbCAIAm7duoXBgwfjxx9/bKgaiYhIh7Raq0cQBBQUFAAA2rdvDwMDA9ELAzjUQ0RUF/W6cxcA8vLysG/fPrVZPWPGjIGdnZ0OyyQiooaicYz/yy+/xMiRI5GVlQUrKytYWVnh4sWLGDVqFL788suGqpGIiHSoxlk9Z8+eVVt3B5DfnOXq6lrtjB9d4lAPEVHt1WtWj4mJCS5evFhl+6VLl0Rfi5+IiMShMb0jIyMREhICIyMj5Q1c165dQ2VlJSIjIxukQCIi0i2tZvXk5uYqL+7a29vD3t5e9MIADvUQEdVFvWf1ANWHfXp6Ovr161fP8oiIqKFp1Wy9OmPHjtVlHURE1EA0nvFPnz692u2CIOD27duiFEREROLSGPz79u3D5s2b8cwzz6htFwQBBw8eFLUwIiISh8bgDwgIQLt27TBixIgqz3l4eIhWFBERiUerWT2NhbN6iIhqr143cBERUcvD4Cci0jMMfiIiPaP1gjulpaW4fv06KioqlNucnZ1FKYqIiMSjVfB/+umnWLt2Lbp3765swmJgYMApnUREzZBWwb9x40acP38ebdq0EbseIiISmVZj/L169UJZWZnYtRARUQPQ6oz/4cOH6NOnD7y8vNC6dWvl9piYGNEKIyIicWgV/O+++67YdRARUQPRGPwVFRUwNjaGp6dnrXecnp6O0NBQGBkZwcnJCd9//z2WL1+OXbt2wdHREVFRUTAxMUF0dDRWr14NKysrxMTEwNzcvM4HoxQeDvTqBfzzn8CWLcD588CHH9Z/v0RELYDGMf7g4GAA8jH+3r17K78UjzXp1asXjhw5gsOHDwMATpw4gfj4eCQlJcHNzQ07d+5EeXk51q5di8TERMyYMQPr1q2r/xEtXiz/CgkBgoPlfyq2ERE1cUVFwIEDwJUr4n2GxjP+PXv2AJD32K0t1QbtrVu3RkZGBnx9fQEAgYGBiImJQd++feHq6gpjY2MEBgYiNDS01p+jJjxc/gUAlZXArl3qzxkY8MyfiJqMigrgzBkgJQU4elT+9fff8ue++AL4v/8T53M1Bv+BAwcwatSopz5/69YtXL16FQMGDKj2+d27d+M///kPnJ2dUVFRoRzGsbCwQGFhIYqKiqpsq5devQBDQ3noP8nQUP48EVEjuXZNHu6KoD9xAigtrf61R4+KV4fG4D927Bg+/PBDeHp6wt3dHdbW1igrK8PFixeRmJgIQRDw6aefPvX9EydOxMSJEzFv3jwYGxujuLgYAFBcXAyJRAKJRFJlW70oxvRVz/QVJkyQP09E1ADu3QNOnnwc8ikpwKPW5VpJSRGvNo3B//7772PhwoWIi4tDSkoKkpOTYWpqit69e2PlypXo3r37U99bVlamnPppbm4OmUyGQ4cO4e2330ZcXBykUimcnZ2Rnp4OmUym3FYvW7YAsbHVPxcbK3+e4U9EOlZZKZ9Dojpkc+YMIJPVfl8GBkC/fsDQofKhIGOtF9bRXo27NDExQVBQEIKCgmq143379mHFihUAgJ49e2LJkiW4fv06hg8fji5duuCNN96AiYkJZs+eDW9vb1haWtb/voDz56sf5gEe/5chIqqnW7fUh2yOHQNUlsCvlY4dAalU/jV0KDB4MNCunW7rfVLLa8SyeLH8Qq6hoXx4JzZWHvoffsiZPURUa2VlQGqq+pDNxYt125epKTBwoDzgFUHfpYv8LF+XaspOEX6JaGSLF8u/i5zHT0S1JAhAdrZ6yJ8+DTx8WLf99eypHvJubkCrVjotuU5a3hk/EZGW7twBjh9/PC6fkgLk59dtX5aWwJAhj0N+yBCgfXvd1qstnZzxnz59Gq+++iry8/ORlZWFM2fOICYmBhEREbqrlIhIRDIZcPas+tn8uXPys/zaMjaWn70rQn7oUPnZvWEzaW2l1Rm/p6cnYmJiMHnyZJw+fRoA0K9fP6Snp4taHM/4iaiucnPVz+RPnJBPsayLzp3Vh2wGDgTattVtvbqkkzP+yspKdOvWTW2bkZFRPUsjItKN0lL5nHnVmTZXr9ZtX2Zm8pk1qmfz9va6rbexaRX8PXv2VC7fkJeXh6+//hoDBw4UtTAioupUVgKZmepn82lp8jnvtWVgAPTpox7yLi7izJ1vSpnTC4kAABKQSURBVLQa6rl79y6WLFmCP/74A4B8rZ0PPvgAZmZmohbHoR4iKiiQz5NXhPyxY0BdV3exsVEPeQ8PoCVGS03ZqVXwy2SyKkM71W3TNQY/kX55+FB+9q46ZJOZWbd9tWr1eM68Yny+a1fdz5lvinQyxu/t7Y19+/YpF1S7c+cOxo4di+TkZB2VSUT6RhDkSw+rhvypU8CDB3XbX/fuj8/mpVKgf39ApWEgqdAq+O/fv6/WIMXCwgL36np5nIj0UkmJfGaNatDn5dVtX+bm6mfyQ4bIh3FIO1oFv0QiQWJiIkaMGAEASExM1E2nLCJqkWQy+Rx51ZA/e/bpS2lpYmgonzOvGvSKFdipbrQK/jVr1mDmzJm4e/cuAKBdu3bYuHGjqIURUfNx44Z6yB8/Lj/Drwt7e/Uhm0GD5FMsSXdqtWRDyaP/ku3EXjruEV7cJWp6HjyQr1+jugRxdnbd9tWmjXzOvOrNUZ066bRcvVSvi7tff/01wsLC8O6778KgmkvhmpqwEFHzJwhAVpb62fxffwHl5XXbX+/e6iHfrx+g0qWVGojG4Hd0dASAGhurE1HLUFQknyevejZfUFC3fbVvrz4u7+EhX8iMGp/G4J8wYQJkMhkSEhKwYcOGhqqJiBrAk42+U1Lq3qvIxARwd1c/m+/RQz/mzDdHNV7cNTIyQl5eHkpLS9GmTZuGqImIRHDtmvqZvKZG3zXp2lU95AcMkDcZoeZBq1k97du3x4ABAzB69Gi1ZRo4xk/UNN2793jOfF0afatq104+TKO61EHHjrqtlxqWVsE/cuRIjBw5UuxaiKgOnmz0nZICpKfXrdG3oaF8kTLVs/k+fQAuxtuy1Bj8O3bsQH5+Pvr27YuxY8c2RE1EpEF+vvqZ/PHjdW/0bWurHvIN0eibGp/G4A8NDUVmZiakUik++ugj/Pnnn1iyZElD1Uak98rK5NMnVYO+vo2+VYdsxGj0TU2fxhu4+vXrh7S0NBgaGqK0tBTDhg3DqVOnGqw43sBF+kSMRt+qId9UGn2T+Op1A1erVq1g+GhBDM7oIdIt1UbfirBvCY2+qenTGPxnzpyB/aOeY4IgoKCgAPb29hAEAQYGBsit6zQBIj1TUSFfpEw15HXV6FsqlZ/dc8iGtKUx+Mvrel82kZ7TdaNv1SGbpt7om5o+0TpLHj16FPPnz4eRkREGDx6MlStXwsLCAgMGDAAA/PLLL7CyskJ0dDRWr14NKysrxMTEcLlnanbu35c3ENFVo28Pj8ch3xIbfVPjEy34HR0dcfDgQZiamiIkJARnzpyBq6srEhISlK8pLy/H2rVrkZiYiO3bt2PdunVYsGCBWCUR1Ztqo29FyOuq0bdUCvTt2/IbfVPjE+1/MVtb28cfYmwMIyMjnDt3Dt7e3hg2bBgiIiKQkZEBV1dXGBsbIzAwEKGhoWKVQ1QnikbfipDXVaNvqVQ+Z56T1agxiH5ukZaWhlu3bqFv377IzMyEpaUlXnnlFcTGxqJ9+/bKoR0LCwsU1vVfFJEOsNE36QtRg//27dsICwvDTz/9BACwsrICAAQHB+P06dOYNGkSiouLAQDFxcWQSCRilkOkVF2j75Mn5TdM1UWPHuohz0bf1JSJFvwVFRV4/vnnsWzZMtja2uLevXswNTWFkZERkpOT4erqCmdnZ6Snp0MmkyEuLg5SqVSsckjPKRp9q65OWddG3xYW8nnybPRNzZVowf/zzz/j+PHjWLhwIQAgIiICc+fOhZmZGbp3747w8HAYGRlh9uzZ8Pb2hqWlJWJiYsQqh/SIotG3asjrotG3Ynyejb6puatVz92GxiUbSBtiNPpWhDwbfVNzVK8lG4iamicbfaekAJcv121fbPRN+orBT02WotG36pANG30T1R+Dn5qMwkL5PHlFyOui0bci5Nnom+gxBj81CjEafauuZ8NG30RPx+CnBqHa6DslRT5nno2+iRoHg590TrXRtyLs2eibqOlg8FO9VFYCf/+tvgRxfRt9q4Y8G30T6R6Dn2rlyUbfx44Bj1bdqDVbW/WQZ6NvoobB4KenUm30rRiy0VWjb6lU3mCEF2CJGh6DnwDI58xfuqQe8rpq9C2Vypc94Jx5oqaBwa+ndN3oW7VjFBt9EzVtDH49oOtG3/37qy9BzEbfRM0Lg78FUjT6VoS8rhp9S6Xycfo2bXRbLxE1LAZ/M6do9K26no0uGn0rwt7OTrf1ElHjY/A3I4pG36ohn5patznzBgbyxt6qQzZs9E2kH/jPvAl7stH30aNAUVHd9tWhg3rIe3gAj9odE5GeYfA3EYpG36ohr4tG34ohGzb6JiIFBn8jUDT6Vg15XTT6VoQ8G30TkSYM/gZQUvJ4zrxits2NG3XbFxt9E1F9Mfh17MlG3ykp8jn0dZkzb2QEuLqy0TcR6RaDv57y8tTP5I8fB+7erdu+HBzUQ56NvolIDAz+WnjwQD5nXjXo69voW3V1Sjb6JqKGwOB/CkEALlxQD/nU1Po1+lYNeVdXzpknosbB6HlEtdG3Yp35+jT6Vg35IUMAiUS39RIR1ZVeBn95ubzRt+p6Nrpq9C2VAt27c848ETVdogX/0aNHMX/+fBgZGWHw4MFYuXIlli1bhl27dsHR0RFRUVEwMTFBdHQ0Vq9eDSsrK8TExMBchNtJdd3oWzXk3d3Z6JuImhcDQajLRMOa5eXlQSKRwNTUFCEhIXjllVcQERGBX3/9FUuXLkX37t0RHBwMf39/xMfHY/v27bhy5QoWLFig3MedO3eUf7ewsKjV59+7B8yYUf9G34o582z0TUTNRU3ZKdoZv62t7eMPMTZGWloafH19AQCBgYGIiYlB37594erqCmNjYwQGBiI0NFRnn9+2LXDkiPY3ShkaAv36qa9n07s3G30TUcsj+hh/Wloabt26BYlEAqNHKWphYYHCwkIUFRUph3YU23TFwEAe4Lt3V/+8aqNvqVQ+tfKZZ3T28URETZaowX/79m2EhYXhp59+wsmTJ5GTkwMAKC4uhkQigUQiQXFxsdo2XVIEv6mp/GYo1Zuj2OibiPSVaDf/V1RU4Pnnn8eyZctga2sLDw8PHDp0CAAQFxcHqVQKZ2dnpKenQyaTKbfp0owZ8u5TxcVAUhLw+efAP/4BdOnC0Cci/SXaGf/PP/+M48ePY+HChQCAiIgIjBgxAsOHD0eXLl3wxhtvwMTEBLNnz4a3tzcsLS0RExOj0xo6d5Z/ERHRY6LN6tGF+szqISLSVzVlJ9d5JCLSMwx+IiI9w+AnItIzDH4iIj3TbBZpU71YQUREdcczfiIiPcPgJyLSM016Hj8REekez/iJiPRMiwn+3NxcDBw4EKampqioqKjynL+/P7y8vBAXF9dIFeqepmMODw+Hp6cnPD098ccffzRShbqn6ZgBQBAE9O/fH5GRkY1Qne5pOt4HDx7gX//6F/z9/TFv3rxGqlD3NB3zoUOHMHToUEilUqxdu7aRKtS9o0ePwsvLC97e3pg/f77ac6Lkl9BClJaWCrdv3xZ8fHyE8vJytefmzZsnJCcnCyUlJYKPj0/jFCgCTcd88eJFQRAEobCwUPD29m6M8kSh6ZgFQRB27twpBAYGCt9++20jVKd7mo536dKlQlxcXCNVJh5NxzxhwgTh8uXLgkwmE4YMGdJIFere9evXhdLSUkEQBGH69OlCWlqa8jkx8qvFnPGbmprC0tKy2ufS0tLg6emJZ555Bu3atUNJSUkDVycOTcfcrVs3AEDr1q1h0IKWItV0zADw448/YurUqQ1Ykbg0HW9CQgJ2794NX19f7H5a44lmSNMxu7i44M6dOygrK4OZmVkDVyYeW1tbmD7q4WpsbKzsXQKIk18tJvg1kclkyvDTdcOXpm7x4sWYM2dOY5fRIPbv3w8fHx8YGzeb21PqJSsrC+PGjcPevXuxZMmSaoe+Wprg4GCMHz8evXv3RkhISGOXo3OKxlV9+/ZVbhMjv/Qi+FV/eorR8KWp2rFjBwoKCjB9+vTGLqVBREZGYtasWY1dRoOxsLCAj48PzMzM4OTkhBva9hltxhYsWICkpCRkZmZi06ZNuH//fmOXpDOKxlXfffed2nYx8ksvTo3c3Nzw559/ws3NDcXFxcp2jy1ZWloaVq9ejb179zZ2KQ0mMzMTwcHByMnJgSAIGD58OHr37t3YZYnGy8sLaWlpGDhwILKzs2FjY9PYJYnOyMgIEokErVq1gqGhIcrLyxu7JJ14snGVKlHySydXCpqAhw8fCgEBAYJEIhH8/f2FlJQUISwsTBAEQbh69arg5+cnSKVSYf/+/Y1cqe5oOuZRo0YJ/fr1E3x8fISJEyc2cqW6o+mYFTZs2NBiLu5qOt7c3Fxh5MiRwtChQ4XIyMhGrlR3NB3zb7/9JgwZMkSQSqVCeHh4I1eqOzExMYK1tbXg4+Mj+Pj4CEeOHBE1v3gDFxGRntGLMX4iInqMwU9EpGcY/EREeobBT0SkZxj8RER6hsFPzcaiRYvg4uICV1dXeHl54e7du8jNzcULL7xQ730vWbIE+/btAwBERESgS5cuVeZT37x5EyNGjICTkxNmzJgBmUwGACgtLcXEiRPRs2dPBAUF4e7duwCAyspKvPzyy3BycoKXlxdyc3PrXedzzz2H/v37Izo6GsuXL1duv3DhAmbOnFnv/ZN+YPBTs3DkyBEcOXIEqampOHPmDDZt2gQTExPY29tj06ZN9dr3w4cPsWfPHowZMwYAMHLkSKSkpFR5XUREBEJCQnDhwgWYmJhg27ZtAID169fDxcUFmZmZ8PT0xOrVqwEAsbGxuHfvHi5cuIBXXnkFS5YsqVedeXl5yMrKQmpqKkJCQtSC38nJCbdu3cLVq1fr9RmkHxj81Cxcv34dNjY2ynV4nJyc0Lp1a2RnZ0MqlQIAxo4dC3d3d7i7u8PU1BSpqakoKSlBSEgIPDw8MHToUJw8ebLKvuPi4uDp6al8PHjwYNjb21d53d69e5XLX0yfPl15V/SePXvw/PPPa9w+ZcoU7N+/v8o+ExIS4OrqCnd3dwwbNgwAcO/ePTz77LNwcXHB3Llzlb95jB8/HhkZGXB3d8eUKVNQUFAAd3d35TK+QUFB+Pnnn2v7rSV9pJPbwIhEdufOHaFPnz6Cm5ub8O9//1tIT08XBEEQLl26JAwdOlTttbt37xYCAgIEmUwmLFiwQNi1a5cgCIKQlZVV7VK+H3zwgbBhw4Yq2zt27Kj22N7eXvn3//3vf0JAQIAgCILQt29fobCwUBAEQbh//77Qo0cPQRAEYezYscLp06eV73FwcBAqKyvV9jl+/Hjh4MGDgiAIQlFRkSAI8uWW33rrLUEQBCE2NlZQ/DN98lifrC85OVmYMmVKleMgehLP+KlZMDc3x19//YXPPvsMZWVl8PT0xJkzZ6q87vLly3jnnXcQHR0NQ0ND/PHHH/jggw/g7u6OyZMnV7uQWV5eHqytrXVSZ22XwPby8sLChQvxzTffoKysDIB8WEuxtPT48ePRtm1brfZlY2ODvLy82hVMekkvFmmjlqFVq1YICgpCUFAQKisrsX//fjz33HPK58vLyzFt2jR8/fXX6NixIwB5R67ffvut2qEbBVNTU2XoamJmZoaSkhK0a9cOOTk5sLOzAwDY29sjJycHEokE165dq7Ld3d0dDx48QKtWrar8YHj33XcRFBSEPXv2wMPDA6dOnYJQx1VUysrKlGu6E2nCM35qFs6fP49Lly4BkK9keP78eXTu3FntNQsWLMDYsWPh5+en3BYYGKi82ArIVy19Uu/evXHx4sUaawgKCkJMTAwAICYmBuPGjQMgv7bwww8/aNz+008/YdSoUVX2efHiRbi7u+P999+Ho6Mjrl69imHDhmHr1q0A5NcJnrb0sIGBASorK5WPL1y40KJXIyXdYfBTs3D37l1MmzYNLi4ucHNzQ69evfCPf/xD7TWrVq3CTz/9pLzAe/78eSxatAg5OTlwc3ND3759ER0dXWXfo0ePxuHDh5WPP/74Y3Tq1An5+fno1KkT1q1bBwD4z3/+gx9++AFOTk4oKytT/rYxZ84cpKenw8nJCUeOHMHcuXMBAJMmTUKbNm3Qo0cPrFmzBh988EGVz16xYoXymFxcXNC/f3/MnTsXFy5cwIABA3Do0CHlby9Pmj59Ovr166e8uJuYmIjRo0fX4btL+oarcxJBPpb+/fffo0OHDo1dShW2trY1jt1XVFTAz88P8fHxetOBjOqOwU8E+RBQeXk5Bg0a1NilVKFN8F++fBlZWVnw9/dvoKqoOWPwExHpGY7xExHpGQY/EZGeYfATEekZBj8RkZ5h8BMR6RkGPxGRnvl/YAYw2WFJiVEAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -389,11 +390,11 @@ "plt.xlabel('Size (1000 sqft)')\n", "plt.legend()\n", "plt.show()" - ], - "id": "95d34926475c6344" + ] }, { "cell_type": "markdown", + "id": "a1b84ae24243cb1b", "metadata": {}, "source": [ "As you can see, setting $w = 100$ and $b = 100$ does *not* result in a line that fits our data. \n", @@ -403,11 +404,11 @@ "\n", "#### Tip:\n", "You can use your mouse to click on the green \"Hints\" below to reveal some hints for choosing b and w." - ], - "id": "a1b84ae24243cb1b" + ] }, { "cell_type": "markdown", + "id": "ee76a723f8f5dbd5", "metadata": {}, "source": [ "
\n", @@ -419,21 +420,21 @@ "
  • Try $w = 200$ and $b = 100$
  • \n", " \n", "

    " - ], - "id": "ee76a723f8f5dbd5" + ] }, { "cell_type": "markdown", + "id": "7f423cd19a7ba591", "metadata": {}, "source": [ "### Prediction\n", "Now that we have a model, we can use it to make our original prediction. Let's predict the price of a house with 1200 sqft. Since the units of $x$ are in 1000's of sqft, $x$ is 1.2.\n" - ], - "id": "7f423cd19a7ba591" + ] }, { "cell_type": "code", "execution_count": 14, + "id": "9cdc794cbcf34c22", "metadata": {}, "outputs": [ { @@ -451,11 +452,11 @@ "cost_1200sqft = w * x_i + b \n", "\n", "print(f\"${cost_1200sqft:.0f} thousand dollars\")" - ], - "id": "9cdc794cbcf34c22" + ] }, { "cell_type": "markdown", + "id": "4c8ad73f0d6f18f2", "metadata": {}, "source": [ "# Congratulations!\n", @@ -464,16 +465,15 @@ " - In the example above, the feature was house size and the target was house price\n", " - for simple linear regression, the model has two parameters $w$ and $b$ whose values are 'fit' using *training data*.\n", " - once a model's parameters have been determined, the model can be used to make predictions on novel data." - ], - "id": "4c8ad73f0d6f18f2" + ] }, { "cell_type": "code", "execution_count": null, + "id": "b3eb2771a91f081b", "metadata": {}, "outputs": [], - "source": [], - "id": "b3eb2771a91f081b" + "source": [] } ], "metadata": { @@ -492,7 +492,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.6" + "version": "3.10.14" }, "toc-autonumbering": false }, diff --git a/week2/__pycache__/lab_utils_common.cpython-37.pyc b/week2/__pycache__/lab_utils_common.cpython-37.pyc new file mode 100644 index 0000000000000000000000000000000000000000..180af280431e2e5e508048f828a052c8447e5591 GIT binary patch literal 3192 zcmds(&u<(x6vyrPy^~FvCV?ch6r+O3NUP13BA`))+NO#GLKUJFtyV>=*|m4G>HOGw zyv+~Ia%rzzIX5>rapzC*l~ex(PQ2&YO_Pcqinvg(#(rZzdu`9h-{)KN^C5xs-s{AxLfQ6AeN2|?EF2pDivCM|qpqY-6LLDaJ$iLibUHiP>2V-aF z+SOJIjO`XCQ}bDCX9tWgT31^)Tal|ho^+G3&;d_!8D|5bYdqnxd?W=&GmQr#Q!%!W z#uEN-r|04fAO-NCy$w(C9b_fhgZ*A76SpL#wMa^Pl}tQtal3R^$OWS4bF1`9x<&ePFYiGrzJ!3HwsLzoup=aMDE z3^svDF_5AtVDpSWyD107R%NmWY$Jm;$@q|Mq>U_!w%F}h#SNA+aS+4S!MOWFwaYTr z7qJ?{K+~Sk;Z)BkVp~kbav&6Y62rF5-1bkoWeww&=3FFf6w5djO2~q->5yHvQS{;@ zmJxCQX^Xw$J9T^_WH*P8zr{9gAWH&5HFq z`&~20_W~A^&1Tul3k8Es|J^u9*kAI(WENOQE_U6D9PJjn@knSZ8)>^3r`k1t7zLU> z(DYE#eNDUCpH5NJR6E#HhbmWb0<0J6HzMDGA^-Y#b2m@L=3f5fFwQpjbNOiV9}b0H zhI4>l*!1nBv691s73g0qLPqMLUAHb-4hbkcmRyCpo`WrrP!7;GAbtY|g80yyIA=ku z(3|+2md*wAp{2h_0K%ZEQPy+2^bMA^vQ`FtJj7P~{NEsGHuwLI;8}Y3UWcFM{0bhV zd#BH14tT;letx#!lugw%@25_|esfAU4)^jXY*j~rz1eWA+YBp=QTHQ9)}YYzon(yxr&07qT8p(6k;Wv_y=8xffW=#Oaf?iAesg*p#U7|5&~ZL5G&8D1xk?*KA>Sp$6h#~*?1p#)AmsKe5S(woZNuQQCc-!S67)oOPa zqag%&i0%KmUXGXU>c3-lu3&x{sAjQ#{#BDxc;Xus3pd9TyaZZ=Lw zht)LCLyR9Kxk`pzxD=zMy=iHW5(PI9yw7TTTnLGG6KP|HabDuBQ+klW-972$aC0rR z!-qWuCp+nx%Yo5ha|X>kPAvv6CDI6ca2+mQ<3xOggBG{}jup_l1#5x(g!#dGmV$6C ISPPc_256xy$^ZZW literal 0 HcmV?d00001 diff --git a/week2/__pycache__/lab_utils_multi.cpython-37.pyc b/week2/__pycache__/lab_utils_multi.cpython-37.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6c79bf11a4009ef1d30b7494849516de2f081966 GIT binary patch literal 18028 zcmeHvdypK*dEdNtcXn@Y?}iWDJ4LY-CzVoMOe#*5EyQwMvLm^oII&ZcmnA1c zB1bZli1~eA&%O>vS*TLwFU{8U^z?N1^yBOA`+Z-3vrmkUrZgNs`qf3vYwG@%K-qUChH8aacnX3oUbs94olE~cwI@oFMxbKI;XtEpUy<5p#)n$D#W zkL5;1JeLuP+?cR)<06@xaP8H}%_))E((!ymq+i!^)8c6{Dl)I@xjkY`j3Z@6Oo&Nb zXYs~<%~N7p>?xUICc4gwy<$$>CiaQj#T})D*dz9fJB7275O;~YQQKbej5sLnL2ORk zEAB&mw~0d{i|amdzjzm}w~Kl40Iqk41#uYH{bErZ!SzmYR2;+A5$D81;$hTqmv}@x zij=#>W8yfj2gKvz1g;0gkBF1v6mr}no)xFX8N}`tPlzY+>^||7cn_|J#QVfq@m@U1 z3jGBwyR=QCzLeENt5%m)T;qk7>m3t_jl8eWT6(r#EckWVP8?WVeC*+s6-3USeeBrc zA|g*N(!nVYE}lJ$$Rmr#7SAlUXBQ3&*KJhXf~=KmrG;vv;`tjDw@5Fe!^COfd=jU3 z9D%Q`>OvQWFs~UMEubmY-k{00-Y`~-Ijy7j(k#9=0zJSJbRo9Xo)87UaM*1fq3h8F zzvaKB&!Y!P;a1AkvhT`m124%Mp;2puiAud7kSA+~78MBf^P#@+cQiSQJZ~L5e6e12 z53klQZxm{Wn{~N%xKdcoulwbSm#?l@{PIF$BOIeT@>E)-jZjBy1e%`Fr}c4Njv-#8 zKGG4xnZU{YtsoMZ-n6f6QlIrL%u3X;kXIbFseexlXg}UvvuR%bv51 z1*V01E7WB>eWvKI7b?z6h03~%p@~-ua?O>YUJPRx0JqZ4JdNU*PUksUF1lWOA77nA z<(hK@bl^Gl6-U%7m4fuL?eQ1NZPz(O4;=5(il1F-Xa2&vL|Ipqi+;IY%NlYTua|oe zWRs!UsQ97ntuIqcy)fZ{?l5s-(sTX1U-m0*n4;(gH%7%!COkp`dY#Dvj_3$v4Gz3GF91O1Bel=kW`b?m?hYymQ!#x%}qon(;2 zy)~!p1z(!Nxlik)f|Q8kIucl`y2`Ec1WA$b4Pgffk-V0`l%_g~;phFj_Gz^j} zhZ&5Bkxy7bTBK1LJWY&Ui-Ry?DqW2KqVb5g=_rM-j}r??puL&MMo>*L5%p` z8)&nb3gT4LFB)ih3^m7y=b;{JHIABRh)l%<$ZWQKn^P^Uxt?>`m43MhVk*`>->H;q zpq6QlzZ)cR_-HkIKM}_Lha?eTJHwAw>e6Y{%Qat)BT>?FDSs7=VjHK1*{y>dMAiz8 zN;8ZV>y^4h)MN4qwYIgmu(%>=LbAp-&5^2lw7#+es!-MbB9A)R2u6NOfa+ywOZXT_-<%c+*)Yy+f?Z@V7A#&IYA9(O4Xa8zAPQw z=d7aVON4&iSH095xi}GWzL7JF2oebLU}T|LY;Ei$>e1?2p2juLtvP@SJ)&PCYx<27 zaf7TK#2v&_IMev;)#c;J)#F^$DB_(==FGViw~7TOxKh&2tHjv@Z9I{;PdoUP(Wl^ zByL2)o(te@6cCX95_c!q_%rFTYy^s0ps&UD6FFZwaM z6Z#w$D;UfZo$=O*C=Cmi)9&v~_#_kbARUa)X~6`}k#6jY6^yF*3GLF0FKd@hWAU4- z3FIBY6R$(>NGpK8HPFpjs>++~SgZn+I zb*dFtkW0Sl&#vwj8G1%AkXWIZ`UMk=53G-va4^%^b6vl5^kqe-GfT{F`kV{wAw>(X zSr-09FN`z4^4hU`ju4xA8q-fAwp^n;kV#dDzLk2-_aHRoBY4WB-ahjr(&~_!EWIIK znNglQ)SO?=&O4VqXL-J<#Cf9tnT`x4SrBEn<~zdminz*y{3>}5)k)k=f<`sDK*1pj zh&0>A11BZPJb3^C8kQ-~bHm52s19+3NRBX6T%j*~A&47mjOK+HoPp=6tGiHn4m zcS-uZ+~o|FI))&-cYrBd7t3J94w7?;W}e%TODwBMXh#k8!jyEqdId~a|eMhk7~GS3~2;7y9!aTFV6w!@|-q7Xx6z+X-(BV3rBO zEYX|uO`7(nkimNpfo9&$m}MFae!<89xlHOQjZloGS^9o`zhTo8u=>4V_zK_1I#o{; z(c@Dz6a-?KPn`#!Quv&ZDRBT{izJ~79=Rn94*}$Wsa7{ zn#@ETZ4BJ&QxW$9r(*8)Go6XnPep0qT%6Vh4>G`0Oz@Prm|WB4C&8~Kf=SW`z(e9E z0AR$_nj!yDKOK1!ocH&@*ZO%A$eZB2U+JfJrX!9y6-fZF z#_@sEQKTG2Zpd!RMie>yE`)p6uJ7dQKa$lZp!DP$m(}g zf@Ks#8C|e-1IT_v*SK6{-H6KV>mREG?76OM~)tJB{ICPzFUm0j-W? zXK879{QP5Ye*RQx``#n=-@E-^o|42COEW+7^sjDw>9HH7li&D5zy41iyHWnkiMQWo zaxWiz3kdJ@sHv3--;957>5bnzRl5K5^`HILKSTD1KK^45FJ|6%qxAUiOuzP*PW;(t zx4(w!+IPPnfL>M$6}(c+I|Bl_`O4y}^UYU|yxN|isB?%~b%+(+GyaiJ9RH__H%g!T<}2U%FIP_7C|x`Ep5M6l z=bpGxy72iQ|Fy#(ZJyqKH%e@8Q9!Fu@s7_tcSA)sPe)7rG>YJ{rhVwa8>KIP0mo0B zyP-hr+(S3Ezk(;_3^0D%S^D!jb-U_Rzw^#u|L~OhH}G_ztL;0UBxNuXSqindm&oD( zO~2x96aMHj4ofj2kiEuJURvSf8>cYUmUN4L)>e{wmU1xAhyk(`Hh2+{6``TleA(&~&iw)hyTc>@~=bS7u7fC%M@yjsT3P|j!dlH!t%(&O-Ijv3zx<_Bu zeA4et@EE;gBOV7gh|x+6?9Bwge|*b;s%LN7ktxdFge?PRI-4v7XkAJq83v>jG}tm( zg&7G*;E%QzxOM3(I=5~=T9>A`cQSq&9Ks~Q%Bl&q4|G0TR()Nl`wXKt`ZxJO^f>dZVdwK@*#bN`Mk z(b1i6ZNe%YjSBN^ac5M9Midqx9#a?%8H_jsstm+_078totn46;6&PG$G%MlI82)`0m@~#)Ph{JXrc<4Q$VH zeNb(h^UktErW?Ob=EcyW2Q2E#PdCA_|M6ASL5g{3u(dh`{bLoZ0pL5b*8DyhX<~&+ z<6?oem~GPXBNn6dt5~XtO52(4I}a_-JI$^qoV_h?5z93fDJwHqrgvgT`M=D zY(#At}ZX@7yD%r5;Hy$U@Mas`nV+J8CT~Q4wQicrq%c!$w#wA8Of|Hr; zbwr4vf+?DNi8aDl3;VnYvnR1jeJ>es$qX6?isu~&-z2R_Vf|HJOt4?TVnR9++c$KP zfJTxNcFhnL7#^|IWT4H!j7zX+#SpN23G8XWOq(E0>YA=V+O=e~ASag?!(c74wNm$> zu0O!&n`I*)1TCB}-iAe!?BzYPgFK7$?fnSa2M%6Xk%i)G7a9dvW+8LWb^7sU=b-cM zdxX4%oXQ?BY&9kG0G7=Xy~V1yE3h~E^#(*R0e)o*co)UkAn*XiXxhT5i*;FULx~4x zsFX{!Dirl_qH7xNC7~Xg11TvW+nCY=cnPo`aEvOmXwv|qJ0@210+780XuokJ)CCh> zpDaXk7j^>hfr~G)UxekQ9Z$3u)TBON!BfyOffNt*68o%w#7ZkI_O%*4`VSIl!zq z_)e(gBQX1=f>AN9-f#sL{Y$?JEMRP6?*RQ_^B1J1>gjY(YGyhqq*lA?WD+a zKB(z?pr+3O^+fx+*AktXsE%lyqr0ToPc^dqymLrPQS!3^I>HJf`Ke@I->OXNiPA%^ zLzW@auOOj)Z&xBg3i5Vc*RJ>YkWiG@sPrQUzy(OC@{%vlqbB)xaa(>A0*up`UzE>- zjJILIe!G3gd%K20!o)QPdw7@DiTARpF^sX@60$zF4!Phdt>Ft_Kh+*Pc+^p>q}qAS z>l_UA_sG9S?>C^~(=K77?u8?~i2~~v009eHSOQ2s${t)-tDObj%ktr4m3)_t^0cK z%c#gZjX<-eS&H@K7~~a8I}^q_u&0c^m!+AKXD5+Hzk4CaZqskqGn)J@)KSE&@{vLq z$H^?~(}*ZpwuRk=O-QRP$S!UT6bNVNH&vIT&W(u7Qd&DLXgFpK;osMs;0&k#EU#n==b7xsxE0qMA>$V^F6IY?V5eL75{ca!n zOxF<1Rw>#L1e^hvg7gIH9O?nlJL zz|*vt9Jt$2a=7pPHu&~tre{x@S}GEy&_VM~2>Jz_JQpP>%CDy3b%I@|Iqk0+mn;~d zbY+$pMJ7t@pzPWIMfP2L|iAXm$ z442p=se1gD($imVW2^Z~r?v^M3^kPC>J(0o02ep(U`z^-Tk#2Dyg02VIcG zPMBA$r~_8{kHGxPzmA}E;iJF#r-v?l`?K5s9<@Mxu;Rf;>S=YpZ*9FMM!F28~t zMItvkh>K91nf5tEz*Xqm06RpuUuY<4GkFp^9I0`@4kXb3wScARXzJuzlrWDx4I4IL^qDcbsF6bKW`b z9Ac%8ckY}QXyeW~RGqJ7v(Dv$EEkq5uH&s2;aTKGenw;(R5dxy#ygcig7O9Bd32dP zkGch#yBDaF@2GFpI-I_!`A)a0WvYq|6w=A6C;f1js%Rf|x0;@J z{dHOMq7fln(A;%UR2yF$9OtM;A{3{&AQ$`ve#1cPn+x6MGT`X7_@)NmQoYV{uiAc> zZ;o-7ls0K8`+@#qBrm=7D&!rle?|6>Q0!3zpj z0XQIZCW1Q90(d>ZAw|M23O=YqYqI3Ckb=;|5Vyh9t->eK4jzG9TO%}#|6i8Kt*#K{ zA0VtDVvcBca79oz`o}=g;bjn&godzOhYum>^ND&LcD`EHc?QcxuDkP2L&AH@fu$Yl z1eRnK8`ot2Q|p=>m$;JQWkgHjorzsFjEnVUOFKq&9nUIKRU+X(fi$pTP7TN=cO}^CgU#=g33$gd%-$JI%Y z_UQJ5xFNbF?Gw9pMkm&K)CbpQJ$PPO5J1h?G7pR`*ui07N&q^8iYcw@#?pzgj~=Y^ zfkl+gdwMWAZRt$Kb6qNq8qK~UJaRV?X$=k(*euB&A7tZj-J?ZGv+lME@Yp3|E_sUb zrY3Hk6}JEe=yn+(bLg9@0zEi`r9RwxvksC2Y;;FuQ<(^+^WAf;&Kj zWNRKdV@zBQ%u8_aL@wAIVO&a)uf#N*L@5=9CKyx53`GQY=^)~;YqIkv?3B2Y@hKhw zi9ha=*DW*2cOt(*;>+$veG#QFbcpDzUj|Ihf!_~&cq0BnbXx%Yh=?~TJV>P7!nJuS z+@rGZ4>|0R!@bhOT$1USUp-8t3>JuK?&t?M<(4Em7G+PQGg9b-o8czjQms9l&|4#L zpMDASsJQFLD8}IW>xgAXc4M#ue6^1RR*^k4f%=sJWd|@A@AB6!Fz{*35OfD~#agjo z=YW+%cNiUj#r`)uDbiY{gOqM^^5V7gD=0}W*HB9BGS&dpqNLDIkb0C9Mszi!t93%b z1Ouva3jRbRK78xRezA|XFw?N##|a+b$}r)&-g-)zZlA(7-m4G8a7oadOt#pr1XPDl zCYf)8v1wX=NJTuuad=Y-d(H4Z4KJfKZ2pML|3NK-I*T>duZ2}vw3O3PLkVpIKuMBP zkDOycrk6s>bpo5B^n4TwEwwyJEsyFKgY|aCVRjuAsZYSY1KW#fzQQ;S1#vWrX9nV9 z19A9bMS0*x!g=xGOfL(wxA9pT%S!^>g+?a1VnSR^6g)EmUC+6a zT&Us8Sn#oYyQI){V5IFo-cBUI>=zcC_c!p>1!NQ7I?Eg20&Db90YxLGWAR>XiC3%puUAq3Vd0?atSt$`}T%tk-yx^|;fG(G=YTI-K4NibR$Q*kz-M0Il78fp|Vqivr~k#Q-rf4g6!?a z1G^nTH}MA_VZ$2lgoMUp;w{~wuSOnn+c9Tx;fUK;Fq9i~l6NI&4;$Zm+4Mad#gtlX z72R@0eicKB}Mc58{&#T8H82&;kl4y1cHpLgaOtm}HN( zl}sh$RNu!j9Q6v9T~r4`0~b&`7OZx&*!?nP-XUjadoPN-!qvx4-bYE?E~0=oW1Hli z$Ul7X1h`86OU9%*X=1b8B$Kz&9Ku1-f1AuJGdyj5F;RoJerNG#_2bCUznk>V>jr@(`Z4+Bh~->V7)+%HaIz|KoLd>G>fXm;ND+Bgwp*;u!(2AL6(l;y6-RBJlWw$8qw%lkDoDxIV^d zr}}tKeiND6_B;bSB@iESVJKz4i~mU#e2W5Ng7Qx(U}gV*QS93k5YichHS#-@`ezip zMZy23fWV9VKNPTubr`nD|4R?Z9-#IJ-U+Nod|an}jkq@LZtez5GP{D3+jTBkq(XE+ zz3dxcPvEBi4+G@BHS`|?v77#5AhzQ_2IBaS0sN-{{mTGGFbke8>(v@(y-8sPY;9~f%<#H9gPd_#&r&Y;U<$irFW2z> z-{3ok-^jF$-Q+K!ze^ZV9^Eg{uznFi^ud2FF8x{_yXe1Sr<4@1eA}5e&ug z=>9OqT~*EH#YSr?H{un`jg18lABKC%@nizp18pc*%FFnV35vlbfUoR66;8t{pNA`T zWeq-A^rsqi|Co?O>EU2ee0q;RZcrY9_h2lD`Lhjk5nF1;0$en-u&O1>}{&+t|Ea$6Fr?+mVHiwFAbjl3*6EOQv2P!hvbv z3E_Qo`vkUa*DLNxVgdEU(I?C$K|-rf^;hbM<52x2MlZ~*v(Kma5tNTR3{MN%TTq_o=G-dpTp zZ}-qUhr3(t%CbONP$Ec-?Xn!nb`DBXk?q7~E4E`hwgp?|l$??szshkYPRg%JaJ9Ao(yj!w;8j_2dHX_Ht^<~_;BYN_RPJ}r5-Hng0{ zXCxo54KHW&S>zM>5tYo3Dlb2#Qu%R}&QFv_%A@76@_2co63wcC(C=)==E5Bzj}`vQ{%7L`2%V~O}=8~?@+tc z6pp@{Rx>!>sdlS9INtSEOYK$rUa{1^t4{uIwO<`T?Ll>i@^QQePuG8nJJnq(TZyT= zqvJt!k2<98Rfknh-B(Gfta_6=qV8Wzs#$du_dcZFtB$GT$la?>s0YyBVfCPT2*;dy zSUrN{ed*=P9#M~}(>UI*&Zx6E&Z-yG6Y3m#II5mhZ$ZtRI!SOs|)HK>S?q%pxyR>P)3Zlaxx7*<7j?Z_ugos5)SAIYt;`;)^`NYar2zTq zr>k`|d9GYpE~8eRYt%5F;>uPWA0O(JGSJst+uTk6;rN?U&q>P$2Mas!F7b3tCCSJt~|*(Ds?HPKY%L}xY7xd zDy@dDyVBabVPTb}FmsvKl)qAI1pdXwYP0OGRfCIu@j|ufZ-GLr&|VL1-O4;(3Ra6X z|GmZ9YB?7R6U#+?sjNf06vk`Cg>tQxeH$*vy!g-PYN_08?Ukc{xLWs*VM3dJW6@WQ zTCJ#?xz^}&)mGU*%oBd|@?wyiZ)M-Ls&Q>uRZBs&QO`L#i`(lFB)L==Td4)1*IZrT zNSk4@iI<5f4^z!@Pzb6)tsJJA-H^eU{JP1zyd=cLFJS0lqE@by>naxy?F*s35xR?o zwS~|ru7|P3YUKwleE>K7`dvpaHkQjrml{_#iuI#w4Sne-IxDOO)mpQ#TCdKoY=lD? zQbFddus)58n&U_;$F)c8NhfXd-?PVU?W4BDSIj>?6Pc5|YM(5~?!=YTNvK#SsoajY z{%e87*L>A^(t6)7c2aGpol?$jYZ9+`+Ulg+X_Vu;tr;+y3HLoS2)o$n^vkOx)C~ z(eHO2wmR{^ZO536uXxQIn&dTn9}IqMstx4uzoG_-2!d!+C6ji9_9 zglVScM9cBtv~`Fl?ez2WTd(1-<>vgy{K^UW`_h@p2Pc2zt-s&;?lUC^X0O7h$G)4H(m?v z1-%d1yjyAp8fnl7x`B(`_5=kMzS1xdsK zor-hA?ttrk+zu@8Kt~Pzfb&V~;||WpuHoFrt@YW!4dU0FtM*kJWOJZ{`gUx$)p3Kw zwb(Vc?OwC5y4OHLr>x75ykG@M^pg2rM(-O>Or->3IJdS60f}FA)$Bfy8Q!QtQAwtM%$K zc!dS!-$U2#KEcb6vzf=b4c2k7YTjM%VlpFVo2x5E z*t*S&jkR1{9?#6|ezp=0r&!E7tQ4p=6QCK%bJau}B?{UDm@rlWyQ^@HL;9QS8 z5(kl=3vf6Lp4sJ&Dt05*AuqIv3Qb8Rq?}ZqO5KP}THqztCOBt17NN;F%CWW!zM5En zp28gBHw_L$?)gL~xqd3D8;a`g>v#b%qzwU`1aI*0bGx~#F2udmg1gpUur6O9hh6d% zxW{$7lR`cvK!S9hS^@@DqxeCWx$Y9sEDcfY0}f2!KdUB%-=vo^)NTwPK$~GTGf>Jx z)9LbvB>2r9;VJ2*(akZnH_DF>IQuak+MW~iM3j~qt-lWpVyd-kh+>VRPD z^wKVBOzKW@qIPQ2jC&Nb%`s0!V@^YFNdqeD zJUU-}1dwCv%UC@^5!KKA)oZU+-w!!d{ZA0KmCyWL{{8e9BRKMhT{se)5!NYO7yR>V z_j-^Lmu=MiH_w1QCDxiN#Zp;#bLfcDm0r<}rLti8Eeby<4M`1#SXJdPNeseFyjWYg zSQIX@MQ(6>&b)30T|I^tdN&e0 z!Z7ospy+}J&Q`yOseu4-%eC^A&@HyA%UfiG)ob8?)zN#Ae7=a}nJ;m0VM4HCQ@@2B z-Hqf{p%B047|^5PIna};buwEh7t4V>T5HcaaPkIp9jYaRkAx?>OPG_+qvOz9E;lb$ zFiZL+-t1-8#hVw45G2BtI9*`^GHz9u!;!9LR4A&YRdC!PfVx6d8D@AZl=LFsk+5?z zcB3V=jFuEPd_BHiT(366EOn`sVx1C%;5fb^)$x`bQjzv`;>j>|rCMGC2d+Zi5(VMG zG?gLZ)P`ZCQh_kdR)!2h_D2EWca`a951k7H9}5+-uJHBZLKv6raP z1La)@zH2+1jsgb;O~=5u<3OZDqtx`BO=2yj)Jy$O2uq%@*NrIZTdOH>BW5Jz{?Qu5SUDGi~e2PJbzBt@n( zjB=`-L66z>l_1?7UKkyLnpXJq|CRM(Xr=R2c8MkK{>dj#BW6u(S22T74_kF-Y@ zol{mfhbI_^`uIm`qFVzg@<)&&zxDzYz|NT3)fvYah&;z`IPG!Z<%u9GcNlArL%ro_ zh>S<1Zo<^4DM7}tcmVs3wujpp^fA`X-msx&#??$P4iz)mnM7-}*qn$Yh-p7b>zUdw zeBadUQU|uzY)-X}jm2C)-A)NlHmzsc7@4{w*iGr7?z*1n>@xRR+9M<89ruFYW902I zb$76j(gUrgqE`EHz3KNr)M|X7)pXSA4r8Yae998_Cg?HyqBD2GVh5YubyzG>17pF` zU7Ue-HnN04U}`6_o;^l z%5U0HzIR9Y2rY!_Q9<_B(*5crErii5qyNoWS_-Mb0I4L~yV_Ij=}K%d2JHX%JP^N; zK*a6HKaPWlAsFZuqnDAiQj}_k*N!aY4D+g@a!?EoXe(0$)5buT2F4a`ffu?W(~M$5UM7mm zH;_@$WB%TmXq10?rZsV{RxMrfgN9$a*l5rUcw`}ruU)Ldybxcg6-$?BnxOoMtR>|V z__fhzfbtg>8tX=K&*A>zSl3ijtW_&@+CjsKiw#|EK|&O3y~;jM}wbb5>Ol{%HC`2>1H>u~QK z_-X&87aOa7saW^rblDFs!WL@e?EALF90?mURk1DN{pvNoep^;Y_i)r`W?X;aFePbk z-ZV`CI$%OIM8C);9@d3{Pb;kJiF8$(W_XLZ_nNSAnhmgSX1skk>nB`Sdu9cR7mS!2>clAGy^d6D9wQ)%X7#r3%m$uTC!jn4i) zv<{OCM)ArcBQutVDrTncd3H%$pg+Qd$Ut935;|*h0w)cDeiT*tc!>ZepD2kUjHB4r zb^--FZv+$?^`hSRG_GtCg;}DdQ5_`$7>yZqG#l$8heP(LHA$QRl@&-Lb{E=><3DS$ zJr!8shS(n1zi1++jg0>|Z;v|qhtNM6Qt!_}?ks*ys@7%kRl!dM6agPdjGh1-q4$AD zCc<%!*chM+je3a`U83^JKOSBD&f(YO`-U!O7079=0<1|$9iRuR5Cej+3a~IO5kH^} zWUf_6iY?5U562f)gP>6_tmtyHSpZ+F2T-Z|_^YSv0`YCs3t%71O)!dL{YtSJ4#8yt zKv}OtEdV~NDva4}mTQZ*>p=e#407i?@d|=93x(h0W6%O**@@o2F$Zj)fZ6U9JzU1C zsF27^1YqcRR#>};&30RtoL6nVf*K+;dnraM9L`}*;6s7_EEYAk1@hWVQpXBB;3Kwh zFjF+q$AO3ju0UQ|3q~30onens4>Sn9ZhZ>n47BeIjO2;UVfK9a6EL1f<66q{?#c~D zfL@3b6ENp@&yDi^nelIq0Wn}~K$9LY4s3mB3EQ7JyEMV~9kqmIOj{W( zX=Z8n=ANEbIvrW_C{V%JZ)cqQR*Ab-g6#dI--|}Yw;@7U*=mKtzeSVgK_nK~7s+rO%y1m+ZBGo!le5ph5B~?i zBKLq5z7BDkp5|dH1Z~$LR|zrcjDcOao@P5&^G z-@va)M(5d{CpA6a8)bKo@Sh^#TOfQfXA9Y%=W>QG3Qh*7Q!y||hw2naK8aQ&cvlFX ziWUrEAom2w-GehBYH3;tp?gy2nVN{iVcr%3Pr;a!5&{oE;9c`O?ga84>XCOkI+KBM z&6wQ56og>m-VL%5X%9uMMle#-YBXw<7-*G=T8)9IlMzwlei2cRZzJkqv?WPT@Y&J2 zOVTi8853DMTZzN5GRYu@|6j;i|5LpC|4nk9)<2Gm^-nPQNhX5G{uy(E;dYSiPw~Y6 z0lDg*Mh7r|{0#f)F$x2ML?r%mp7>cNJ>u0r$Kua3q3y$X&cDdqO(uO>A(@2Z5jHSZ z5CJz|L%pG7P%0@o3ko*y1%?mDz?OZWKe+jL7!3z|p1Suj;Ysj=szyj7I+*l%} zaP;8GwsA~DG~v%Dd&fxGS)834EInDesl`O=AS<= z&j#FG1qmqalfYz{N;v(+ijO!VSg-5p&0{W80zL=r5QGPSYn=sCFU&I6f8y=v>67QiUsf^2I*iZ$iT|& z0tt-c{4i`DPQ<>%E4i7C;!t9+SsVLEY;#nl#bV%fCfX_3Ut&vRZKRvyU|Se*djh>9 z1OYZJh8@Jfh9+>9ScPXNx19wJhL3mG`e%T45X03@e-u7nu-I#zDa_2S_Aa?*iYdY+ zViOi>h>fP0nwn|a*rwaCsa$ejwVQ3&9DsBp9C$pKLV1@Nof*Ydw9-EwOfSu-EYFd3 z5)G+|?~8#|f>|=yqCM5w^{RdOI4oFPq*KO++;?9Bgj~ZrHU@xg24h`keS?V@!XIId zG~If9&~D6N8Zib?sa?n&ffLeSII?DJ11m*D@Ss6O7gZGi-B;x%RrT8&to2de0)}o& zALf0W`%i1qw7v@ojP_~3lg64vIvMqw0$*R}$;1FWx(^jmTNwUVfG(~SL+4^Kx7%<@ zQEjPs8~s*PTWV8=n|_G7X(r#sp*DI zDBwgy&@f3(CJe%bDj)RqN&R_VG-?R)Y1FA$E&|2XsA@_Ey$9tL@QFG7 zgY57lyw9qYO0q5HfVPNHjFSXQ7HL1LYr{+9n5%)I$Jb?!Wv)M-Q+eLx)s|e zDxxt*8znMrQE8+R8ir@bqoEp#;}`RYp2PeV)@sBtXP>#Pb*N9@>TJK@_`i#Ct|MqwD`5;xn-N3ZMDT&e-}V zqB`&xscV5-IH3L*s6PSQudP1^&H{@mt=XXV#3_UfsR`JGf3jaMmRh#`RdAqw+a%g1 zrR^W|>pPPXZ<}aOip81SZ5+JpL*Qjg;AO7xvSHYpht%XYUbYLoY!}WCgR;lyVN^3> zM|L-}k%iaY9BCU4=EAP*G2)UIOri6=^O0rk#j{bS8f9+kZp}uNIs0whQy+;kzxUB@ zn~!(fd@9OZ`>rUn^675Pm!izl*G%TaugpF!H~qEo(&K%(DXpAMg8(GXkC} zQ{VZvFKqn!qc!-;)%IA&Fff0lUv{6~NFOy$0_ zuYT8G{1Tc!_~{QlG?#tn&B~j9dGdqbe(Jw}aqEw9m)2eHLBt$laceN%sw4h@>|A?k z?tMqrUOM)^))2G)VF^lYjj_rfNS6emf;DP-4zwU9S%;WSQ z+l1S;_L(Oes2_O9)_xjH05FWBS|WnW)WUt(O>5;XYBzXu1Ss%5V1*mkiW%xx;EtCu zBLgG5t6}VeiIDKw#43r>^dgIV5dCf>VI}||MbhnilYl8^C=v-p`Y!EXgk%n`$<1uj(hxEiWm}?aK@t?`hDl@`(9jIHrDlR)5!8xE8$Z_|t7!D*jN z!C&k#>=vU-tCUFiw2}IVXQ3W}=og$DMkFOim+3`P67^$roh-b%wDCb^ihjVc{5E81 z8lG9i&4||yQ96v{fpKE^dJN-91NXz@D!I`pCNPai91{f6@9nSbgUa(@A8(=A4%EbE^mT2{2cJvZ2zQl|73qT3u62)gC_e8f4rlZ-c zi6qQ0D25?5O>F)U#$#M@eYNCiwk2RT+Q$TQlT1YWSVt}#qlas`xYW=EMjK*FiKe+x zuP_m{hCVZ+%(R%h!bF5d2f5sMKCx1u9+FQyCC33HPhV59uNWY+pBMi_Ci{?tafFx_ z7ED~>bF3{ed7jBfm|SJD1LlYyOI2Y+M*K~w9FPM(gLd>|@t-j-_-DKe)d+Vy#t0X3 zLdGG|3}jS`(F73@m678TlF4gK4~%{pcl4j5&z`ZB>yeKm9P(9UK)W_LS!{;<41N;q zY>Cm>iq&n;aC-wc0w96~77kzz#KgcmVz4(NUT7SR1+X;`H;HAyR!L|GdF9m+MFSp6 zJ_zr{6k_anJxrT4b-Flau7qBDg*d8#@82sGwL1*sX#RRZ%Z0K^TJ7dk{%+D0Io5NP=Ckjc_P1We8Qg z>@;okbT>gHJq-qq5PsONlXO905e(FebObdqN4u-W%M1SdE%KY5TwY1&C;86Z>cIJYpJxFf&g&sk*`}i?AyPVO~%r zJ0p^VpoCacP?j0&iYE{e_G~A${!~;404{Zpz}(jz7uvO9u7YTaa#vvngpiXGpu=c4 z2jMm^BJL!Gb_bzQopFR#P2k>Hw3>i9%-M?{jASE&B{7gq;^}aA%->WrV<;_+P!VT1 z7tC^0l&LyPJ1EAxpmgj87@?43C{+@{O{R}%o}*Gq9bk_l*6#SmN`jF}jJ7dyh2~YG z3UF@*DCxhVqIIY%G$5Y@xOS~zZ+;zd1w>C&E>vATLV-onmXKLP>8Dw|fMvV|>+Wl< z{cr7>)ffU__p!h2@+!Hj1au;1h5mgoL;Ecf zp@g^^Pa-8&8t{!WCxqsA2rH80fKd7k6vKoW zX_zv{OXZE+bYJ}Bvx~4q^*0XW$NS~(EDpf$KjRJF!$c&J=-m`Yq3{}5*~xMij7Xw{ z3hnoV_It%=8rm=F-$7L#&xX(tC7CW7zYzWMWHLuYZRPafd zC6Pukn8(1Lvi6L~Dj3MlU_xg23*Gkw?8}Sfj|m6rwKa%O~?nZNf&-Bbv;7z7LEWU+;? zV9*3b8zkIYaX|DiwYM-8#pOb!z0;f(`6p&w%n2wdOe|o7Tw^(mK_cXa4Y-OebC2Y5 zwQdB?Z?Z>sxm>J=v1Xt&=mQ~1D{2utBG#()b+aaaKw2?qIF~kd*TbmM5W$h;p~(i} zV+eo>o#jpX23~V)1c)Ze%zKUJB@>bm;OU0+T zy9%jF+`v9Hv!84+2J5Qx3U*FlM;3Obk$H1pSpW^AYjqWS5S?VeD!3m+n#zEkiw{C{ zDpNlc=~1SXiF7Gbg76Wh3`;J1z-}?Prm;>;8T%{-&Sup3KxxO7+n>EZ21K}Ew^ziZ zC+2(G+W5)|eM$cEE-Fx65x@eNr>x!9-*GOxaDLdvKtNCmR_Dyl>66Irc(Y$mpQ_=d zllz?hpM16KJ7Kl%l$f&;tPzE3VXeQvr{6kE0DBden{t=R+kU@=os_?RM!yZ$ZyPAF zC^=;F2of3SLF~J;u36Wdz~00@yf#D{-aSw!ZDk6PKG6fX)!(Dc`8gz&mp}E3|LyS0 zfBD5N+8!V|L|+iLOoIjp4cqvQ2@)rFqY8l*T6_=Yf$u<--ix#CwbF(?U6k&>IB`f+@E7NU4vro%q3RiM(fO;6WMo=9BKk%gj z%TRJ(jPxZpRh|hcU^px%Px%^Z6Ld0fYu-3&iG( z!Z0c71X%5i1*50kcK5OkOeu)YL)3<;Auc1zL=D((+gpTRIp-Ab#oI~y_&aCBAr$0` z<-R|SJBx{li`v)a3M1k0E)Y2?mpra3&6ASz{R{p{|FG;dldWa`bKJh+A6`CE&*l6p zMO`f})XIKywS*n_&1nBUBTG$BzQ6H$*B`_6_}l3kCE1G|3KOf1; z=ISy89vOgH_Kz_4D3Z`#7UW|B-fptmCUMYDu!ARt(_JvuML#e*VB6IC2zf^ams(lw zN}BbfFOAG->U%$ONG=5$He%5Q;#YhK8{c ztPn#){%Ht8Xko~Epc1$EIowg^;EhoUC-VOZk-SkFLHmKFwQV^^t9Otl_!#}aflId& zLUbkcg9V1wV}(A^Xu$qf&-rf$!RXcU5r0Kv3#*Sk%TOjjl*@1w(=KNyo7?fFlkJ2= zqImt~ZU!co^~Fmo&c05lMAPq2Qbh$%hi#f9ogv>yNqK;`RO8U;Rz5Aig)VcrZCYOVOXv7vg652yBow z^bVZH7g;W^mdn_m?%i$`nZ-k(C}z#*BNNpf98ciX87>r>nyoZ7IqbEQ@CG^86aPeW zN&JMpeGf8y@h^-lz9_nuf|j+u0Jde8%zNQ4v0-#E`JNjpGjdY%uFz)&&0IB6|uuoB?u326qxX;z5b*z+&&54+WQ`Y*^=O#23z-Qqstb8B|_1tZMvC&3Cy&g3q z2v+XaP`^&XQ_1tg&}ljH6h|KQuLk?YF4j24kp3)UE83$BnZ^;OY3PW`TlkApJLy|H0ScN0(areq+}oDSg{$4#MLup&5r~j z?ynete7j4b8|+87oVfW2nS^UX0VYz!hv-+Fi96>oJjsUxC-! zYZ~20-V7&UvDPRCIsa*BsQgr&xOt;C{WpzvM14ML7GS-`L-dRZbO`%;wcfiycU4Iz z+gbGMs+@RrX3eR;e%AfsB355CM80v{Tt?noj!_J2)MO9^vH9TNwwu2GyLn@`G&XL0 zm=S21V`}RC$jb*JTJ@ei#(cY{H<-1#D7$v7n>pUioQN_D(NQfa)0`P;&Wto?Mw%mo z=B<_cZ}->kR(|U<#)5YmG9z>zRbRK|+e8nRTXBDG_849pP6#wKhO3k~;Q8erd?e4~ zCli@7im_WNS8MtZrp|oOB2mPLk?IPDWW+4P*U{6MLk92Rqh_STaCjR5g=5`C(W4Nv zZ#dOk+XilmeX6f{4>yZf%IFRY4P3yu*G28NIhfOx5>a}S&O37yqcIC*bQFn0oxi5!0p5VQByN zW>&e7%)Pl4j30l)Gs{nVJ+OGo{D!05*U^2(Z!p>VF}{L}T(G@a)~8u_hRInbk286K z$&Q7+`*ssrSS;5oKiivCM1XW>bqaeX(aSajNi-=4@-WVPs}SV+Z(&sfJ3<5d@*6~p z382OAj?g0V`rk)rk>5n=Va@@x2t95GS_BT=fff@zw3rmMn2gXO`+s(@U!X+~pW1}m z9(XSeyvPq*$||}1>^A(C`5XL3iF`YSGXh+HgWvuJzwry25or9@<2QXj8DbB;^|4JW z-N$iy7L8io5dn0Nh+x^aEytVzm78}*02-IJ-~zrXAsWl2U+_NlZTl+ z!bF(&qs$2h-ws#wNuHn`z*q!c52WZP(eBIS+H`DMw*e&C+k%mOwp>}_Mf`(W**CnN zLSg%^g$^)D)#bW0y+vULY+c##h4FQL zgVJ!jo@HX-!5nVWyjsWCJ_ql){f@H6;ZUByOw40OW!a8!eKFnw7AwN;d_o8H0vzeP zP={ENY6YM8{$rfjIpe!q@`w_WFIy=99E^cGjzwe~QyxQc@Ub+22>mqg;mq^K_p-ZQ zlC${*-CtoH!!owzaq5vUE{|%4D?~@y$`3V5)s>A|e!{J3!cNAZJT|z__zuVpjPAJV49}ZrMFT&xI<`T^tP7HL}ix}qOdHr3A-^c#q zvQaXOVa?~$7$%~@U}|m3H$=DHEc$8>joA5ky?_W9d|pX6mf$2(y!TF-Z!-{UTFnn2F)^Sfe3&VACz^k*0r_X>RVJCvdiy=!d(eAx_K